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Abstract The spatial peak surface shear stress τ ′′
S on the ground beneath vegetation cano-

pies is responsible for the onset of particle entrainment and its precise and accurate prediction
is essential when modelling soil, snow or sand erosion. This study investigates shear-stress
partitioning, i.e. the fraction of the total fluid stress on the entire canopy that acts directly
on the surface, for live vegetation canopies (plant species: Lolium perenne) using measure-
ments in a controlled wind-tunnel environment. Rigid, non-porous wooden blocks instead
of the plants were additionally tested for the purpose of comparison since previous wind-
tunnel studies used exclusively artificial plant imitations for their experiments on shear-stress
partitioning. The drag partitioning model presented by Raupach (Boundary-Layer Meteorol
60:375–395, 1992) and Raupach et al. (J Geophys Res 98:3023–3029, 1993), which allows
the prediction of the total shear stress τ on the entire canopy as well as the peak (τ ′′

S /τ)1/2

and the average (τ ′
S/τ)1/2 shear-stress ratios, is tested against measurements to determine

the model parameters and the model’s ability to account for shape differences of various
roughness elements. It was found that the constant c, needed to determine the total stress
τ and which was unspecified to date, can be assumed a value of about c = 0.27. Values
for the model parameter m, which accounts for the difference between the spatial surface
average τ ′

S and the peak τ ′′
S shear stress, are difficult to determine because m is a function of

the roughness density, the wind velocity and the roughness element shape. A new definition
for a parameter a is suggested as a substitute for m. This a parameter is found to be more
closely universal and solely a function of the roughness element shape. It is able to predict
the peak surface shear stress accurately. Finally, a method is presented to determine the new
a parameter for different kinds of roughness elements.
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List of Symbols
A f Roughness element frontal area
A Effective shelter area
CR Roughness element drag coefficient
CS Surface drag coefficient
R2 Coefficient of determination
Reh = Uhh/ν Roughness element Reynolds number
S Total surface area per roughness element
S′ Exposed surface area per roughness element
Uδ Free stream velocity
〈Ui 〉 Spatiotemporally-averaged velocity inside the canopy
Uh Mean velocity at top of roughness elements
V Effective shelter volume
a τ ′′

S /τ ′
S peak mean stress ratio

ai Fit parameters
b Roughness element width
bi Fit parameters
c, ci , c′ and c′′ Constants of proportionality
h Roughness element height
m Parameter defining relation between τ ′′

S and τ ′
S

u∗ = (τ/ρ)1/2 Friction velocity
uτ Skin friction velocity
−u′w′ Kinematic Reynolds stress
z0 Aerodynamic roughness length
β = CR/CS Roughness element to surface drag coefficient ratio
λ = A f /S Roughness density
ν ≈ 1.5 × 10−5 m2 s−1 Kinematic viscosity of air
� Force on single roughness element
ρ Air density
σ Ratio of roughness element basal to frontal area
τ = ρu2∗ Total shear stress on entire canopy
τR Shear stress acting on roughness elements
τS Spatial average surface shear stress on area S
τS (x, y) Local surface shear stress
τ ′

S Spatial average surface shear stress on area S′
τ ′′

S Spatial peak surface shear stress

1 Introduction

Desertification driven by wind erosion, reduced accumulation of snow in arid regions or the
development of dust storms entering areas with a high population density are all examples
of the influences of aeolian processes on our steadily changing environment. During the last
decade, numerical modelling of such aeolian processes to predict, for example, local water
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Fig. 1 Sketch of the SLF boundary-layer wind tunnel

storage as snow in arid regions, or the aggravation of desertification, has become significant
in the environmental sciences. Model validation by means of experiments is essential to ver-
ify the accuracy of predictions. Often, experiments are also necessary to determine model
parameters.

The local surface shear stress τS (x, y), acting on the ground beneath plant canopies, is the
key parameter when identifying the shelter capability of vegetation against particle erosion
and when modelling aeolian processes. Here, x is the streamwise and y the transverse direc-
tion of the flow (Fig. 1). The spatial peak surface shear stress τ ′′

S defines the onset of erosion
whereas most sediment transport models use the average friction velocity u∗ = (τ/ρ)1/2 on a
surface to determine the magnitude of the particle mass fluxes (e.g., Bagnold 1941). Raupach
(1992) and Raupach et al. (1993) developed a model that allows for the prediction of the total
stress τ as well as the peak

(
τ ′′

S /τ
)1/2 and the spatial average

(
τ ′

S/τ
)1/2 shear-stress ratio as a

function of a set of parameters that describe the geometric and the aerodynamic roughness of
the surface. This model has been repeatedly tested by means of several wind-tunnel and field
studies (Marshall 1971; Musick et al. 1996; Wolfe and Nickling 1996; Wyatt and Nickling
1997; Crawley and Nickling 2003; King et al. 2006; Gillies et al. 2007; Brown et al. 2008).
However, all these studies are either from the field mainly using live plants with the limitation
that flow conditions could not be controlled, or from wind tunnels using rigid and non-porous
plant imitations, which often (but not always, as will be shown in this study) poorly reflect
the aerodynamic behaviour of live vegetation. Such plant imitations often result in strong
differences in the surface shear-stress distributions τS (x, y) and in the peak surface shear
stress τ ′′

S on the ground compared to live plants (Walter et al. 2012b). The highly irregular
structures of live plants can be extremely flexible and porous allowing them to streamline
with the flow. Hence, live plants cause considerable differences in the drag and flow regimes
(e.g., Gromke and Ruck 2008) as well as in the size of the shed eddies compared to rigid and
non-porous imitations.

The model of Raupach (1992) and Raupach et al. (1993) incorporates up to four parame-
ters and fits any of the data of the different experiments from the literature reasonably well.
Unfortunately, as a result, the range of possible values for the parameters obtained from the
studies cited above is relatively large because of different experimental set-ups and rough-
ness elements used. This makes it difficult for modellers to identify appropriate values for
a specific vegetation canopy or surface with non-erodible roughness elements. Furthermore,
no study systematically investigated how well the model predicts the differences in the shear-
stress ratios for different kinds of roughness element such as cubes, cylinders, hemispheres or
live plants. Most studies used solely one kind of roughness element, sometimes of different
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size, to obtain variations in the roughness density λ, here defined as the roughness element
frontal area Af divided by the ground area S per roughness element. An intercomparison
between the studies is often restricted by the varying experimental designs and measurement
techniques deployed, resulting in disparate measurement accuracies. Some studies used Irwin
sensors (Irwin 1981) or drag plates to measure the surface shear stress (e.g., Crawley and
Nickling 2003; Brown et al. 2008) whereas other studies determined the friction velocity at
the onset of particle entrainment from observed wind profiles (e.g., Marshall 1971; Musick
et al. 1996).

This study presents an application and extension of Raupach’s model to surface shear-
stress measurements in live plant canopies of a single species (Lolium perenne) of varying
roughness density and arrays of rectangular blocks to investigate and discuss the research
gaps identified above. Model parameters a priori determined according to their definition
are compared to their corresponding values obtained from least-square fits to the stress-ratio
data as well as to literature values. The ability of the model to predict the total stress τ , the
peak

(
τ ′′

S /τ
)1/2 and the average

(
τ ′

S/τ
)1/2 shear-stress ratios for the plant canopies and the

block arrays is tested. Finally, a model modification is presented that improves and facili-
tates its applicability in predicting peak stress ratios

(
τ ′′

S /τ
)1/2 and suggests replacing the

problematic m parameter with a more universal parameter.

2 Background and Theory

Schlichting (1936) first defined the shear-stress ratio for a rough surface as τ = τS +τR where
τ is the total stress on the entire canopy, τS is the average surface shear stress on the ground
beneath the roughness elements and τR is the stress on the roughness elements. A model that
predicts the stress ratio (τR/τ)1/2 = a1ln (1/λ) + a2 as a function of the roughness density
λ and two fit parameters ai was presented by Wooding et al. (1973), but fails for λ > 0.05
(Raupach 1992). Arya (1975) presented a model for two-dimensional roughness elements
transverse to the mean wind that states (τR/τ)1/2 = [1 + (1 − a3λ) / (λCR/CS)]−1 and
Raupach (1992) presented an analytical treatment for predicting the total stress τ and the
shear-stress ratio (τR/τ)1/2 = (βλ/ (1 + βλ))1/2 and thus (τS/τ)1/2 = (1/ (1 + βλ))1/2

for three-dimensional roughness elements. Here, β = CR/CS is the ratio of the roughness
element and the surface drag coefficient. The model of Arya (1975) predicts the stress ratio
as well as the model of Raupach (1992) except at λ > 0.1 where Arya’s model predicts
τR/τ > 1, which is physically implausible. The widely accepted model of Raupach (1992)
and Raupach et al. (1993) is entirely based on physically defined parameters and allows
the prediction of the stress ratios τR/τ and τS/τ for different rough surfaces by determin-
ing solely β and λ. It must be noted that the roughness density λ is a geometric value that
can easily be determined whereas the drag coefficients CR and CS, which define β, are flow
dependent properties of the surface and the roughness elements. The drag force on an isolated
roughness element can be written as

� = ρCRbhU 2
h (1)

and defines CR (Raupach 1992). Here, ρ is the air density, Uh is the mean wind velocity at the
roughness element height h and b is the roughness element width. Raupach (1992) further
defined an unobstructed drag coefficient CS for the substrate surface such that:

τS(λ = 0) = ρCSU 2
h . (2)
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The model of Raupach is further based on the definition of an effective shelter area A and
shelter volume V as well as on two hypotheses. The effective shelter area A is defined as “the
area in the wake of the roughness element in which the stress on the ground τS must be set to
zero, to produce the same integrated stress deficit as that induced by the sheltering element”
(Raupach 1992). “The effective shelter volume V describes the effect of a given roughness
element upon the drag forces on other elements in its vicinity. It is the volume within which
the drag force on the array of test obstacles must be set to zero, to produce the same integrated
force deficit as induced by the sheltering element” (Raupach 1992). Hypothesis I states that
the assumed wedge-shaped shelter area A and shelter volume V scale according to:

A = c1bhUh/u∗, (3)

V = c2bh2Uh/u∗, (4)

where u∗ is the friction velocity and c1 and c2 are constants of proportionality of O(1).
Hypothesis II states that “when roughness elements are distributed uniformly or randomly
across a surface, the combined effective shelter area or volume can be calculated by randomly
superimposing individual shelter areas or volumes” (Raupach 1992). The above definitions
and hypotheses are then used to determine the surface shear stress τS and the stress on the
roughness elements τR according to:

τS = ρCSU 2
h exp

[
−c1

(
Uh

u∗

)
λ

]
, (5)

τR = λρCRU 2
h exp

[
−c2

(
Uh

u∗

)
λ

]
. (6)

The model thus allows for the prediction of the total stress τ = τS + τR on the entire sur-
face using Eqs. 5 and 6, which results in an implicit equation for u∗. To solve this equation
the assumption c1 = c2 = c is made, which can be interpreted as “the elements shelter the
ground and each other with the same efficiency” (Raupach 1992). This finally results in the
implicit equation for Uh/u∗:

Uh

u∗
= (CS + λCR)−1/2 exp

[
cλ

2

(
Uh

u∗

)]
. (7)

The stress-ratio prediction of Raupach can then be obtained by using Eqs. 5 and 6 and
assuming again c1 = c2 = c:

τS

τ
= 1

1 + βλ
, (8a)

τR

τ
= βλ

1 + βλ
. (8b)

In Eq. 8a, τS is the average surface shear stress on the total surface area S rather than on the
exposed surface area S′. Raupach et al. (1993) suggested the average surface shear stress on
the exposed surface area S′ to be τ ′

S = τS/ (1 − σλ) where σ is the ratio of the roughness
element basal area to frontal area and σλ = 1 − S′/S is the basal area index (the basal area
per unit ground area). This results in:

(
τ ′

S

τ

)1/2

=
(

1

(1 − σλ) (1 + βλ)

)1/2

. (9)

Equation 9 was validated by various measurements and investigations (e.g., Marshall
1971; Crawley and Nickling 2003). Raupach et al. (1993) further argued that not the
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spatially-averaged τ ′
S but rather the spatial peak surface shear stress τ ′′

S at any location on
the surface is responsible for the initiation of particle erosion. According to this, a rather
empirical assumption on the relation between τ ′′

S and τ ′
S was made due to the limited surface

shear-stress data available at that time. Raupach et al. (1993) defined that τ ′′
S for a surface

with roughness density λ is equal to τ ′
S for a less dense (lower λ) rough surface composed

of the same roughness elements:

τ ′′
S (λ) = τ ′

S(mλ), (10)

where, m is supposed to be a constant ≤1, which accounts for the difference between τ ′′
S and

τ ′
S . This finally results in an equation for the peak surface shear-stress ratio:

(
τ ′′

S

τ

)1/2

=
(

1

(1 − mσλ) (1 + mβλ)

)1/2

. (11)

Equation 11 has been validated by several wind-tunnel and field experiments (e.g., Musick
and Gillette 1990; Musick et al. 1996; Wolfe and Nickling 1996; Wyatt and Nickling 1997;
Crawley and Nickling 2003). However, most studies used estimated values of CR and CS to
determine the parameterβ and applied best fit methods to obtain m. Wyatt and Nickling (1997)
found m = 0.16 for sparse desert creosote communities whereas Crawley and Nickling
(2003) found m = 0.5−0.6 for solid cylindrical roughness elements with a slight depen-
dency of m on wind speed. They further found a strong overestimation of the stress-ratio
prediction (Eq. 11) when using m values obtained from the independent parameter definition
(Eq. 10). Brown et al. (2008) found that the prediction (Eq. 11) works equally well for both
staggered roughness element arrangements and for more randomly arranged surface features.
However, all these studies show that the m parameter is not universal. Furthermore, the model
of Raupach is based on a scaling argument (Eqs. 3 and 4) and ceases to behave sensibly for
Uh/u∗ (Eqs. 3 and 4) at roughness densities larger than about λ ≈ 0.1−0.3 (Raupach 1992).
Shao and Yang (2005, 2008) presented extensions of the model for high roughness densities
λ > 0.1 with the argument that it is not clear how the effective shelter areas and volumes
superimpose at higher roughness densities.

3 Methodology

Measurements of surface shear-stress distributions τS (x, y) on the ground beneath live plant
canopies and rigid block arrays of different roughness densities λ were performed in the
SLF atmospheric boundary-layer wind tunnel (Walter et al. 2009, 2012a,b). The wind tunnel
(Fig. 1) is 14 m long, has a cross-section of 1 m × 1 m and has been used mainly in winter for
investigating saltation, ventilation and the aerodynamic roughness length of naturally fallen
snow (Clifton et al. 2006, 2008; Clifton and Lehning 2008; Guala et al. 2008; Gromke et al.
2011) and in summer to investigate the sheltering effect of live plants against soil erosion
(Burri et al. 2011a,b).

The 8-m long test section covered with live plants allows for the generation of a natural
boundary-layer flow (Walter et al. 2009). The wooden blocks (rectangular blocks with square
basal cross-section of 40 mm × 40 mm and height of 80 mm) and the live plants (species:
Lolium perenne, height: 100 mm) were arranged in staggered rows on the wind-tunnel floor
(Fig. 2a, b). Four different roughness densities were investigated: 0, 5.25, 24.5, 55 plants or
blocks m−2, hereafter referred to as smooth-floor, the low-, medium- and high-density cases,
respectively, with λ = 0.017, 0.087 and 0.200 for the plants (still air) and λ = 0.017, 0.078
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Fig. 2 Irwin sensors flush mounted with the wooden wind-tunnel floor for the medium density a live plant
canopy (still air λ = 0.087) and b wooden block array (λ = 0.078). c, d The surface shear-stress distribution
(τS/τ)1/2 for the low density plant canopy (λ = 0.017) and wooden block array (λ = 0.017) at Uδ = 12 m s−1

[D = 40 mm; taken from Walter et al. (2012b)]

and 0.176 for the blocks. These configurations were investigated at three different freestream
velocities Uδ = 8, 12 and 16 m s−1 to systematically determine the differences in the shear-
stress ratios when using live plants rather than rigid and non-porous plant imitations. All
measurements were performed at the downwind end of the test section. A 6-m long fetch
with spires and additional artificial roughness elements was used upwind of the test section
for preconditioning the boundary-layer flow (Fig. 1). The boundary-layer thickness was about
δ = 500 mm and it was shown that the inertial sublayer was sufficiently developed (Walter
et al. 2009).

Irwin sensors (Irwin 1981) were mounted flush with the wind-tunnel floor in an array
surrounding a roughness element to measure the surface shear-stress distribution τS (x, y)

(Fig. 2a, b). The pressure differences at the sensors were measured using a custom made
32-channel pressure scanner (sampling rate: 200 Hz). Flow characteristics such as vertical
profiles of the mean wind velocity u and the kinematic Reynolds stress −u′w′ were mea-
sured using two-component hot-film anemometry (model: Dantec Streamline; sampling rate:
20 kHz) to determine the total stress τ = ρu2∗ = −ρu′w′ in the constant stress layer above
the canopy, and to ensure that a well-developed boundary layer was generated (Walter et al.
2012b). Two-component hot-film anemometers are known to underestimate the kinematic
Reynolds stress −ρu′w′ in highly turbulent flows (Raupach et al. 1991). However, our kine-
matic Reynolds stress profiles (as presented in Walter et al. 2012b) suggest no measurement
problems in the constant-stress layer above the plant canopies and block arrays where u∗ was
determined. All shear stress and velocity values are 30 s time averaged.
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Figure 2c, d shows the surface shear-stress distribution τS (x, y) as a fraction of the total
stress τ for the low-density plant and block case at a freestream velocity of Uδ = 12 m s−1

(taken from Walter et al. 2012b). The accuracy of the skin friction velocity uτ = (τS/ρ)1/2

measurements averages to about ±5 % for uτ > 0.13 m s−1 (Walter et al. 2012a). Additional
details on the experimental set-up and the measurements can be found in Walter et al. (2009,
2012b). The accuracy of the Irwin sensor and the hot-film measurements are discussed in
detail in Walter et al. (2012a).

4 Results and Discussion

4.1 Total Stress Prediction

To predict the total stress τ = ρu2∗ on a canopy with non-erodible roughness elements using
Eq. 7, the roughness element and the surface drag coefficients CR and CS, the roughness
density λ, the mean velocity Uh at the top of the roughness elements and the constant of
proportionality c need to be known.

Some studies (e.g., Brown et al. 2008) determined CR and CS by measuring the force on a
single, wall-mounted roughness element and the surface using drag plates. However, in this
study, the force � (Eq. 1) on a single roughness element was estimated using the difference
between the total stress τ above and the surface shear stress τ ′

S on the exposed surface area S′
for the low-density case (5 roughness elements per m2, λ = 0.017) with an isolated roughness
flow regime to estimate CR according to:

� = ρCRbhU 2
h ≈ τ S − τ ′

S S′. (12)

That an isolated roughness flow is obtained in the low roughness density case is substantiated
by the fact that the shelter areas downwind of the roughness elements do not reach the next
element (Fig. 2c, d; Walter et al. 2012b). The surface drag coefficient CS was determined
using Eq. 2 and the average surface shear stress τS measured with 32 Irwin sensors for the
smooth-floor case. This method used to determine CR and CS, however, does not check the
full momentum balance as investigated by Marshall (1971) but results in reasonable values
for the drag coefficients as will be shown later.

Figure 3 shows the drag coefficients for the plant and the block cases. In the plant case,
three different values for CR and CS were determined at the freestream velocities Uδ = 8, 12
and 16 m s−1 showing the influence of the plants ability to streamline with the flow resulting
in slightly smaller plant drag coefficients CR at higher roughness element Reynolds numbers
Reh = Uhh/ν; here, ν is the kinematic viscosity of air. This CR (Reh) dependency is similar
to that of fountain grass as found by Gillies et al. (2002), although their drag coefficients are
larger most likely because of more voluminous plants. The drag coefficient CR in the block
case is about 35 % greater than in the plant case, which can be explained by the rigid and
non-porous shape of the block, and suggests a greater flow resistance for the blocks than for
the plants. The surface drag coefficient CS for the plants remains constant (CS ≈ 0.0018) at
higher wind velocities suggesting Reynolds number independency. Note the different scaling
for CR (left-side ordinate) and CS (right-side ordinate) in Fig. 3. The surface drag coefficient
CS = 0.0019 determined for the block case is slightly greater compared to the plant case
because the height and thus the wind velocity Uh are slightly greater for the plant than for
the block (Eq. 2). The roughness length of the wooden substrate surface is of the order of
magnitude of z0 = 0.01 mm and was determined by fitting the logarithmic law to the mean
velocity profile u(z) measured with the two component hot-film anemometer. Combining
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Fig. 4 Normalized friction velocity u∗/Uh as a function of the roughness density λ for the plant and block
cases together with literature data and the model of Raupach (1992): a using the original model parameters
CR = 0.3, CS = 0.003 and c from Raupach (1992), and b using individually determined drag coefficients:
CR = 0.166 and CS = 0.0018 for the plants and CR = 0.261 and CS = 0.0019 for the blocks. c = 0.27 has
been chosen for both the plant and the block cases for better comparison

Eq. 2 with the logarithmic law allows the determination of the surface drag coefficient CS.
The resulting drag coefficient is CS = 0.0017 (with z0 = 0.01 mm) for the plant case, which
agrees very well with the drag coefficients from Fig. 3. To obtain the roughness density λ, the
frontal area Af of the plants was determined by digital image analysis of front view pictures
of the plants at different wind velocities (Walter et al. 2012b). This analysis shows a decrease
in Af and thus in λ for higher wind velocities for each density case (see Appendix). For the
remaining parameter c (Eq. 7), Raupach (1992) suggested a constant of proportionality of
O(1) and used c = 0.25, 0.5 and 1 for his plots to illustrate the influence of c on the total
stress prediction.

Figure 4a shows the normalized friction velocity u∗/Uh = (
τ/ρU 2

h

)1/2
for our plant

and block canopies against the roughness density λ together with literature data taken from
Raupach (1992) and Raupach’s model (Eq. 7). The block data agree well with the literature
data for cubes, cylinders and different vegetation canopies validating our measurements. It
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needs to be mentioned that the data for the different roughness elements from the literature
do not overlap at different λ ranges. This inhibits a clear identification of roughness element
shape, porosity or flexibility effects on the total stress generation. Because of the limited data
available, Raupach (1992) used generalized drag coefficients CR = 0.3 and CS = 0.003
for all three kinds of roughness elements to apply the model (Eq. 7). Although the model of
Raupach fits the literature data and our block data satisfactorily well, the fact that our CR val-
ues for the plants do not agree with the generalized value of CR = 0.30 assumed by Raupach
(1992) results in a poor agreement of the model with our plant data (Fig. 4a). Furthermore,
the range of possible values for c defined in Raupach (1992) still remains relatively large,
between 0.25 < c < 1.

An improved agreement of the model with our plant and block data was found when using
the individual drag coefficients CR and CS from Fig. 3 (Fig. 4b). A Reh-averaged CR value
(CR = 0.166) was used in the plant case to obtain a clearer picture. This is justified because
the measurement inaccuracies in u∗/Uh and λ are larger than the changes of the model pre-
diction when implementing a Reynolds-number dependent drag coefficient CR (Reh) for the
plants (not shown here). The model is able to predict the difference in total stress generation
between the two different kinds of roughness elements correctly. Here, the parameter c was
used as an independent best-fit parameter where c = 0.29±0.03 was found for the plants and
c = 0.25 ± 0.04 for the blocks, and where all errors presented here are given as one standard
deviation. This suggests that the constants of proportionality c1 = c2 = c of Raupach’s
model, which connect the size of the effective shelter area and volume to the flow parameters
Uh and u∗ (Eqs. 3 and 4), can be given a value of about c = 0.27. This value of c = 0.27
was used for the model in Fig. 4b to achieve a better qualitative comparison.

4.2 Shear-Stress Partitioning

In this section, a straightforward application of Raupach’s stress-ratio prediction model
(Eqs. 9 and 11) to our plant and block measurements using model parameters a priori
determined according to their definition is presented. Earlier studies (e.g., Marshall 1971;
Brown et al. 2008) applied Raupach’s model to solely one kind of roughness element. How-
ever, since the model contains up to four parameters, it can be tuned to fit any data well if one
or more of those parameters are reasonably adjusted. The following analyses show that the
model is capable of predicting the differences in stress ratio for different roughness elements
correctly when using the independently determined model parameters.

4.2.1 Average Stress Ratio

The average shear stress τ ′
S on the exposed surface area S′ beneath a canopy is an important

measure to estimate the overall sheltering capability of non-erodible roughness elements.
Figure 5 shows the average stress ratio

(
τ ′

S/τ
)1/2 for the plant and the block experiments

as a function of the roughness density λ together with literature values from similar studies
(Marshall 1971; Lyles and Allison 1975; Crawley and Nickling 2003). Despite a good overall
agreement of our data with the literature values, significant differences were found between
the stress ratios of the plants and the blocks at a constant roughness density λ. Furthermore,
the blocks provide the lower stress ratio at low roughness densities relative to the plants.
This changes for the high roughness density case where the plants provide the lower stress
ratios relative to the blocks. The different freestream velocities Uδ = 8, 12 and 16 m s−1 in
the plant case result in three different data points for each canopy density in Fig. 5. Note that
the slightly lower roughness densities λ at higher freestream velocities Uδ are a result of the
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Fig. 5 Average surface shear-stress ratio
(
τ ′

S/τ
)1/2 as a function of the roughness density λ. Measurement

and literature data together with a straightforward application of Raupach’s model using model parameters
determined according to their definition

decreased frontal areas Af of the plants (see Appendix). This results in higher flow velocities
close to the ground and higher surface shear forces with slightly higher average stress ratios(
τ ′

S/τ
)1/2.

Parameters σ and β, determined a priori from their definition, were used to assess the
performance of Raupach’s model (Eq. 9) in predicting the stress ratio

(
τ ′

S/τ
)1/2 (Fig. 5).

The basal to frontal area index σ is σ = 0.5 in the case of the blocks and was estimated
as σ ≈ 0.125 in the case of the plants. Because the plants streamline with the flow, σ

slightly increases by about 30 % for higher wind velocities. However, σ significantly affects
the stress-partition prediction only at roughness densities higher than our high density case
(λ > 0.2) (Raupach et al. 1993). The value of σ = 0.125 for the plants has thus been used
for any calculation presented in this study. The parameter β = CR/CS was calculated using
the values from the previous section (Fig. 3) and is β = 137 for the blocks and β = 93 for
the plants when using again a Reh-averaged CR value for the plants, for the same reasons as
before. For comparison, the model has been applied with β as an independent least-square
fit parameter where β = 167 ± 67 was found for the blocks and β = 107 ± 10 for the
plants. These values are both about 15 % larger than the independently determined values
from the previous section, which can be explained by the influence of the isolated roughness
flow that seems to result in a slight underprediction of the β parameter. Please note that the
correct determination of CR strictly requires flow around a single surface-mounted roughness
element.

Figure 5 shows that the model is able to predict the general difference between the two
different roughness elements for low λ and supports the statement of Raupach (1992) that
the shear-stress ratio is fully controlled by the β parameter. However, the model does not
reflect the fact that the plants provide the lower stress ratio

(
τ ′

S/τ
)1/2 for the high roughness

density case (λ ≈ 0.18) while for the low density case (λ ≈ 0.017) the blocks provide the
lower stress ratio. This reversal in the sheltering effect at high roughness densities is rela-
tively small and thus needs to be interpreted with caution. However, it is an important finding
and the reversal itself as well as the reasons why it is not captured by the Raupach model
can be explained: first, the Raupach model is expected to become progressively worse for λ
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larger than about 0.1–0.3 for theoretical reasons (Shao and Yang 2008). However, the model
predictions generally agree with our data even for the high density case suggesting a limiting
value for the model of λ > 0.2. Secondly, the model of Raupach does not account for the
streamlining behaviour and the fluttering capability of the plants. The streamlining effect of
the plants results in generally less flow resistance (which implies an effectively smaller u∗)
compared to the blocks at the low and medium roughness densities (e.g., Walter et al. 2012b).
For the high density case, the blocks result in a skimming flow regime with a reduced flow
resistance (smaller u∗) compared to the medium density block case (Walter et al. 2012b).
This supports the above assumption that our high density block case might fall within the
range where Raupach’s model starts to become invalid. This decrease in u∗, however, has
not been found for the plants. The fluttering capability of the plants has the opposite effect
of the streamlining behaviour in that it is able to enhance the flow resistance. This effect is
strongest for the high density plant case, because of the large amount of plants, and explains
the higher total stress production (larger u∗) relative to the high density block case (Walter
et al. 2012b). Moreover, the streamlining effect of the plants results in a higher horizontal
coverage of the surface compared to the blocks and is also strongest in the high density case.
This is a specific effect resulting from our highly flexible plant species and may well be dif-
ferent for rigid shrubs. However, the horizontal coverage is the reason why a lower average
surface shear stress τ ′

S was found for the high density plant case compared to the block case
(Walter et al. 2012b). The latter effect, together with the higher total stress τ generated by
the plants compared to the blocks in the high density case, explains the reversal in the stress
ratio

(
τ ′

S/τ
)1/2.

One way to implement this reversal into Raupach’s model would be to introduce additional
parameters to account for the horizontal coverage and the fluttering capability of the plants.
However, since the model already contains parameters that are still relatively unspecified
and difficult to determine for various canopies, an inclusion of additional parameters was
not considered. The above discussion points out that characteristics such as the porosity, the
flexibility and the shape of the roughness elements can have complex influences on the stress
partition and its dependency on λ. Accordingly, results based on measurements using rigid
and non-porous plant imitations have to be considered cautiously when estimating the shelter
capability of live plant canopies.

4.2.2 Peak Stress Ratio

Figure 6 shows the peak surface shear-stress ratio
(
τ ′′

S /τ
)1/2 as a function of λ for the plant

and the block experiments together with literature data and the results from the Raupach
model (Eq. 11) applied to our data. An overall agreement of our data with the relative widely
spread ensemble of literature data is obtained. Interestingly, our plant and block peak stress
ratios

(
τ ′′

S /τ
)1/2 are similar for the different roughness densities, at least for the low and the

medium density cases, and can be explained as follows. The rigid and non-porous blocks
result in a stronger flow deflection around their body compared to the flexible and porous
plants. Hence, the higher wind velocities in the speed-up zones at both sides of the blocks
result in higher peak surface shear-stress values τ ′′

S relative to the plants. However, the stron-
ger flow deflection in the block case also causes a higher flow resistance and thus a higher
total stress τ on the entire block array compared to the plant canopy. This suggests that peak
surface shear-stress ratios

(
τ ′′

S /τ
)1/2 obtained by measurements using rigid and non-porous

plant imitations can be quite similar to those for real vegetation canopies. Thus, artificial
plant imitations might satisfactorily represent real canopies considering investigations of the

123



Shear-Stress Partitioning in Live Plant Canopies 229

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

log( )

(
Ś
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)1/2 as a function of the roughness density λ. Measurement and

literature data together with a best fit application of Raupach’s model with m as the independent fit parameter

peak stress ratio
(
τ ′′

S /τ
)1/2. Nevertheless, the spatial distributions and the absolute values

of τS (x, y) can be very different for canopies with plant imitations such as rigid and non-
porous obstacles compared to live plant canopies (Walter et al. 2012b). The same reversal
in the sheltering effect from low to high roughness densities as found for the average stress
ratio was found for the peak stress ratio and can be made plausible with similar arguments
as discussed in the previous section.

The application of the Raupach model (Eq. 11) with m as an independent least-square fit
parameter results in m = 0.48±0.07 (R2 = 0.991) for the blocks and m = 0.71±0.08 (R2 =
0.957) for the plants. Wyatt and Nickling (1997) found m = 0.16 for sparse desert creosote
communities in field experiments, which is a relatively small value compared to the findings
of other studies where 0.4 < m < 0.6 was found for cylinders or blocks (e.g., Crawley and
Nickling 2003; Brown et al. 2008). Crawley and Nickling (2003) explained this difference
as an effect of flow dynamics influenced by porous roughness elements. However, our data
suggest that the blocks produce higher peak and lower average surface shear stresses than the
plants due to the stronger flow deflection around the blocks for the low and the medium den-
sity cases. This in turn implies that the m value, according to its definition τ ′′

S (λ) = τ ′
S (mλ),

has to be smaller for blocks than for plants as observed in our study. However, a direct com-
parison is difficult since Wyatt and Nickling (1997) used fairly different plants (creosote
bushes) with a high porosity and low flexibility whereas the plants used in this study (rye
grass) have high flexibility and a relatively low porosity.

4.3 The m Parameter

A similar approach as presented by Crawley and Nickling (2003) has been used to determine
the m parameter according to its definition (Eq. 10). Therefore, in a first step, the peak τ ′′

S
and the average τ ′

S surface shear stresses were plotted against the roughness density λ for a
freestream velocity Uδ = 16m s−1 and logarithmic regression relations were applied (Fig. 7):

τ ′
S = a1 ln(λ) + b1, (13a)

τ ′′
S = a2 ln(λ) + b2. (13b)
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and the block experiments at Uδ = 16m s−1. Logarithmic regression relations (Eq. 13) were applied to the
data. Schematic curves are shown in the upper box to visualize the assumed behaviour of τ ′′

S and τ ′
S outside

the measurement range

The independent least-square fit parameters are a1 = −0.074 N m−2 and b1 = −0.094 N m−2
(
R2 = 0.999

)
and a2 = −0.102 N m−2 and b2 = −0.130 N m−2(R2 = 0.999) for the plant

case. Identical analyses were made for Uδ = 8 and 12 m s−1 (not shown here) to identify the
dependency of the m parameter on the wind velocity or the Reynolds number Reh , respec-
tively. Logarithmic regression relations (Eq. 13) were used by Crawley and Nickling (2003)
because of both a good fit and the convergence of τ ′′

S and τ ′
S for small (λ → 0) and large

(λ → 1) roughness densities. These relations satisfactorily represent the dependency of τ ′′
S

and τ ′
S on λ within the measurement range 0.015 < λ < 0.18 (Fig. 7).

Schematic curves are shown in the upper box in Fig. 7 to visualize the expected depen-
dency of τ ′′

S and τ ′
S on λ outside the measurement range for our kind of roughness elements.

For both the plant and the block experiments, τ ′
S converges against a constant value of

τ ′
S = 0.25 N m−2 for λ → 0, which was measured for the smooth-floor case at a freestream

velocity of Uδ = 16 m s−1. Below a critical roughness density λc, τ
′′
S is expected to be larger

than any τ ′
S at λ < λc, so the parameter definition for m (Eq. 11) is not valid below λc

(schematic curves in Fig. 7). Just as the last roughness element on a large unit ground area S
is removed to achieve a roughness density λ = 0, a point of discontinuity occurs and τ ′′

S = τ ′
S .

When decreasing the roughness element size to achieve lower roughness densities λ, the
point of discontinuity vanishes and τ ′′

S decreases steadily until it reaches τ ′
S for λ = 0.

The peak surface shear stress τ ′′
S can be even larger than the total stress τ at very low

λ considering widely spaced roughness elements on a surface, with a strong deflection of
the airflow resulting in locally very high wind velocities close to the ground in the speed-
up zones. This is in conflict with the order suggested by Raupach et al. (1993), viz that
τS < τ ′

S < τ ′′
S < τ ; however, he already mentioned that assuming τ ′′

S < τ is a rather spec-
ulative assumption due to the lack of available data. That τ ′′

S can be larger than τ results in
enhanced erosion by the roughness elements at low canopy densities, as validated e.g. by
Burri et al. (2011b).

For high roughness densities λ, both τ ′′
S and τ ′

S converge to zero (schematic curves in
Fig. 7). This is obtained by the fact that ln(λ → 1) = 0 in Eq. 13 although the parameter
bi is needed to obtain reasonable fits. However, the values for ai and bi from the fits are all
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below λc ≈ 0.025 (dotted line) because the definition for m is not valid below (see also Fig. 7)

slightly smaller than zero permitting τ ′
S and τ ′′

S to become zero for λ < 1. This is in agreement
with literature results that suggest completely sheltered surfaces already for λ > 0.3 (e.g.,
Raupach 1992).

In a second step, an iterative comparison of τ ′′
S with τ ′

S from Fig. 7 over the entire λ range
was carried out to evaluate Eq. 10 and to obtain the dependency of the m parameter on the
roughness density λ (Fig. 8). This was done for the freestream velocities Uδ = 8, 12 and
16 m s−1 and for both the plant and the block experiments. The m(λ) curve determined by
Crawley and Nickling (2003) for solid cylinders at a freestream velocity of Uδ = 17.07 m s−1

is included as well for λ < 0.0434, which was the upper limit of their measurement range.
Crawley and Nickling (2003) used different sizes of solid cylinders to obtain different rough-
ness densities λ. As indicated in Fig. 8, Crawley’s logarithmic regression relations result in
m(λ) converging against 1 for λ → 0 as should be the case when reducing the roughness
density λ by decreasing not just the number of roughness elements per unit area but also the
roughness element size. In contrast, in our case and as mentioned before, τ ′

S converges against
our constant “smooth-floor” limit value of τ ′

S = 0.25 N m−2 for small roughness densities,
while τ ′′

S values significantly larger than τ ′
S occur. This implies that below the critical value

λc there is no corresponding τ ′
S (mλ) to determine τ ′′

S (λ) according to Eq. 10 (schematic
curves in Fig. 7). As a result, our m(λ) curves are incorrect below λc ≈ 0.025 (red dotted
line in Fig. 8), which is larger than the lower limit of our measurement range (λ = 0.017).
However, for the sake of completeness, the m values have been plotted down to λ = 0.017.

When predicting m(λ) for larger roughness densities outside the measurement range (λ >

0.18), the fact that τ ′′
S and τ ′

S converge against zero and both become zero for a completely
sheltered surface means that m has to converge against one. Our m(λ) curves in Fig. 8 suggest
that, in both the plant and the block cases and for all free-stream velocities Uδ , the surface
becomes completely sheltered at a roughness density of λ ≈ 0.25, i.e. when m = 1. This
agrees with results presented by Raupach (1992) who found completely sheltered surfaces
for λ > 0.3. Strictly, the m(λ) curves should asymptotically converge against m = 1 and not
cross it as in our case. However, this can be explained by the limited measurement accuracy
as well as the limitations of the logarithmic regression relations from Eq. 13.
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eter and when using m = m (Reh , λ, shape) from Fig. 8

When averaging the m values from Fig. 8 over the measured λ range, the average values
for the plants are m = 0.63, 0.69, 0.70 and for the blocks m = 0.37, 0.40, 0.44 for the
free-stream velocities Uδ = 8, 12 and 16 m s−1. These values agree quite well with the m
values obtained by the least-square fit method given in Fig. 6 where m = 0.71 was found for
the plants and m = 0.48 for the blocks. When using the least-square fit β values (β = 107
and 167 for the plants and the blocks as presented in Sect. 4.2.1) to obtain least-square fit m
values, the values are m = 0.61 for the plants and m = 0.39 for the blocks.

Figure 8 shows that m is a function of Uδ or the Reynolds number Reh , the roughness
density λ and the roughness element shape (see also Crawley and Nickling 2003; Brown
et al. 2008). Crawley and Nickling (2003) found that the model strongly overestimates the
shear stress-ratio

(
τ ′′

S /τ
)1/2 when using their λ-dependent m parameter. Figure 9 shows the

modelled versus the measured stress ratios: first when using the constant least-square fit m
parameters from Fig. 6 (m = 0.71 and m = 0.48), and second when using m = m(Reh, λ,
shape) from Fig. 8 for the model. An overall better agreement is found for the constant m
parameter whereas the modelled data points in the high density plant case, i.e. for the lowest
stress ratios, slightly improve when using m = m(Reh, λ, shape). For the medium roughness
density, only the block data point deteriorates and in the low density case, i.e. for the highest
shear-stress ratios, all modelled values deteriorate when using m = m(Reh, λ, shape). The
latter can be explained by the fact that the m(Reh, λ, shape) values become physically not
meaningful below λ < λc because of the limitations of Eq. 10 at low roughness densities,
as discussed earlier in this section (Figs. 7, 8). This suggests that an improvement of the
predictability of Raupach’s model can be accomplished when using m(Reh, λ, shape), at
least for medium and high density canopies. However, determining m(Reh, λ, shape) using
Eq. 10 is very difficult, time consuming and laborious suggesting that using a constant m
parameter is more practicable.

For rigid cylinders, m = 0.4−0.5 has been found by earlier studies (e.g., Brown et al.
2008), which agrees very well with our rigid block values for m. For live plants, a large var-
iation of possible m values ranging from m = 0.16 (Wyatt and Nickling 1997) to m = 0.71
(this study) has been found. The variation of the m parameter strongly affects the applicability
of the model since it is difficult to choose an appropriate m value for a canopy of interest. To
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determine the m parameter for a specific type of roughness elements, a very time consuming
series of measurements at different roughness densities is required to obtain the constant m
or the non-constant m(Reh, λ, shape) parameter.

4.4 The Peak Mean Stress Ratio a

The model of Raupach becomes a useful tool if one can independently and easily determine
the parameters σ, λ, β, and m to calculate the stress ratio for a certain canopy. The geometric
parameters describing the roughness of the canopy, the frontal to basal area index σ and the
roughness density λ are relatively easy to determine. Literature values for β = CR/CS are
available for different kinds of roughness elements (e.g., Gillies et al. 2002). Additionally,
β can be determined by measuring the force � on a single wall-mounted roughness element
using a force gauge to determine CR (Eq. 1) and by measuring τS in the absence of any
roughness elements using an Irwin sensor or other techniques (e.g., hot-film anemometry) to
determine CS (Eq. 2).

In the previous section it was shown that a large range of m has been reported
(m = 0.16−0.71) and that it is cumbersome to determine m from fits of shear-stress ratio
data (e.g., Fig. 6) or directly using the independent parameter definition (Eq. 10). It was
shown that the non-constant m(Reh, λ, shape) parameter is even more difficult to determine
(Figs. 7, 8) and only improves the peak stress-ratio prediction when determined with high
accuracy (Fig. 9). Furthermore, an extensive experimental set-up and high accuracy measure-
ments of the surface shear-stress distribution are required to determine m adequately. These
facts suggest that the m parameter according to its definition from Eq. 10 is rather impracti-
cable and that there is a demand for a new, physically more solid, definition to describe the
relation between the peak shear stress τ ′′

S and the surface average shear stress τ ′
S .

We suggest the definition of a new parameter a that linearly relates the peak shear stress
τ ′′

S to the surface average shear stress τ ′
S instead of using the definition τ ′′

S (λ) = τ ′
S (mλ)

(Eq. 10):

τ ′′
S = aτ

′
S . (14)

This parameter is hereafter termed the peak mean stress ratio a. Crawley and Nickling (2003)
presented a linear relationship between τ ′′

S and τ ′
S independent of λ and Uδ , while King et al.

(2006) found a linear relation between
(
τ ′′

S /τ
)1/2 and

(
τ ′

S/τ
)1/2, which means in fact the

same as Eq. 14.
Figure 10 shows τ ′′

S as a function of τ ′
S for both the plant and the block experiments and for

all measured roughness densities λ. For all cases, this relationship is independent of Uδ and
strongly linear with R2 > 0.99 on average. The strong linear dependency can be made phys-
ically plausible when considering the airflow close to the ground in between the roughness
elements. First, it is assumed that the spatio-temporally averaged wind velocity inside the
canopy 〈Ui 〉 is driven by the airflow above and is linearly related to the freestream velocity
Uδ . Second, we assume that there are no large changes in the spatial surface shear-stress dis-
tribution τS (x, y) when increasing Uδ , i.e. that the location of τ ′′

S and the dimensions of the
shelter area remain unaltered. These assumptions hold for a Reynolds-number independent
flow. Since the friction velocity u∗ is proportional to Uδ (neglecting the effects of thermal
stratification), and hence the total stress τ is proportional to the square of the freestream
velocity

(
τ ∼ U 2

δ

)
, it can be assumed that the local surface shear stress τS (x, y) scales with

〈Ui 〉2 and thus with U 2
δ . Therefore, the peak and the average surface shear stress τ ′′

S and τ ′
S

are assumed to be proportional to the square of the freestream velocity according to:
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Fig. 10 Peak surface shear stress τ ′′
S as a function of the average surface shear stress τ ′

S for the plant and the
block experiments and for different roughness densities λ. The eight data points in each plot correspond to
free-stream velocities Uδ = 2−16 m s−1

τ ′
S = c′U 2

δ , (15a)

τ ′′
S = c′′U 2

δ , (15b)

where c′ and c′′ are constants of proportionality. This finally results in τ ′′
S /τ ′

S = c′′/c′ = a =
constant as defined in Eq. 14 and substantiated by Fig. 10.

Further, the peak mean stress ratio a remains approximately constant for different rough-
ness densities with a = 1.39 ± 0.02, 1.36 ± 0.02 and 1.36 ± 0.04 for the low, the medium
and the high density plant cases. For the blocks, a is constant for the low and the medium
density cases with a = 2.00 ± 0.02 and 1.99 ± 0.02 and decreases for the high density case
to a = 1.57 ± 0.03. This suggests that for sparse canopies (e.g. our low and medium density
cases) with isolated roughness and wake interference flows (Walter et al. 2012b), the strength
of the deflection of the airflow around the roughness elements and the sizes of the resulting
eddies shed by the obstacles are independent of the inter-roughness element spacing and thus
λ. The medium density cases are examples of wake interference flow because the sheltered
areas reach the next roughness element downstream while a significant fraction of the surface

123



Shear-Stress Partitioning in Live Plant Canopies 235

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

log(λ)

(τ
Ś
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Fig. 11 Peak surface shear-stress ratio
(
τ ′′

S /τ
)1/2 as a function of the roughness density λ (same data as in

Fig. 6). Measurement and literature data together with the modified model of Raupach from Eq. 16, which
includes the new parameter a with values determined using its definition from Eq. 14

remains unsheltered (Walter et al. 2012b). The lower value of a = 1.57 found for the high
density block case suggests that this is no longer true for high roughness densities with a
skimming flow regime. This can be explained by the smaller eddies that are shed due to
the influence of the neighbouring obstacles, which limit the space in between the roughness
elements. That this is not the case for the high density plant case and a is still the same as
for the low and the medium density case is attributed to the fact that the eddies shed by grass
swards of the plants in our case are relatively small compared to the inter-roughness element
spacing even for the high density case. This hypothesis is supported by Walter et al. (2012b),
who found that no large horseshoe vortices develop in the plant case. To summarize, the data
suggest that for live vegetation canopies the peak-mean stress ratio a (Eq. 14) is independent
of λ and Uδ or Reh respectively, and that a only depends on the roughness element shape
itself: a = a(shape). This is a big advantage compared to the m parameter, which depends
on λ, Reh and the shape as shown in Sect. 4.3. Consequently, a is easier to determine for
different vegetation species then m. That a is independent of Reh seems to be implausible
when considering the high flexibility of our plants that streamline with the flow at higher
wind velocities. However, this can be explained by the fluttering motion of the upper part of
the plants and the rather non-flexible stems of the lower part of the plants (see Appendix for
discussion).

Finally it needs to be shown how well the definition τ ′′
S = aτ ′

S (Eq. 14) works when
combined with Eq. 9 to predict the peak stress ratio according to:

(
τ ′′

S

τ

)1/2

=
(

a

(1 − σλ) (1 + βλ)

)1/2

. (16)

Figure 11 contains the same dataset as Fig. 6 but now with the modified model of Raupach
(Eq. 16) applied to our data. The modified model provides a fit to the data as well as the old
model using the constant m parameter within the measurement range. For very low roughness
densities (log(λ) < −2) the modified model seems to overestimate the general trend of the
literature data, however, only the cylinder data from Musick et al. (1996) are noticeably lower
than the prediction, which is the case for the whole λ range. We attribute this to the method
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they employed to determine the shear stress ratio, which has been done visually at the onset
of particle erosion.

The modified model results in stress-ratio predictions >1 at very low roughness densities
λ < 0.005(log(λ) < −2.25), which implies that τ ′′

S > τ (Fig. 11). At first glance, this seems
to be unphysical, since τ ′′

S = τ ′
S = τ has to hold for λ = 0. However, it was already discussed

in Sect. 4.3 that τ ′′
S may be larger than τ at very low roughness densities. Therefore, the low

roughness densities need to be realized by decreasing the number of roughness elements per
unit area rather than by decreasing the roughness element size, to maintain the strength of the
deflection of the airflow around each obstacle constant. A single, relatively large roughness
element of the size of a plant or a block as used in our experiments on a large unit ground area
might thus result in a high peak shear stress τ ′′

S > τ . At the same time, the few remaining
roughness elements do not result in a strong increase in the total stress τ above the canopy
compared to the smooth floor case. With these assumptions, it is physically plausible that(
τ ′′

S /τ
)1/2

> 1 for low λ, furthermore,
(
τ ′′

S /τ
)1/2 → a1/2 = (

τ ′′
S /τ ′

S

)1/2 as λ → 0 since τ ′
S

is the same as the total stress τ in the smooth floor case.
The latter allows for estimating the parameter a for roughness elements by using solely a

single element and a single surface shear-stress sensor. First, the sensor is placed in the centre
of the wind tunnel to measure the total stress τ , which is the same as the surface averaged
stress in the smooth floor case τ ′

S assuming a horizontally homogenous boundary layer. Sec-
ond, the roughness element is placed close to the shear-stress sensor, so that the sensor is in
the speed-up zone at the position where the peak surface shear stress τ ′′

S is present. To check
if the position of τ ′′

S is measured correctly, the roughness element can be moved slightly until
the correct position of τ ′′

S is found. Figure 2c, d shows the locations of the speed-up zones
for our low density plant and block cases. This procedure has been tested and as a result,
a = 1.49 has been determined for a single live plant slightly larger than those used for the
canopy experiments. The slightly larger plant results in a stronger deflection of the airflow
around and thus in higher wind velocities in the speed-up zones. This in turn results in a
slightly larger τ ′′

S and a value compared to the canopy measurements where a = 1.37 was
found. Additionally, the limited spatial measurement resolution in the canopy case poten-
tially results in a slight underestimation of τ ′′

S and thus a. The a parameter has also been
determined for a circular cylinder (diameter = 50 mm, height = 90 mm) where a = 2.12
and for a block (width × depth × height = 60 × 60 × 100 mm3) where a = 2.79 was found.
The peak-mean stress ratio a can thus be seen as a value that quantifies the strength of the
flow deflection around a wall-mounted obstacle. Larger values of a imply a stronger flow
deflection around the obstacle, which results in larger peak stress values τ ′′

S .
The performance of the modified model (Eq. 16) is at least equivalent to the original

Raupach model (Fig. 12). Figure 12 is an analogue of Fig. 9, but now compares the original
model (Eq. 11) with a Reh- and λ-averaged constant m parameter for the plants (m = 0.67)
and for the blocks (m = 0.40) determined after Eq. 10 (Fig. 8) against the new modified
model (Eq. 16) using an average of the independently determined a parameters from Fig. 10
(a = 1.37 for the plants and a = 1.86 for the blocks). The essential benefit of using the
a parameter, however, is its independence of λ and Reh and the relatively simple experi-
mental set-up needed to determine a for different types of roughness elements compared to
the extensive set-up needed to determine m accurately. Further, the definition of a is more
physically based and the relationship of τ ′′

S on τ ′
S , as well as its independency of Reh and λ,

can be made plausible using simple fluid dynamical arguments.
A limitation of the results presented here for real erosive conditions needs to be men-

tioned: for natural vegetation canopies with sediment on a partially sheltered surface, spatial
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Fig. 12 Modelled measured peak surface shear-stress ratios
(
τ ′′

S /τ
)1/2 when using the original Raupach

model with a constant m parameter and when using the new, modified model with the peak versus mean stress
ratio a

gradients in the surface shear stress τS (x, y) result in horizontal particle transport that changes
the surface topography (Raupach et al. 1993). According to this, the surface topography is
reorganized so that the spatial gradients in τS (x, y) reduce and τ ′′

S and τ ′
S progressively adapt

to each other. Raupach et al. (1993) concluded that the m parameter (and thus also the new a
parameter) depends on the surface morphology and changes towards one as erosion recon-
figures the surface. How strong m or a change towards one for natural vegetation canopies,
however, depends on additional factors such as soil properties and the frequency of changes
in the wind direction for example.

5 Conclusions and Outlook

Detailed investigations of the applicability and the accuracy of the model of Raupach (1992)
and Raupach et al. (1993), which predicts the ratio of the surface shear stress τS to the total
stress τ above vegetation canopies of different densities, are presented. It was found that the
proportionality factor c (Eq. 7), which was formerly rather unspecified, can be set to c = 0.27
and that the model is capable of predicting the difference in total stress generation between
our investigated block and plant canopies. Our plants, (ryegrass) ability to streamline with

the flow results in a lower normalized total stress
(
τ/ρU 2

h

)1/2 = u∗/Uh generated by the
plants than is generated by the rigid, non-porous blocks (Fig. 4b).

Although Raupach’s model predicts the general differences in the average shear stress
ratio

(
τ ′

S/τ
)1/2 between the blocks and the plants adequately, the model does not capture the

phenomenon that the blocks provide the lower stress ratios for the low roughness densities
while our plant species used for the experiments provides the lower stress ratios for the high
roughness densities (Fig. 5). Characteristics such as the porosity, the flexibility and the shape
of the roughness elements can have complex influences on the stress partition and its depen-
dency on λ. In the case of the peak stress ratio

(
τ ′′

S /τ
)1/2, the results for the blocks and the

plants agree quite well because the blocks result in both a higher peak surface shear stress τ ′′
S

as well as total stress τ compared to the plants (Fig. 6). This result suggests that experiments
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using plant imitations are capable of representing live plant canopies quite well with respect
to investigations of

(
τ ′′

S /τ
)1/2.

Moreover, it was found that the empirical model parameter m, which relates the peak τ ′′
S

to the average τ ′
S surface shear stress (Eq. 10), is impracticably defined in Raupach’s model

and that a new more physically-based definition in the form of τ ′′
S = aτ ′

S (Eq. 14) results

in model predictions of
(
τ ′′

S /τ
)1/2 that are as accurate as the original formulation. The main

benefit of the new definition is that a is found to be independent of the roughness density λ

for the plants and the freestream velocity Uδ , unlike m, which makes it easier of determining
a than m. A method was suggested of determining a for various roughness elements by using
a relatively simple experimental set-up.

Although our live plant canopies partly differ from natural vegetation canopies, the fact
that our plants are of similar size, trimmed to a standard height and arranged with regular
spacing allowed us to systematically investigate the influence of plant flexibility and porosity
on the shear-stress partition. In addition, the live plant canopies used here are far closer to
natural plant canopies than any roughness array used in previous wind-tunnel investigations
of shear-stress partitioning and results may be similar for other plant species with comparable
morphology.

Further improvements of the model may be accomplished by quantifying the increase in
the horizontal coverage of the surface and the fluttering capability of flexible plants when
increasing the wind velocities. The fluttering of the plants was found to result in a relatively
large total stress for skimming flow regimes. Supplementary investigations may be performed
to determine the parameters σ, β and a for a range of different plant species with variations
in morphology, flexibility and porosity. Such a dataset can then be used by modellers and
practitioners.
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Appendix: Reh-Independency of a for Plants

In Sect. 4.4, it was shown that for our highly flexible plants (rye grass), the peak mean stress
ratio a is independent of the free-stream velocity Uδ or the Reynolds number Reh, respec-
tively (Fig. 10). The strong linearity in τ ′′

S (Uδ) = aτ ′
S(Uδ) (Eq. 14) seems at first view to be

implausible for flexible plant as for higher wind velocities, where the plant frontal area Af

and the drag coefficient CR decrease (Fig. 3), a Reh dependence of the surface shear stress
τS and accordingly of a would be expected. However, there are substantive arguments that
support the obtained linearity for the plants.

The spatio-temporally averaged wind velocity 〈Ui 〉 inside the plant canopy increases with
Uδ (see Sect. 4.4). The plant frontal area Af decreases as the plants streamline with the flow
(Fig. 13), which in turn results in an additional slight increase of 〈Ui 〉 caused by the plant
flexibility. Since now the local stress τS (x, y) scales with 〈Ui 〉2 (see Sect. 4.4), τ ′′

S and τ ′
S

similarly increase with Uδ or 〈Ui 〉 and τ ′′
S = aτ ′

S holds also for flexible plants. In other words:
when the plants streamline with the flow, resulting in slightly higher wind velocities close to
the ground, both the peak as well as the mean surface shear stress increase similarly.
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Fig. 13 a Temporally-averaged frontal area Af of the plants normalized by their still-air frontal area as a
function of the freestream velocity Uδ and different canopy densities. b Plant (Lolium perenne) streamlining
with the flow (low density case, λ = 0.015, Uδ = 16 m s−1) and c front view pictures (streamwise direction)
of a plant in still air and for Uδ = 16 m s−1 (high density case, λ = 0.178) taken from Walter et al. (2012b)

The above explanation is only true if the strength of the flow deflection around a plant
remains constant at higher wind velocities, so that τ ′′

S and τ ′
S increase similarly with 〈Ui 〉. For

a flexible plant with a favourable aerodynamic shape at higher wind velocities, one would
expect exactly the opposite. Namely, that the strength of the flow deflection decreases for
higher wind velocities so that τ ′′

S does not increase as strongly as τ ′
S with 〈Ui 〉. However, the

lower parts of our plants, the stems that connect the grass swards with the ground, are rela-
tively inflexible (Fig. 13b, c), which supports the finding of a velocity independent strength
of the flow deflection around the plant close to the ground.

Furthermore, the flexible blades of the upper part of the plants allow the plants to respond
to the turbulence in the flow. The flexible plants are very efficient in absorbing the momentum
of strong eddies and transforming this energy into the potential energy of elastic deformation.
This stored elastic energy is then released in time intervals of low turbulence and mean wind
velocities, forcing the plant to re-erect to its still-air shape. As a result, the time-averaged
frontal area Af does not change much with flow velocity even for our highly flexible plants
(Fig. 13a). First, Af increases slightly by about 2 % for intermediate wind velocities (around
Uδ = 8 m s−1) because the blades of the plants expand in the flow. Then, Af decreases only
by about 10 % when increasing Uδ from 8 to 16 m s−1 (Fig. 13). This small decrease in Af

suggests a rather small influence of the plant flexibility on the strength of the flow deflection
for different wind velocities and additionally supports the finding that a is independent of
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Reh . The decrease in Af of the plants appears to be the reason for the approximate 10 %
reduction in the drag coefficient CR at higher wind velocities (Fig. 3).
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