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a b s t r a c t

Curves on surfaces play an important role in computer aided geometric design. In this paper, we present a
parabola approximationmethod based on the cubic reparameterization of rational Bézier surfaces, which
generates G1 continuous approximate curves lying completely on the surfaces by using iso-parameter
curves of the reparameterized surfaces. The Hausdorff distance between the approximate curve and the
exact curve is controlled under the user-specified tolerance. Examples are given to show the performance
of our algorithm.
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1. Introduction

Curves lying on free form surfaces play an important role in
surface blending, surface–surface intersection, surface trimming
andNC tool path generation formachining surfaces. An explicit and
control point based representation of a curve on a surface is needed
inmany circumstances such as using the curve as a boundary curve
of another surface [1,2]. Also many geometric properties derived
from the control polygon, like the convex hull, can be computed
directly from the explicit representation.

In the past 20 years, curves on surfaces have been stud-
ied extensively in the literature such as [3–11,1,12–14,2], whose
methods can be generally categorized into two approaches. The
first approach is to compute exact curves on surfaces directly
[3,4,6–8,10,11,1] while the second approach generates an approx-
imation of the exact curves [5,9,11,1,12–14]. The degree of exact
curves is considerably high, which results in computationally de-
manding evaluations and introduces numerical instability in prac-
tice. The approximation approach uses a relatively low degree
curve to approximate the exact curve, with some constraints im-
posed on the approximate curve. However, most approximation
algorithms [5,9,11,1,12–14] generate curves not lying completely
on the surfaces. If such a curve is used as a boundary curve of an-
other surface, gaps may occur between the two surfaces, which
is not acceptable in many Computer Aided Design (CAD) applica-
tions such as surface blending and surface trimming (see Fig. 1). To
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overcome the problem of approximate curves not completely on
surfaces, a polyline approximation method was presented in [2].
TheHausdorff distance between the approximate curve and the ex-
act curve is controlled under the user-specified distance tolerance.
The approximate curve is εT–G1 continuous where εT is the user-
specified angle tolerance. The bottleneck of the polyline approx-
imation method is the large number of subdivisions introduced
to satisfy the user-specified distance and angle tolerances, which
is problematic in many applications. To decrease the number of
subdivisions, a hyperbola approximation method was presented
in [15]. Iso-parameter curves of the quadratic reparameterized sur-
faces are utilized to approximate the target curves such that the
number of subdivisions is reduced while the degree of the approx-
imate curves is preserved compared with the polyline approxima-
tion method. Although the hyperbola approximation method can
reduce the subdivisions to some extent, both methods can only
generate εT–G1 (only G0) continuous projection curves and suf-
fer from numerous subdivisions introduced to satisfy the angle
tolerance.

The principal objective of this paper is to construct G1 continu-
ous approximate curves of low degree, which are lying completely
on the NURBS surfaces. To the authors’ knowledge, there is no
literature related to constructing G1 smooth approximate curves
lying completely on the NURBS surfaces, which is necessary in ap-
plications such as tangent continuous surface blending and surface
trimming [16–21] (see Fig. 1). G1 continuity describes the tangent
smoothness between stitched curves and surfaces, which is indis-
pensable in practical high quality surface and model designs. One
straightforward method to construct G1 continuous approximate
curves is to extend the polyline approximation method in [2]. The
2D domain curve in the parameter domain is first approximated by
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Fig. 1. Surface trimming operations on a car model: the front window boundary
(the green curve) is represented as a G1 continuous curve on the top surface of the
car. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

G1 continuous conic curves [22],which are then projected to the lo-
cated NURBS surface by substituting the conic equations into the
located NURBS surface. However the resulting approximate curve
will have a relatively high degree 2(m+ n), wherem and n are the
degrees of the NURBS surface in the u-direction and v-direction,
respectively.

In order to generate lower-degree approximate curves, which
are G1 continuous and lie completely on the NURBS surface, we
first approximate the domain curve with parabolic curves and
subdivide the NURBS surface into rational Bézier surfaces. The
domain curve is then subdivided such that the Hausdorff distance
between the approximate curve and the exact curve is controlled
under the tolerance εD, where εD is the user-specified distance
tolerance. Finally, the parabolic curves are projected onto the
NURBS surface using cubic reparameterization techniques. The
degree of the approximate curve is max(2m + n,m + 2n), which
is lower than that 2m + 2n of approximate curves obtained by
the conic approximation method mentioned above. The main
technique used in the parabola approximation method is that
iso-parameter curves of the cubic reparameterized surfaces are
utilized to generate G1 continuous approximate curves. The main
contributions of this paper are as follows.

1. We give the explicit representation of cubic reparameteriza-
tions for rational Bézier surfaces.

2. The exact curves are approximated by G1 continuous low-
degree curves, which are composed of iso-parameter curves
of the cubic reparameterized surfaces and satisfy the given
distance tolerance.

The organization of this paper is as follows. In Section 2,
input and output handling is discussed. Section 3 describes how
to preprocess the domain curves. Section 4 gives the explicit
representation of the cubic reparameterized surfaces. Section 5
describes how to generate theG1 continuous parabolas and control
the Hausdorff distance between the approximate curve and the
exact curve under the user-specified distance tolerance. Results are
given in Sections 6 and 7 concludes the paper.

2. Algorithm overview

A NURBS curve is defined by

D(t) =

nd−1
k=0

Nd
k (t)ωkDk

nd−1
k=0

Nd
k (t)ωk

, t ∈ [0, 1],
where Dk are the control points, ωk are the weights and Nd
k are the

dth-degree B-spline basis functions defined on the knot vector
T = {0, . . . , 0  

d+1

, td+1, . . . , tnd−1, 1, . . . , 1  
d+1

}.

A NURBS surface in three dimensional space is defined by

S(u, v) =

nu−1
i=0

nv−1
j=0

Np
i (u)N

q
j (v)ωi,jPi,j

nu−1
i=0

nv−1
j=0

Np
i (u)N

q
j (v)ωi,j

, u, v ∈ [0, 1],

where Pi,j are the control points, ωi,j are the weights and Np
i (u),

Nq
j (v) are the pth-degree and qth-degree B-spline basis functions

defined on the knot vectors
U = {0, . . . , 0  

p+1

, up+1, . . . , unu−1, 1, . . . , 1  
p+1

},

and
V = {0, . . . , 0  

q+1

, vq+1, . . . , vnv−1, 1, . . . , 1  
q+1

},

respectively. Assume that we have a NURBS curve D(t) lying in the
parameter domain of the surface S. LetD(t) denote the image curve
obtained by substituting D(t) into the surface equation of S. We
attempt to obtain a spatial low-degree G1 continuous curve C(t)
lying completely on the surface S to approximate the curve D(t).
The main algorithm flow is described as follows.
1. Divide the NURBS surface into rational Bézier surfaces by knots

insertion and the domain curve into monotonic rational Bézier
curves.

2. Approximate each monotonic rational Bézier curve by a
parabolic curve with same end points and same end tangent
directions in the parameter domain, which corresponds to a
vertical or horizontal segment in the parameter domain of the
cubic reparameterized surface.

3. Subdivide the domain curve so that the Hausdorff distance
between the mapped curves of the parabolas and that of the
NURBS curve is under the user-specified tolerance εD.

4. Compute the mapped curves of the parabolas by evaluating
the iso-parameter curves of the cubic reparameterized Bézier
surfaces.

The following sections illustrate how to generate the approximate
curve.

3. Domain curves

Given a NURBS surface, we subdivide it into rational Bézier
surfaces by knots insertion (see Fig. 2). Given aNURBS curveD(t) in
the parameter domain of the surface (see Fig. 3), we use parabolas
to approximate it. First, the NURBS curve D(t) is subdivided as
follows. Subdivide the NURBS curve (see Fig. 4) at
• the knot positions of D(t);
• the parameter values where D(t) crosses a knot value in the

u-direction or a knot value in the v-direction.

After the above subdivision, each segment of curve D(t) is a
rational Bézier curve defined by

C1(t) =

n
i=0

Bn
i (t)ωiPi

n
i=0

Bn
i (t)ωi

, 0 ≤ t ≤ 1,

where Pi = (ui, vi)
T . Each segment is approximated by parabolic

curves in the parameter domain with same end points and same
end tangent directions in the following sections.
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Fig. 2. NURBS surface subdivision: (a) the original NURBS surface (venus); (b) the
resulting rational Bézier surfaces.

Fig. 3. A NURBS curve in the venus parameter domain.

Fig. 4. NURBS curve division: × denotes knot position of D(t), ⃝ denotes the
position where the curve crosses a knot value in the u-direction and 1 denotes the
position where the curve crosses a knot value in the v-direction.
4. Transformations of rational Bézier surfaces

Before we describe how to approximate the 2D NURBS curve
with parabolas, we first introduce the reparameterizations of
rational Bézier surfaces in this section, which is the key technique
for the parabola construction.

4.1. Möbius transformations of rational Bézier surfaces

A rational Bézier surface can be represented in the following
form

X(u, v) =

m
i=0

n
j=0

Bm
i (u)Bn

j (v)ωi,jPi,j

m
i=0

n
j=0

Bm
i (u)Bn

j (v)ωi,j

, u ∈ [0, 1], v ∈ [0, 1], (1)

where Pi,j are the control points, ωi,j are the weights, Bm
i (u) and

Bn
j (v) are the Bernstein polynomials. For a rational Bézier surface,

each parameter is subjected to aMöbius transformation as follows.

u = u(s) =
(α − 1)s

2αs − s − α
, α ∈ (0, 1) (2)

and

v = v(t) =
(β − 1)t

2βt − t − β
, β ∈ (0, 1). (3)

Applying the transformations (2) and (3) to surface (1) results in
the rational Bézier surface

X(s, t) =

m
i=0

n
j=0

Bm
i (s)Bn

j (t)ωi,jPi,j

m
i=0

n
j=0

Bm
i (s)Bn

j (t)ωi,j

, s ∈ [0, 1], t ∈ [0, 1],

where ωi,j = ωi,j(1 − α)iαm−i(1 − β)jβn−j [23]. An example of
the Möbius transformation of a rational Bézier surface is given
in Fig. 5(b), where the distribution of the vertical iso-parameter
curves is more uniform comparedwith the original surface param-
eterization shown in Fig. 5(a). Linear Möbius transformations can-
not change the shape of the iso-parameter curves.What changes is
the distribution of the iso-parameter curves.

4.2. Quadratic transformations of rational Bézier surfaces

To introduce the quadratic reparameterization [24], α and β in
Eqs. (2) and (3) are not constants any more. They are redefined as
linear interpolations of another set of parameters as follows.

α = α1t + α2(1 − t), α1, α2 ∈ (0, 1)
β = β1s + β2(1 − s), β1, β2 ∈ (0, 1) (4)

α in Eq. (2) is defined as a linear function of t , with coefficients α1
and α2, and β in Eq. (3) is defined as a linear function of s, with
coefficients β1 and β2. As a result of more freedom, the surface
degree will be raised accordingly. Applying the quadratic trans-
formations (2)–(4) to surface (1) results in a rational Bézier sur-
face of degree m + n in both s-direction and t-direction [15]. As a
consequence of introducing additional free parameters, quadratic
reparameterization can change the shape of the iso-parameter
curves as well as the distribution of the iso-parameter curves. In
fact the quadratic reparameterization is a linear interpolation of
Möbius transformations imposed on the opposite boundaries. An
example is given in Fig. 5(c), where the horizontal iso-parameter
curves are more uniform compared with the Möbius transfor-
mation results in Fig. 5(b). A vertical/horizontal segment in the
parameter domain of the reparameterized surface corresponds
to a hyperbola in the parameter domain of the original surface,
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Fig. 5. Transformations of a rational Bézier surface: (a) the original surface parameterization; (b) optimal Möbius transformation with coefficients α = 0.5 and
β = 0.6; (c) optimal quadratic transformation with coefficients α1 = 0.39, α2 = 0.60, β1 = 0.65 and β2 = 0.64; (d) optimal cubic transformation with coefficients
α1 = 0.7, α2 = 0.4, α3 = 0.4, β1 = 0.6, β2 = 0.7 and β3 = 0.7.
which is utilized to reduce the curve subdivisions in [15]. A
s-hyperbola curve, which corresponds to a s iso-parameter curve,
only has three variables α1, α2, β while the G1 continuity will im-
pose four constraints (two end points and two end tangent direc-
tions) on the hyperbola. Same statement holds for a t-hyperbola.
Thus we cannot obtain G1 continuous approximate curves by only
utilizing iso-parameter curves of quadratic reparameterized sur-
faces. To achieve G1 continuity, cubic reparameterization of ratio-
nal Bézier surfaces is introduced in the next subsection.

4.3. Cubic transformations of rational Bézier surfaces

To introduce the cubic reparameterization, α and β in Eqs. (2)
and (3) are redefined as quadratic interpolations of another set of
parameters as follows.

α(t) = B2
0(t)α1 + B2

1(t)α2 + B2
2(t)α3, α1, α2, α3 ∈ (0, 1)

β(s) = B2
0(s)β1 + B2

1(s)β2 + B2
2(s)β3, β1, β2, β3 ∈ (0, 1)

(5)

where B2
i (s) and B2

i (t), i = 0, 1, 2, are the ith quadratic Bernstein
polynomials of s and t , respectively. α in Eq. (2) is redefined as a
quadratic function of t , with coefficients α1, α2 and α3 and β in
Eq. (3) is redefined as a quadratic function of s, with coefficients
β1, β2 and β3. As a result of more freedom, the surface degree will
be raised accordingly. Applying the cubic transformations (2), (3)
and (5) to surface (1) results in the rational Bézier surface

X(s, t) =

m+2n
k1=0

2m+n
k2=0

Bm+2n
k1

(s)B2m+n
k2

(t)ωk1,k2Qk1,k2

m+2n
k1=0

2m+n
k2=0

Bm+2n
k1

(s)B2m+n
k2

(t)ωk1,k2

,

s ∈ [0, 1], t ∈ [0, 1],
which is of degree (m+2n) in the s-direction and degree (2m+n)
in the t-direction. The control pointsQk1,k2 and their weightsωk1,k2
of the reparameterized surface are as follows.

Qk1,k2 =

min(k1,m)
i=max(k1−2n,0)

min(k2,n)
j=max(k2−2m,0)

ck2−j,idk1−i,jRi,jωi,j · Pi,j

min(k1,m)
i=max(k1−2n,0)

min(k2,n)
j=max(k2−2m,0)

ck2−j,idk1−i,jRi,jωi,j

and

ωk1,k2 =

min(k1,m)
i=max(k1−2n,0)

min(k2,n)
j=max(k2−2m,0)

ck2−j,idk1−i,jRi,jωi,j,

where

Ri,j =


m
i

 
n
j



m + 2n

k1

 
2m + n

k2

 ,

cl,k =

min


l
2


,k


e1=max(0,l+k−2m)

min(k−e1,l−2e1)
e2=max(0,l+2k−2m−2e1)

min


l−2e1−e2
2


,m−k


e3=max(l+k−m−e2−2e1,0)

×


k
e1

 
k − e1
e2

 
m − k
e3

 
m − k − e3

l − 2e1 − e2 − 2e3


× (−1)m−k2l−2e1−2e3(α3 − 1)e1(α2 − 1)e2(α1 − 1)k−e2−e1

× (α2)
l−2e1−e2−2e3α

e3
3 α

m+e2+2e1+e3−k−l
1
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Fig. 6. Domain curves lying in the parameter domains of the original surface and the cubic reparameterized surface with the coefficients α1 = 0.2, α2 = 0.8, α3 = 0.3,
β1 = 0.4, β2 = 0.4 and β3 = 0.4: (a) the corresponding parabolic curve in the original surface parameter domain; (b) the s iso-parameter line with the coefficient s = 0.5
in the parameter domain of the reparameterized surface.
and

dl,k =

min


l
2


,k


e1=max(0,l+k−2n)

min(k−e1,l−2e1)
e2=max(0,l+2k−2n−2e1)

min


l−2e1−e2
2


,n−k


e3=max(l+k−n−e2−2e1,0)

×


k
e1

 
k − e1
e2

 
n − k
e3

 
n − k − e3

l − 2e1 − e2 − 2e3


× (−1)n−k2l−2e1−2e3(β3 − 1)e1(β2 − 1)e2(β1 − 1)k−e2−e1

× (β2)
l−2e1−e2−2e3β

e3
3 β

n+e2+2e1+e3−k−l
1 .

The cubic reparameterization is a quadratic interpolation of the
Möbius reparameterizations imposed on the two opposite bound-
aries and the surface interior. To better illustrate how surface
parameterization changes differently in these three types of trans-
formations, one example is given in Fig. 5, where we try to opti-
mize the uniformity of the surface parameterization by these three
transformations. To compute the coefficients of the optimal trans-
formation, we sample the coefficient space uniformly and select
the coefficients with the minimal uniformity energy. From Fig. 5,
we can see that the cubic transformation ismore powerful than the
Möbius and quadratic transformations in changing surface param-
eterizations. All the three reparameterizations mentioned above
wouldnot change the shape of the surface.What changes is the sur-
face parameterization. By introducing cubic reparameterization, a
certain form of parabolic curves can be utilized to approximate the
target curves in the original surface parameter domain, which can
be transformed into vertical or horizontal line segments in the pa-
rameter domain of the reparameterized surface by properly choos-
ing the reparameterization coefficients (see Fig. 6). The details of
generating such a parabola are described in the next section.

5. Approximate parabolic curves

A good approximation algorithm should control the Hausdorff
distance between the approximate curve and the exact curve. To
control the Hausdorff distance between the mapped curves of
the approximate parabolic curves and that of the NURBS curve
under the user-specified tolerance ϵD, the target curve is first
subdivided into monotonic segments {Ci(t) = (ui(t), vi(t))} in
the (u, v) parameter domain, where the coordinate functions ui(t)
and vi(t) are monotonic with respect to t for each segment Ci(t).
To obtain monotonic sub-segments, we split the target curve
at points where the derivative vectors there have vanishing u
or v components. Then s or t iso-parameter lines lying in the
parameter domain of the cubic reparameterized surface, which
correspond to parabolas in the parameter domain of the original
surface, are utilized to approximate each monotonic segment.
For simplicity, we denote parabolas corresponding to s or t iso-
parameter lines in the reparameterized parameter domain by
s-parabolas or t-parabolas. Given a monotonic curve with end
points C(0) = P0(u0, v0), C(1) = P1(u1, v1) and end derivatives
C′(0) = V0(m0, n0), C′(1) = V1(m1, n1), our aim is to find a s/t-
parabola which has the same end points and same derivative
directions as the given curve. To give a brief statement, we
always suppose that the unmentioned components of the end
derivatives are not zero in the following theorems and deductions.
To construct a satisfying s/t-parabola for a givenmonotonic curve,
we have the following theorem.

Theorem 1. To construct an approximate parabola which has the
same end points and same tangent directions as the given monotonic
curve, we have the following statement.
Type 1. If m0 = 0 or m1 = 0, there exists a s-parabola which has

the same end points and same tangent directions as the target
curve.

Type 2. If n0 = 0 or n1 = 0, there exists a t-parabola which has
the same end points and same tangent directions as the target
curve.

Type 3. If

(u0 − u1)
2

(v0 − v1)2
−

m0m1

n0n1
≥ 0,

there exists a s-parabola which has the same end points and
same tangent directions as the target curve.

Type 4. If

(v0 − v1)
2

(u0 − u1)2
−

n0n1

m0m1
≥ 0,

there exists a t-parabola which has the same end points and
same tangent directions as the target curve.

Theorem 1, which will be demonstrated later, serves as a guide
for the parabola constructions. Each given monotonic curve will
fall into one of the above four types. Curves of Type 1 and
Type 2 could be seen as the degenerate monotonic cases, where
the end derivative vectors have vanishing components. For the
sake of computation simplicity, the rational Bézier surface is first
subdivided or/and extended according to the two end points of the
target curve such that the two end points lie on opposite boundary
edges of the new surface parameter domain.
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Fig. 7. A curve of Type 1 (a) in the parameter domain and the new curve (b) after v subdivisions.
After surface extensions or/and subdivisions, the twoendpoints
of the target curve lie on opposite boundaries of the new surface
parameter domain (see Figs. 7(b) and 8(b)). The procedure of how
to approximate such a target curve with an appropriate parabola is
described as follows. Supposing the 3D mapped curve fixed, each
horizontal/vertical line (see Fig. 6(b)) in the parameter domain of
the cubic reparameterized surface corresponds to a parabola (see
Fig. 6(a)) in the parameter domain of the original surface, which
is utilized to approximate the target monotonic curve. Here we
give the solution of how to approximate a curve of Type 1/Type 3
with a parabolic curve. Approximating the curve of Type 2/Type 4
with a parabolic curve can be handled similarly. For simplicity,
let the coefficients β3, β2 and β1 in Eq. (4) be the same and
denote them as β . Without loss of generality, we always use the
iso-parameter line s or t = 0.5 in the parameter domain of the
cubic reparameterized surface to approximate the target curve
in the following computations. The implicit representation of the
approximate parabolic curve in the original surface parameter
domain is as follows.

u(v) =
av2

+ bv + c
dv2 + ev + f

, (6)

where

a = (4 − α1 − 2α2 − α3)β
2
+ (2α1 + 2α2 − 4)β + 1 − α1

b = 2(β − 1)(α1β − 2β + α2β − α1 + 1)
c = (β − 1)2(1 − α1)

d = (2β − 1)2

e = −2(β − 1)(2β − 1)
f = (β − 1)2.

(7)

For the curve denoted by Eq. (6), we have the following
theorem.

Theorem 2. The curve in Eq. (6) is a parabola.
Proof. Wemake a Möbius transformation to v as follows.

v =
(β − 1)t

2βt − t − β
. (8)

Substituting Eq. (8) into Eq. (6), we have

gu = hv2
+ pv + q, (9)

where
g = β2(1 − β)

h = 2α1 + 8β3
− 14β2

+ 9β − 2α2β + 4α2β
2
− α3β

3

+11α1β
2
+ α3β

2
− 5α1β

3
− 2α2β

3
− 8α1β − 2

p = β(5β − 4β2
+ 4α1β

2
− 2 − 6α1β + 2α1)

q = −(1 − α1)β
2(1 − β).
Then Eq. (9) can be rewritten in the following form.


v +

p
2h

2
=

g

u +

p2

4gh


h

.

Let y = v +
p
2h , x = u +

p2

4gh and r =
g
h . Finally we have

y2 = rx,

which is a parabola. �

Let k1 and k2 be the start and end derivative ratios m0(v1−v0)
n0

and m1(v1−v0)
n1

, respectively. To construct G1 continuous curves, we
apply the four G1 constraints on the parabola expressed in Eq. (6)
as follows.

u(0) = 1 − α1 = u0 (10)
u(1) = 1 − α3 = u1 (11)

u′(0) =
2β(α1 − α2)

1 − β
= k1 (12)

u′(1) =
2(1 − β)(α2 − α3)

β
= k2. (13)

How to approximate the target curve corresponding to four
types of curves in Theorem 1 with parabolic curves is described
as follows.
Type 1. For the curve of Type 1 (see Fig. 7(a)), if m0 = 0, k1 =

0 holds. As a valid coefficient β always lies in the open
interval (0,1), from Eq. (12), we have

α2 = α1. (14)

Substituting Eq. (14) into Eq. (13), we have

β =
2(u1 − u0)

2(u1 − u0) + k2
,

where β always lies in the open interval (0,1) for
monotonic curves. The other cases of Type 1 can be verified
similarly. Thus the demonstration of Theorem 1 for curves
of Type 1 follows.

Type 2. Similarly we can construct the approximate parabolic
curves for curves of Type 2 as for curves of Type 1 by
exchanging u/v, s/t and α/β .

Type 3. From Eqs. (10) and (11), we can get the coefficients α1 and
α3 as follows.

α1 = 1 − u0

α3 = 1 − u1.



830 Y.-J. Yang et al. / Computer-Aided Design 44 (2012) 824–834
Fig. 8. A curve of Type 3 (a) in the parameter domain and the new curve (b) after v subdivisions.
From Eq. (12), we have

β =
2(α2 − α3)

2(α2 − α3) + k2
. (15)

Substituting Eq. (15) into Eq. (13), we obtain the following
quadratic equation of the coefficient α2.

4α2
2 − 4(α1 + α3)α2 + 4α3α1 + k1k2 = 0,

whose roots can be expressed as follows.

α2 =
(α1 + α3) ±

√
∆

2
,

where

∆ = (α1 − α3)
2
− k1k2.

To define a valid cubic transformation, ∆ must be no less
than zero and α2 and β both lie in the interval (0, 1). Here
we always choose

α2 =
(α1 + α3) +

√
∆

2
(16)

in the subsequent computations. As the curve is of Type 3
(see Fig. 8), the term ∆ can be rewritten as follows.

∆ = (u0 − u1)
2
−

m1m0(v0 − v1)
2

n1n0
. (17)

Substituting Eq. (17) into Eq. (16), we have

α2 =
2 − (u0 + u1) +


(u0 − u1)2 − k1k2

2
.

To guarantee that α2 lies in the interval (0, 1), we have the
following condition

0 < α2 =
2 − (u0 + u1) +


(u0 − u1)2 − k1k2

2
< 1,

which always holds for a monotonic curve. Also we can
verify that the corresponding β also lies in the interval
(0, 1). From the above deductions, the demonstration of
Theorem 1 for curves of Type 3 follows.

Type 4. Similarly we can construct the approximate parabolic
curves for curves of Type 4 as for curves of Type 3 by
exchanging u/v, s/t and α/β .

Thus Theorem 1 is demonstrated. After we determine the coeffi-
cients, the curve in Eq. (6) can be expressed as a cubic rational
Bézier curve as follows.

C2(t) =
ω0P0B3

0(t) + ω1P1B3
1(t) + ω2P2B3

2(t) + ω3P3B3
3(t)

ω0B3
0(t) + ω1B3

1(t) + ω2B3
2(t) + ω3B3

3(t)
,

where the four control points and their weights of the cubic curve
are as follows.

P0 = (1 − α1, 0)

P1 =


α1β − 2βα2 + β + 1 − α1

β + 1
,
1 − β

β + 1


P2 =


β − 2 − 2βα2 + 2α2 + βα3

β − 2
,
2(β − 1)
β − 2


P3 = (1 − α3, 1).

ω1 = (β − 1)2

ω2 =
1 − β2

3

ω3 =
β(2 − β)

3
ω4 = β2.

A good approximation algorithm should control the Hausdorff
distance between the approximate curve and the exact curve. To
control the Hausdorff distance between the mapped curves of
the parabolas and the 3D exact curve under the user-specified
tolerance εD, we subdivide the target rational Bézier curves whose
Hausdorff distance to their approximate hyperbolas are larger than
the 2D tolerance d in the parameter domain,which can be obtained
by a rational extension of the method presented in Section 4
of [2] as in Box I. In Box I, εD is the user-specified 3D tolerance,
Pi,j are the control points of the located Bézier surface, ωi,j are
the weights of the Bézier surface, m and n are the degrees of
the Bézier surface in the u-direction and v-direction, respectively.
The Hausdorff distance H(C1(t), C2(t)) between the approximate
curve (a parabola C2(t)) and the target curve (a rational Bézier
curve C1(t)) can be obtained by an iterative method [25]. If
H(C1(t), C2(t)) ≤ d, the Hausdorff distance between C2(t) andC1(t) is controlled under the user-specified tolerance εD whereC2(t) andC1(t) are the mapped curves of C2(t) and C1(t) on their
located surfaces, respectively. If this condition holds for all rational
Bézier curves in the parameter domain, the Hausdorff distance
between the approximate curve and the exact curve is controlled
under εD. If the Hausdorff distance between the parabolic curves
and the rational Bézier curve is larger than d, subdivide the
rational Bézier curve at the shoulder point C1(0.5). The subdivision
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8)
d =
εDmax

i,j
ωi,j

min
i,j

ωi,j

2

(nmax
i,h,k

∥Ph,i+1 − Pk,i∥ + mmax
i,h,k

∥Pi+1,h − Pi,k∥)

(1

Box I.
Fig. 9. Approximate parabolic, hyperbolic and polyline curves in the parameter domain of a face model: (a) the face model and its rational Bézier patches; (b) polylines for
εD = 0.0001; (c) hyperbolae for εD = 0.0001; (d) parabolas for εD = 0.0001.
procedure is performed repeatedly until the distance tolerance is
met for all sub-curves. For the NURBS curve which is located in
the parameter domain of the surface shown in Fig. 9(a), Fig. 9
shows the approximate parabolic, hyperbolic [15] and polyline [2]
curves for εD = 0.0001. Also the number of the approximate
curves shown in Fig. 9 is listed in Table 1. From Table 1, we
can see that the parabola approximation method decreases the
number of subdivisions evidently compared with the polyline
and hyperbola approximationmethods. Furthermore, the parabola
approximation method has no tangent discrepancies between
adjacent 3D projection curves of the parabolas.

6. Results

To show the performance of the algorithm presented in this
paper, three examples are given below, which are all implemented
Table 1
Subdivision comparison of domain curves.

Distance tolerance Polyline Hyperbola Parabola

1 × 10−1 443 63 43
1 × 10−2 448 69 44
1 × 10−3 459 70 59
1 × 10−4 700 110 77
1 × 10−5 2118 230 131

in the environment with Intel Pentium IV CPU 2.0 GHZ, 1 G
Memory, Microsoft Windows 7, and Microsoft Visual Studio 2008.

In the first example, the cubic, closed NURBS curve with 8
control points lying in the parameter domain of the bicubic
human face model in Fig. 9(a) is mapped onto the human face
model with 17 by 17 control points (see Fig. 10). The exact
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Fig. 10. Exact and approximate images of a NURBS curve on a face surface: (a) the exact curve and its subdivision; the approximate curve and its subdivisions generated by
(b) the polyline approximation method and (c) the hyperbola approximation method and (d) the parabola approximation method.
Table 2
Results for a curve on a face surface.

Exact Polyline Hyperbola Parabola

Tolerance – 1× 10−3/1° 1× 10−3/1° 1×10−3

Degree 18 6 6 9
Number of segments 43 275 82 58
Distance to S 0 0 0 0
Continuity G1 1°-G1 1°-G1 G1

Processor time (ms) 2.1 40 36 31

curve and its segmentation [1] are shown in Fig. 10(a). The
results of the polyline and hyperbola approximation methods
are shown in Fig. 10(b) and (c), respectively, where εD is set
to 10−3 and εT is set to 1°. Also we show the result of our
parabola approximation method in Fig. 10(d) where the distance
tolerance εD is set to 10−3. Results of the four algorithms are given
in Table 2. The curves generated by the four algorithms all lie
completely on the surface. The polyline approximation method
and the hyperbola approximation method only generate εT–G1

continuous curves, while the curves generated by the parabola
approximation method is G1 continuous. The degree of the curves
generated by our parabola approximation method is 9, which is
lower than that of the exact 18th-degree curve. Comparedwith the
polyline and hyperbola approximation methods, less subdivisions
are introduced in the parabola approximation method.

In the second example, a cubic NURBS curve with 12 control
points in Fig. 3 lying in the parameter domain of the bicubic
venus model in Fig. 2(a) is mapped onto the venus surface with
145 by 55 control points (see Fig. 11). The exact curve and its
segmentations [1] are shown in Fig. 11(a). The results of the
polyline and hyperbola approximation methods are shown in
Fig. 11(b) and (c), respectively, where εD is set to 10−3 and εT is
set to 1°. Also we show the result of our parabola approximation
method in Fig. 11(d) where the distance tolerance εD is set to 10−3.
Results of the four algorithms are given in Table 3.

In the third example, a cubic curve consisting of 19 segments
is mapped onto a top surface of the car model. The exact curve on
the surface has more than 20 subdivisions, as shown in Fig. 12(a).
The results of the polyline and hyperbola approximation methods
are given in Fig. 12(b) and (c), respectively, where the distance
tolerance to the exact curve is set to 10−3 and the angle tolerance is
set to 1°. The result of our parabola approximationmethod is given
in Fig. 12(d). Results of the four algorithms are given in Table 4.
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Fig. 11. Exact and approximate images of a NURBS curve on a venus surface: (a) the exact curve and its subdivision; the approximate curve and its subdivisions generated
by (b) the polyline approximation method and (c) the hyperbola approximation method and (d) the parabola approximation method.
Fig. 12. Exact and approximate images of a NURBS curve on a car surface: (a) the exact curve and its subdivision; the approximate curve and its subdivisions generated by
(b) the polyline approximation method and (c) the hyperbola approximation method and (d) the parabola approximation method.
Table 3
Results for a curve on a venus surface.

Exact Polyline Hyperbola Parabola

Tolerance – 1× 10−3/1° 1× 10−3/1° 1×10−3

Degree 18 6 6 9
Number of segments 70 367 149 96
Distance to S 0 0 0 0
Continuity G1 1°-G1 1°-G1 G1

Processor time (ms) 3.6 73 59 47

The four methods mentioned above all generate curves lying
completely on the surface. From Tables 2–4, compared with the
polyline and hyperbola approximation methods, the parabola
approximation method reduces the number of subdivisions to
an acceptable extent, which can be comparable with that of the
exact method. Furthermore, by using a cubic reparameterization
Table 4
Results for a curve on a car surface.

Exact Polyline Hyperbola Parabola

Tolerance – 1 × 10−3/1° 1 × 1−3/1° 1×10−3

Degree 18 6 6 9
Number of segments 28 993 127 50
Distance to S 0 0 0 0
Continuity G1 1°-G1 1°-G1 G1

Processor time (ms) 1.5 189 54 21

technique, the parabola approximation method generates G1

composite rational Bézier curves lying completely on the NURBS
surface, which can be further converted to a C1 NURBS curve
using Zheng’smethod [26].G1 continuity is indispensable formany
CAD applications, such as G1 continuous surface blending and
surface trimming. Compared with the exact method, the degree of
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the approximate curve generated by our parabola approximation
method is max(2m + n,m + 2n), which is much lower than that
(m + n)d of the exact curve where d is the degree of the domain
curve, m and n are the degrees of the NURBS surface in the u-
direction and v-direction, respectively.

7. Conclusions

Based on the cubic reparameterization of rational Bézier
surfaces, a parabola approximation algorithm for computing a
curve on a NURBS surface has been presented in this paper.
First the initial parabolic approximation of the domain curve is
generated. The domain curve is then subdivided repeatedly until
the Hausdorff distance between the approximate curve and the
exact curve is under the distance tolerance. The main technique
of our method is that we utilize iso-parameter curves of the cubic
reparameterized surfaces to generate G1 continuous approximate
curves lying completely on theNURBS surfaces,which have amuch
lower degree than that of the exact curves. Compared with the
polyline and hyperbola approximation methods, both the curve
smoothness and the curve subdivision are improved.
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