
AFFINITY: Efficiently Querying Statistical
Measures on Time-Series Data

Saket Sathe and Karl Aberer

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{saket.sathe, karl.aberer}@epfl.ch

Abstract. Computing statistical measures for large databases of time
series is a fundamental primitive for querying and mining time-series
data [1–6]. This primitive is gaining importance with the increasing num-
ber and rapid growth of time series databases. In this paper we introduce
a framework for efficient computation of statistical measures by exploit-
ing the concept of affine relationships. Affine relationships can be used
to infer statistical measures for time series from other related time series
instead of directly computing them; thus, reducing the overall compu-
tation cost significantly. The resulting methods show at least one order
of magnitude improvement over the best known methods. To the best of
our knowledge, this is the first work that presents an unified approach
for computing and querying several statistical measures on time-series
data.
Our approach includes three key components, which exploit affine rela-
tionships. First, the AFCLST algorithm that clusters the time-series data
such that high-quality affine relationships could be easily found. Second,
the SYMEX algorithm that uses the clustered time series and efficiently
computes the desired affine relationships. Third, the SCAPE index struc-
ture that produces a many-fold improvement in the performance of pro-
cessing several statistical queries by seamlessly indexing the affine re-
lationships. Finally, we establish the effectiveness of our approaches by
performing comprehensive experimental evaluation using real datasets.

1 Introduction

In the recent years we are experiencing a dramatic increase in the amount of
available time-series data. This development calls for scalable data management
techniques that enable efficient querying and analysis of large amounts of time-
series data in real-time and archival settings. Primary sources of time-series data
are sensor networks, medical monitoring, financial applications, news feeds and
social networking applications. A typical processing need on such data is sta-
tistical querying and mining in order to analyze trends and detect interesting
correlations. In this paper, we propose the Affinity framework that supports
efficient processing of statistical queries on large time-series databases, based on
the use of affine relationships among different time series. Before rigorously de-
veloping the technical approaches, let us, in the following, introduce the concept

1. INTRODUCTION

of affine relationships and motivate why they are a powerful tool to improve
efficiency of statistical querying over time-series data.

Computing statistical measures.
An important challenge concerning time-series data processing is computing and
storing statistical measures. For example, the correlation coefficient is a fre-
quently used statistical measure for financial data. It is well-known that stock
traders and investors are interested to find the correlation coefficient among
pairs of stocks. Specifically, traders are interested in solving the following prob-
lem [7–10]:

Problem 1. Given the intra-day stock quotes of n stocks obtained at a sampling
interval ∆t, return the correlation coefficients of the n(n−1)

2 pairs of stocks on a
given day.

As an example, let us consider daily time series of three stocks (i.e., n =
3), Intel Corporation (INTC), Advanced Micro Devices (AMD) and Microsoft
Corporation (MSFT) on 2nd January 2003 (refer Fig. 1). Let us denote the stock
price at time i of INTC, AMD and MSFT as si1, si2 and si3 respectively where
1 ≤ i ≤ m. Using the integers 1, 2, and 3 to identify the time series s1, s2 and
s3

1, we can form three pairs of the time series: (1, 2), (2, 3) and (1, 3). A naive
approach for solving Problem 1 is to compute the correlation coefficients for all
the pairs of stocks for the day specified by the problem. Clearly, for high values
of n this method does not scale well, since it computes the correlation coefficient
for all the n(n−1)

2 pairs from scratch.

1 s1 = (s11, s21, . . . , sm1) is a vector of size m-by-1. Similarly for s2 and s3.

 15

 16

 17

INTC

 6.5

 7

AMD

 23

 23.5

 24

 0 50 100 150 200 250 300 350

p
ri

c
e
 (

U
S

D
)

time in minutes (i)

MSFT

Fig. 1. Stock prices for symbols INTC, AMD and MSFT on 2nd January 2003.

2

1. INTRODUCTION

The first idea that this paper proposes in order to enhance the naive approach
is to exploit affine relationships between pairs of time-series data. For every
1 ≤ i ≤ m, an affine relationship between pairs (1, 3) and (2, 3) can be defined
by using an affine transformation:(

si2
si3

)
=
(
a11 a12

a21 a22

)(
si1
si3

)
+
(
b1
b2

)
, (1)

= Ae

(
si1
si3

)
+ be.

The matrix Ae is known as the transformation matrix and the vector be
represents a translation. Let us assume for the moment that the relationship
between pairs of time series can be described at all time instants i using the same
affine relationship. Obviously, as it can be seen from Fig. 1, this is not true, but
we will deal with this issue subsequently. Then, given the affine relationship in
Eq. (1), the correlation coefficient between a related pair (2, 3) could be computed
directly from the correlation coefficient between pair (1, 3), without accessing the
time series. Concretely, consider the covariance matrix for the pair (1, 3) denoted
as Σ13 and defined as:

Σ13 =
(

σ2
1 ρ13σ1σ3

ρ13σ1σ3 σ2
3

)
, (2)

where ρ13 denotes the correlation coefficient between time series s1 and s3,
similarly σ2

1 and σ2
3 are the variances of the time series s1 and s3 respectively.

Now, given the following two inputs: transformation matrix Ae from Eq. (1)
and covariance matrix Σ13 from Eq. (2), we can compute the desired correlation
coefficient ρ23 as follows [11]:

ρ23 =
a>1 Σ13a2√

a>1 Σ13a1 · a>2 Σ13a2

, (3)

where a1 = (a11, a21) and a2 = (a12, a22).
It is important to observe the following two advantages regarding the com-

putation of ρ23 using Eq. (3): first, the computation for ρ23 is significantly more
efficient as compared to its computation using the original time series s2 and
s3 [11]; second, since we do not need the original time series s2 and s3, we
require significantly lower memory for computing ρ23. In Section 6, we exper-
imentally demonstrate that these advantages manifest a many-fold increase in
performance.

Similarly, many other measures of correlation and similarity, beyond the com-
monly used Pearson’s correlation coefficient, can be computed using affine re-
lationships. Thus, by utilizing affine relationships, our approach provides an
elegant solution for computing a wide range of statistical measures. As a con-
sequence, our proposal to use affine relationships not only bears the potential

3

1. INTRODUCTION

of increasing the efficiency of computing the correlation coefficient, but, at the
same time, of many other statistical measures.

Measuring quality of affine relationships.
Now let us turn our attention to the issue that exact affine relationships are un-
likely to occur over longer real-world time series. However, such relationships may
hold approximately, when time series are strongly correlated. For illustration, let
us come back to the three stocks from our introductory example. We can com-
pute an approximate affine relationship Ae =

(
0.75 −0.3
0 1

)
and be =

(
1.6
0

)
. This

relationship is highly accurate between time 150 and 200, but produces errors be-
tween time 0 and 50. Therefore, for characterizing such approximation errors we
propose a distance metric, Least Significant Frobenius Distance (LSFD), which
can take as input, values from stocks s1, s2, and s3 in a specific time window
and could quantitatively judge the quality of affine relationships. Additionally,
we also propose the AFCLST clustering algorithm that uses the LSFD metric
for clustering the time series, such that good-quality affine relationships could
be found between cluster members.

We have found that although, in practice, it is almost impossible to find an
exact affine relationship between time series, interestingly, a large number of
high-quality approximate affine relationships exist in real datasets over longer
time intervals. Thus, queries could leverage from such relationships for comput-
ing many statistical measures on-the-fly, while bounding the approximation error
in the computation of these statistical measures.

Indexing affine relationships.
Consider a slightly modified version of Problem 1, where a trader is interested
to find all pairs of stock that have the correlation coefficient greater than τ . One
way of evaluating this query is to compute – either from scratch or using affine
relationships – the correlation coefficient for all the n(n−1)

2 pairs, and then return
the pairs having correlation coefficient greater than τ . This approach, again, is
not scalable for increasing value of n.

A way of circumventing the computation of all the pairwise correlation coef-
ficients is to index the affine relationships. We call this index the SCAPE index.
Prior to indexing, the SCAPE index establishes a way of ordering affine relation-
ships. Such an ordering eliminates unnecessary computation and directly gives
us the pairs having correlation coefficient greater than τ . Notably, the ordering
established by the SCAPE index is agnostic to the underlying statistical mea-
sure. As a result, the SCAPE index can be used for simultaneously indexing all
the statistical measures.

Contributions.
To the best of our knowledge, this is the first work that exploits multi-dimensional
affine transformations for time-series data management. The fundamental con-
tribution of this paper is the introduction of affine relationships for efficiently
querying and computing several statistical measures. Compared to the existing
state of the art methods [1,3], which use the Discrete Fourier Transform (DFT)
to approximate the correlation coefficient, our methods use affine relationships

4

2. FOUNDATION

that are amenable to indexing, thus resulting in orders of magnitude performance
improvement over the state of the art methods. Furthermore, our methods are
more general and can be used for computing many other statistical measures
with even better performance gains as for the correlation coefficient. Overall,
this paper makes the following contributions:
• We propose a distance metric (i.e., LSFD) for characterizing the quality of

affine relationships.
• We present a novel clustering algorithm (i.e., AFCLST) that is capable of

clustering the given data such that high-quality (low LSFD) affine relation-
ships could be found within the cluster members.

• We introduce an efficient algorithm (i.e., SYMEX), that generates high-
quality affine relationships on-the-fly, by utilizing the output of the AFCLST
clustering algorithm.

• We show that indexing affine relationships with the SCAPE index, results
in orders of magnitude performance improvement for processing statistical
queries.

• We extensively evaluate our methods by performing experiments on two
real datasets.

We begin by presenting the details of the Affinity framework in Section 2.
In Section 3, we propose the LSFD metric and the AFCLST clustering algorithm
for finding high-quality affine relationships in time series data. In Section 4, we
introduce the SYMEX algorithm for generating high-quality affine relationships,
while, in Section 5, we propose the SCAPE index for indexing affine relation-
ships. Lastly, comprehensive experimental evaluations are presented in Section 6,
followed by the review of related studies in Section 7.

2 Foundation

In this section we define the basic concepts and establish the notation used in
the rest of the paper. A summary of the frequently used notations is presented
in Table 1. We, then, define the queries that are processed by the Affinity
framework. Most importantly, we discuss the notion of affine transformations
and examine their properties. Affine relationships are, in fact, enhanced affine
transformations designed for facilitating efficient computation and querying of
several statistical measures.

Framework Overview.
Fig. 2 shows the architecture of the Affinity framework. It consists of various
time series, like, financial market data, RSS news feeds, sensor network data, etc.,
that are being stored using a DBMS. Affinity consists of two key components:
the affine relationships and the SCAPE index structure. The affine relationships
are inferred using the data matrix table, and are indexed for processing statistical
queries using the SCAPE index.

Let us assume that the Affinity framework has n time series and m values
per time series, which are stored in the data matrix table. We can compose a

5

2. FOUNDATION

matrix consisting of m rows by concatenating the n column vectors as S =
[s1, s2, . . . , sn] ∈ Rm×n. We refer to matrix S as the data matrix.

2.1 Statistical Measures

In this paper, we consider three popular classes of statistical measures. The
first type of measures are the location measures or L-measures that define the
central tendency of data (e.g., mean, median, etc.). The second type of measures
characterize the joint or pairwise variability in the data and are called dispersion
measures or T -measures (e.g., covariance, dot product, etc.). The third type are
the derived measures or D-measures that are derived by normalizing a dispersion
measure, for example, the correlation coefficient is derived by normalizing the
covariance.

threshold
queries

●
●
●

-- preliminary filtering and cleaning

si,1i si,2

● ● ●

si,n● ● ●

1
2
3
4
5

5.1
7.4
2.1
8.9
3.2

9.1
2.3
9.2
3.5
8.5

1.2
4.6
3.2
6.5
7.3

data_matrix

SCAPE-Index

financial data

images

sensor networks

RSS
e

p

pivot pairs

sequence pairs

range queries

computation
queries

measure queries

Fig. 2. Architecture of the Affinity framework.

Often the statistical measures considered in this paper are required to be
computed on pairs of time series. A good example are the covariance and the
correlation coefficient. Thus, for conveniently identifying the time series in such
scenarios, we define the following two sets. Let I = {u|1 ≤ u ≤ n} be the set
containing series identifiers (1, 2, . . . , n) that identify the time series s1, s2, . . . , sn
respectively. We refer to I as the series identifier set and each of its elements as
the series identifier. Similarly, let P = {(u, v)|u < v and (u, v) ∈ I × I} be the
set containing unique pairs of series identifiers. We refer to P as the sequence
pair set and each of its elements as the sequence pair.

A sequence pair is used for uniquely identifying a pair of time series in the
data matrix S. Furthermore, the matrix that is formed by concatenating the
time series defined by the sequence pair e = (u, v) ∈ P is known as the sequence
pair matrix and is denoted as Se = [su, sv], Se ∈ Rm×2.

We denote the L-, T -, and D-measures of the matrix S as L(S), T (S) and
D(S) respectively. Here, L(S) is a vector of size n, and T (S) and D(S) are

6

2. FOUNDATION

matrices of size n×n. In the matrices T (S) and D(S), the entry found at row u
and column v is respectively the dispersion and the derived measure between the
time series u and v of the matrix S. The entry found at position (u, v) of T (S)
and D(S) is denoted as Tuv(S) and Duv(S) respectively. The T - and D-measures
are symmetric, that is Tuv(S) = Tvu(S) and Duv(S) = Dvu(S). Secondly, the
entry at the position e = (u, v) of the matrix T (S) denoted as Te(S) is equal
to T12(Se), which is the entry at position (1,2) of the matrix T (Se). In short,
Te(S) = T12(Se) and De(S) = D12(Se).

In this paper, we consider three L-measures: mean, mode, and median. In
addition, we consider two T -measures: the covariance matrix and the dot product
matrix, which are of size n-by-n and are denoted as Σ(S) and Π(S). We also
consider one D-measure, namely, the correlation coefficient matrix denoted as
ρ(S). In all these notations subscripts are used to denote specific entries, for
example Πuv(S) denotes the dot product between time series u and v and Lu(S)
denotes a location measure of the time series u.

Moreover, all the proposed approaches are also applicable to a large number
of other derived measures that are derived by normalizing the dot product; exam-
ples of such measures are Jaccard coefficient, Dice coefficient, cosine similarity,
harmonic mean, etc.

Table 1. Summary of notations.

Symbol Description

A, . . . Matrices (uppercase boldface)
aij Entry at row i and column j of matrix A

x or x1 Column vectors (lowercase boldface)
xi or xi1 element i of a vector x or x1 respectively

S Data matrix of size m× n
L(S), T (S),D(S) Location, dispersion, and derived measures

e, p Sequence pair and pivot pair
Se, Op Sequence pair matrix and pivot pair matrix

Rn Set of n-dimensional real column vectors
Rm×n Set of m-by-n real matrices

[x1, . . . ,xw] Column-wise concatenation of w vectors

2.2 Query Types

The Affinity framework considers three important and frequently-used statis-
tical queries that are posed on time series data. Since our approach supports
many statistical measures simultaneously, we generalize the queries by making
them independent of the statistical measures. The first query computes a given
statistical measure over a requested set of time series, we define this query as
follows:

7

2. FOUNDATION

Query 1 Measure computation (MEC) query. Given a set of series iden-
tifiers ψ ⊆ I and a statistical measure (L, T , or D) the measure computation
query returns the value of the given statistical measure for the time series ψ.

For the T - and D-measures, the response is a matrix of size |ψ|-by-|ψ|, and
for L-measures the response is a vector of size |ψ|. For example, the measure
computation query could request the mean or the covariance matrix for a subset
of the series identifiers ψ.

The second query returns all the series identifiers (sequence pairs) where
the location measure (dispersion or derived measure) is greater or lesser than a
user-defined threshold.

Query 2 Measure threshold (MET) query. Given a statistical measure L
(T or D) and the user-defined threshold τ . The measure threshold query returns
the set ΛT consisting of the series identifiers u (sequence pairs e) for which the
given statistical measure Lu(S) (Te(S) or De(S)) is greater or lesser than the
threshold τ .

The third query is a range query adaptation of Query 2. We define it as
follows:

Query 3 Measure range (MER) query. Given a statistical measure L (T
or D) and the user-defined lower and upper bounds τl and τu respectively. The
measure range query returns the set ΛR consisting of the series identifiers u
(sequence pairs e) for which the given statistical measure Lu(S) (Te(S) or De(S))
is in between the lower bound τl and upper bound τu.

An example of the above query could be, return all sequence pairs for which
the covariance is in between τl and τu.

2.3 Affine Transformations

Consider any two matrices X = [x1,x2] and Y = [y1,y2], where x1,x2,y1,y2

are column vectors of size m, thus X and Y are of size m-by-2. Then, an affine
transformation between X and Y is defined as:

Y , XA + 1mb>, (4)

where A ∈ R2×2 is non-singular, b ∈ R2, and 1m = (1, 1, . . . , 1)> ∈ Rm (refer
Fig. 3). We denote the above affine transformation as (A, b). In addition, we
denote the first and second column of A as a1 and a2 respectively. We refer
to X as the source pair matrix and Y as the target pair matrix. The difference
between an affine transformation and a linear transformation is that an affine
transformation is a combination of a linear transformation (A) and a translation
(b). Therefore, an affine transformation can be considered as a generic form of
a linear transformation.

8

2. FOUNDATION

Y = XA+ 1mbTX
Y

()X ()Y

()X ()Y

()X ()Y

(xi1,xi2)

(yi1,yi2)

1 2
(,)
i i
x x

()Y

1 2
(,)
i i
y y

Fig. 3. Illustration of an affine transformation.

Interestingly, all the statistical measures that we consider are well-behaved
under the action of an affine transformation [11]. Concretely, given the location
measure L(X) of the source pair matrix X, L(Y) can be computed as:

L(Y)> = L(X)>A + b>. (5)

Similarly, the covariance and the dot product are also well-behaved under the
action of an affine transformation. Given the covariance matrix Σ(X), Σ(Y) can
be computed as follows:

Σ(Y) = A>Σ(X)A, Σ12(Y) = a>1 Σ(X)a2. (6)

The dot product is well-behaved under the action of an affine transformation as
follows [11]:

Π12(Y) = a>1 ·Π(X) · a2 + b>A>
(
h1(X)
h2(X)

)
, (7)

where h1(X) =
∑m
i=1 xi1, h2(X) =

∑m
i=1 xi2.

Additionally, theD-measures are derived by normalizing one of the T -measures.
The correlation coefficient is derived by normalizing the covariance as follows:

ρ12(Y) =
Σ12(Y)
U12

, ρ12(Y) =
a>1 ·Σ12(X) · a2

U12
, (8)

where U12 is the normalizer and is equal to
√
Σ(y1)Σ(y2). Observe that the

normalizer is separable: Σ(y1) and Σ(y2) can be separately computed. Thus,
we simply compute and store Σ(y1) and Σ(y2) separately and then combine
them to form U12 as required. We denote the normalizer of the sequence pair e
as Ue.

Recall that all the above properties assume that the affine transformation
(A, b) perfectly (i.e., with zero error) transforms X into Y. As discussed in
Section 1, it is rarely possible to find a perfect affine transformation. To rectify
this problem, in the next section, we propose techniques to improve the quality
of affine transformations.

9

3. AFFINE CLUSTERING

3 Affine Clustering

Consider the problem of computing a statistical measure, say covariance, for all
the sequence pairs. The naive approach of solving this problem is to compute
the covariance for all the sequence pairs from scratch. But, computing covari-
ances from scratch is inefficient because it requires scanning of the sequence pair
matrices Se, for all the sequence pairs e. Since the number of sequence pairs are
O(n2), where n is the number of time series n, it leads to an overall inefficient
operation.

We reduce the O(n2) complexity by selecting a small (nearly linear) number
of time series pairs, which are called the pivot pairs, and the m-by-2 matrices
formed by them are called the pivot pair matrices; we will shortly describe the
selection procedure for the pivot pairs. Then, we compute the covariance for all
the pivot pairs and determine the affine transformations between each sequence
pair and one of the pivot pairs. Next, with the help of Eq. (6) and the affine
transformations, we approximate the covariance for all the sequence pairs from
the covariance of the pivot pairs. Similarly, other measures can also be only
computed for the pivot pairs; and then approximated for the sequence pairs.
Note that the affine transformations need to be computed only once.

Next, we describe the selection procedure for the pivot pairs. It should satisfy
two requirements: (1) the number of selected pivot pairs should be small, and (2)
the affine transformations, when used for approximating a statistical measure,
should produce low error. In this section we propose techniques for meeting both
these requirements.

3.1 Computing the Dot Product

For the dot product, as a special case, we can show that the approximation error
can be completely eliminated by having a common time series between the source
and target pair matrices. Let us assume that the affine transformation (A, b) is
computed using the least-squares method, and it transforms X to Y′, instead of
Y, where Y′ = [y′1,y

′
2]. Then, for accurately computing the dot product y>2 y1

using affine transformations, we observe that it is sufficient to have one common
time series between X and Y, because of the following lemma:

Lemma 1. The dot product y>2 y1 is preserved under the action of an affine
transformation (A, b) that is computed using the least-squares method, if y1 is
transformed with zero error.

Proof. Let the hyperplane spanned by vectors x1 and x2 be denoted as H. Since
y′2 is the least-squares approximation of y2, y2 = y′2 + εp, where εp is perpendic-
ular to H. Then y>2 y1 = y′>2 y1 + ε>p y1. Since y1 is part of the hyperplane H,
ε>p y1 = 0. Hence, y>2 y1 = y′>2 y1

Obviously, Lemma 1 holds even if we replace y1 by y2 and y′2 by y′1. A straight-
forward way of guaranteeing the transformation of y1 with zero error is to have
y1 common to both the source pair and target pair matrices. In this case, we

10

3. AFFINE CLUSTERING

can guarantee that the dot product y>2 y1 is accurately computed if the affine
transformations are computed using the least-squares method. In addition, as
we shall show in Section 4, having a common time series reduces the number of
pivot pairs, which are generated using the SYMEX algorithm.

3.2 Computing Other Measures

For other dispersion and derived measures the exact computation using affine
transformations is in general not possible. Therefore, we propose a distance mea-
sure for measuring the error in affine transformations, and then a clustering al-
gorithm that helps us identify high-quality affine relationships minimizing this
error.

The LSFD Metric.
The Least Significant Frobenius Distance (LSFD) metric, when minimized using
the clustering algorithm, results in high-quality (i.e., low error) affine transfor-
mations between the members of a given cluster. A small LSFD between the
source pair matrix X and the target pair matrix Y indicates that X is almost
perfectly transformable into Y. The LSFD metric is defined as follows:

Definition 1. LSFD metric. Suppose X̂ and Ŷ are the zero-mean counter-
parts of the matrices X and Y respectively. Then the Least Significant Frobenius
Distance (LSFD) metric is defined as:

DF (X,Y)2 , λ2
3 + λ2

4, (9)

where λ3 and λ4 are the third and fourth singular values of the matrix [X̂, Ŷ],
which is a matrix obtained by column-wise concatenation of X̂ and Ŷ.

The number of non-zero singular values of a matrix is equal to the number
of linearly independent vectors in that matrix. Definition 1 assumes that the
vectors in X̂ are linearly independent; therefore, if the third and the fourth
singular values of the matrix [X̂, Ŷ] are zero, then it signifies that vectors y1

and y2 are linearly dependent and can be expressed as linear combinations of
vectors x1 and x2. Thus, an exact affine transformation between X and Y can
be computed. Intuitively, the magnitude of the third and the fourth singular
value of the matrix [X̂, Ŷ] quantifies the effort required for making y1 or y2

linearly dependent on x1 and x2.
The LSFD obeys the triangular inequality, and therefore is also a metric.

Since LSFD is a metric, it can be used as a distance metric for affine clustering.
A formal proof of the triangular inequality is presented in the following theorem:

Theorem 1. DF (X,Y) is a metric; thus DF obeys the triangular inequality:

DF (X,Y) ≤ DF (X,Z) + DF (Z,Y). (10)

Proof. Let us consider three matrices IX̂Ŷ = [X̂, Ŷ], IX̂Ẑ = [X̂, Ẑ], and IẐŶ =
[Ẑ, Ŷ]. Let ĨX̂Ŷ be the rank two approximation of the matrix IX̂Ŷ . The Frobenius

11

3. AFFINE CLUSTERING

norm of ‖IX̂Ŷ − ĨX̂Ŷ ‖F is
√
λ2

3 + λ2
4. Similarly, let ĨX̂Ẑ and ĨẐŶ be the rank two

approximations of the matrices IX̂Ẑ and IẐŶ respectively. Then,

IX̂Ŷ = IX̂Ẑ + IẐŶ + [−Ẑ,−Ẑ]. (11)

Let B = [−Ẑ,−Ẑ] + ĨX̂Ẑ + ĨẐŶ . From Eq. (11),

‖IX̂Ŷ −B‖
F
≤ ‖IX̂Ẑ − ĨX̂Ẑ‖F + ‖IẐŶ − ĨẐŶ ‖F .

Using the Eckart-Young low-rank matrix approximation theorem [12] and the
definition of LSFD in Definition 1,

‖IX̂Ŷ − ĨX̂Ŷ ‖F ≤ ‖IX̂Ẑ − ĨX̂Ẑ‖F + ‖IẐŶ − ĨẐŶ ‖F ,
DF (X,Y) ≤ DF (X,Z) + DF (Z,Y). (12)

3.3 The AFCLST Clustering Algorithm

The affine clustering algorithm clusters the time series in the data matrix S into
k clusters, such that it becomes easier to identify a high-quality affine transfor-
mation between a sequence pair and a pivot pair. We have one common time
series between the sequence pair matrix and the pivot matrix for computing
the dot product accurately. As a result the common time series is transformed
with zero LSFD error. Next, for the other (different) time series in the sequence
pair matrix, the affine clustering algorithm finds the closest match such that the
LSFD between the sequence pair matrix and the pivot pair matrix becomes as
low as possible.

The closest match for the different time series is its cluster center, which
is returned by the affine clustering algorithm. We show that by following this
procedure for constructing the pivot pair matrix, the LSFD between the pivot
pair matrix and the sequence pair matrix is minimized, resulting in high-quality
affine transformations. Thus, the pivot pair matrix – like the source pair matrix
X – can be utilized for accurately computing the statistical measures over the
sequence pair matrix.

The affine clustering algorithm clusters the time series in S into k clus-
ters (refer Algorithm 1). It starts by initializing the cluster centers r`, where
` = (1, . . . , k) (Lines 2 and 3). In the assignment step, the AFCLST algorithm
computes the orthogonal projection of each time series sv, where 1 ≤ v ≤ n,
onto the cluster centers r`, and assigns sv to the cluster that produces the least
projection error projε (Lines 10, 15, and Fig. 4(b)). The lesser the orthogonal
projection error projε, the more accurately a time series can be represented by
a linear combination of its cluster center; leading to a lower LSFD between the
sequence pair matrix and the pivot matrix.

In the update phase, the cluster centers r` are re-computed. This is done
by forming a matrix R` for each cluster `, by column-wise concatenation of
the time series assigned to cluster `. The updated cluster center is equal to the
left singular vector associated with the largest singular value of R`. Intuitively,

12

3. AFFINE CLUSTERING

A,b A,b

Plane 1

sv

r1

affine cluster su

cluster
members

affine cluster r1

sv

su

projls

projε
su

r1

affine clusters

cluster
members

r2

mm

(a) (b) (c)

, ()u vw

sv

rω(v)

affine cluster su

cluster
members

affine cluster rω(v)

sv

su

projls

projε

m

(a) (b)

hyperplane spanned
by su and rω(v)

Fig. 4. (a) the 2-D hyperplane H, and (b) directional view of the hyperplane H.

the left singular vector associated with the largest singular value is the one
that minimizes the sum of the orthogonal projection errors that are computed
between the cluster center of cluster ` (i.e., r`) and each of its members.

The AFCLST algorithm terminates when the number of cluster member-
ship changes is less than δmin or the maximum number of iterations γmax are
completed. The AFCLST algorithm returns two quantities: (a) cluster centers
r1, r2, . . . , rk and (b) a cluster assignment function ω(v) : v 7→ `, which returns
the cluster identifier ` for a given series identifier v.

For a given sequence pair e = (u, v), we now form a pivot pair matrix
[su, rω(v)], obtained by concatenating the time series su and the cluster cen-
ter of the time series sv. Furthermore, let H be the 2-D hyperplane spanned by
the vectors su and rω(v) (refer Fig. 4). Then there exists a high-quality affine
transformation between the pivot pair matrix [su, rω(v)] and the sequence pair
matrix Se = [su, sv]. This is true since the projection error projls, obtained from
orthogonally projecting sv onto H, can only be less than projε. From Fig. 4(b),
projls is one side of the right-angled triangle where projε is an hypotenuse. Thus,
approximating sv using [su, rω(v)] further reduces the LSFD.

Now, we present formal, crisp definitions of the pivot pair and the pivot pair
matrix, associated to a sequence pair e = (u, v) ∈ P:

Definition 2. Pivot pair and pivot pair matrix. The pivot pair associated
to the sequence pair e = (u, v) is defined as p = (u, ω(v)). Moreover, it is a
sequence pair where the series identifier v is replaced by its cluster identifier ω(v).
The pivot pair matrix, denoted as Op, is the matrix obtained by concatenating
the time series su with the cluster center rω(v) as follows:

Op , [su, rω(v)]. (13)

Observe that (ω(u), v) is also considered a pivot pair, but for reasons of brevity
we only use Definition 2 of a pivot pair. We end this section by defining the most
crucial concept proposed in this paper – affine relationships:

13

3. AFFINE CLUSTERING

Algorithm 1 The AFCLST affine clustering algorithm.
Input: Data matrix S, maximum iterations γmax, number of clusters k, minimum

cluster changes δmin.
Output: Cluster centers r` and cluster assignment function ω(v).
1: for ` = 1 to k do . Initialization phase
2: r` ← randcol(S) . choose a random column
3: r` ← r`/‖r`‖ . normalize

4: nChg ← −1
5: for iter = 1 to γmax do
6: minProjε ←∞, clustID ← 0
7: for j = 1 to m do . Assignment phase
8: for ` = 1 to k do
9: projr` ← (r`r

>
`)sj

10: projε ← ||projr` − sj ||
11: if projε < minProjε then
12: clustID ← `
13: if ω(j) != clustID then
14: currNChg ← currNChg + 1

15: ω(j)← clustID

16: if |nChg − currNChg| ≤ δmin then
17: break . Converged

18: for ` = 1 to k do . Update phase
19: R` ← ∅
20: for j = 1 to m do
21: if ω(j) == ` then
22: R` ← [R`, sj]

23: r` ← SVDLV(R`) . Largest left singular vector

24: return r`, ω(u)

Definition 3. Affine relationship. An affine relationship characterizes a re-
lationship between the sequence pair e and its pivot pair p. Precisely, it is defined
as an affine transformation between the sequence pair matrix Se and the pivot
pair matrix Op,

Se , OpAe + 1mb>e , (14)

where Ae ∈ R2×2 is non-singular, be ∈ R2, and 1m = (1, 1, . . . , 1)>

∈ Rm. We use (A, b)e to denote an affine relationship.

To summarize, we use the following procedure for selecting a pivot pair p
for a given sequence pair e. First, we keep a common time series, namely su,
between the sequence pair matrix and the pivot pair matrix. Second, the other
(uncommon) time series in the pivot pair matrix is the affine cluster center
of the time series sv. By this procedure, the pivot pair of the sequence pair
e = (u, v) is p = (u, ω(v)). In the following section we propose an algorithm that
systematically follows this procedure for generating pivot pairs p that correspond
to sequence pairs e

14

4. COMPUTING AFFINE RELATIONSHIPS

4 Computing Affine Relationships

In this section we propose an algorithm for generating the pivot pairs p for the
given sequence pairs e using the procedure described in Section 3. Secondly, we
propose a method for efficiently computing the affine relationships between the
selected pivot and sequence pairs.

1

n

3
2

n1 2 3 n-1

n-1

pivot pair sequence pair

1

2

3

1 2 3

sequence pairs

u

v
nĕ

sw̆

L

2

1

n

3
2

n1 2 3 n-1

n-1

pivot pair sequence pair

1

2

3

1 3

sequence pairs

u

v

nĕ

2

,

, , , , , , ,
,
,
,
,
,
,

,

,
,
,

,
,

, -- sequence pairs p

,

pivot pairs
c = (u,ω(v))

pivot pairs
c = (ω(u),v)

-- pivot pairs

,

,

,

,
,

,
,

,

,
,

,

,
,

,
,

,

2

first cluster second cluster third cluster

,

-- cluster centersx

,
,

,

1 2 3 4 5 6 7 8

1

3
2

4
5
6
7
8

˘

˘

˘

,

, , ,

,

,

,
,

marching direction

sw̆

()vwr

(,)
p

A b

u
s

v
s

c
O

p
Spivot matrix sequence matrix

affine
relationship

pivot pair sequence pair
(,)p u v=(, ())c u vw=

()vw

(,)
e

A b

u

v

p
O

e
Spivot pair matrix sequence pair matrix

affine relationship
pivot pair sequence pair

(,)e u v=(, ())p u vw=

()vwr u
s

v
s

Fig. 5. Procedure for generating the pivot pairs. (° remove breve)

The proposed algorithm follows the following steps (refer Fig. 5): (i) select
any sequence pair e = (u, v) ∈ P, (ii) generate both the possible pivot pairs for
e: (u, ω(v)) and (ω(u), v), (iii) associate the pivot pair (u, ω(v)) to the sequence
pair e, and then form a new sequence pair by changing the second component
of e to another member of cluster ω(v), (iv) repeat Step (iii) with the new
sequence pair, until all the members of the cluster ω(v) have been associated the
pivot pair (u, ω(v)), (v) use the other pivot pair (ω(u), v) and repeat Step (iii),
now changing the first component, and (vi) jump to Step (i) if there are more
sequence pairs that have not been associated a pivot pair.

A formal algorithm of the Steps (i)-(vi) is presented in Algorithm 2. The only
difference is that, instead of selecting any sequence pair, as per Step (i), Algo-
rithm 2 selects them systematically. The algorithm starts processing the sequence
pair set P using two fixed sequence pairs: ee = (1, n) and ew = (n−1

2 , n−1
2 + 1).

Then, it generates new sequence pairs by alternatively adding (1,−1) and (−1, 1)
to ee and ew respectively (Line 6 and Line 9). On Line 14, it scans each compo-
nent of the new sequence pair, until the boundary of the set P is reached.

During each step of the scan it associates a sequence pair e to a pivot pair p,
only if the sequence pair e has not been associated with a pivot pair earlier (Line
20). On Line 21, e and p are used for computing the affine relationship (A, b)e.
These affine relationships are stored in the hash map affHash. affHash is returned
by the algorithm along with another hash map pivotHash, which stores the pivot
pairs generated by the algorithm. The algorithm stops when both the sequence
pairs ee and ew are equal. Since Algorithm 2 systematically selects the sequence
pairs, we refer to it as the SYMEX (Systematic Exploration of P) algorithm.

The SYMEX algorithm produces maximum nk number of pivot pairs, where
k is the number of affine clusters. But in practice we found that k << n, thus
the SYMEX algorithm produces pivot pairs nearly linear in the number of time

15

4. COMPUTING AFFINE RELATIONSHIPS

Algorithm 2 The SYMEX algorithm.
Input: Data matrix S, AFCLST algorithm parameters k, γmax, and δmin.
Output: Hash maps affHash and pivotHash, containing the affine relationships and

the pivot pairs respectively.
1: (r`, ω(u))← AFCLST(S, k, γmax, δmin)
2: ee ← (0, n), ew ← (n−1

2
, n−1

2
+ 1) . sequence pairs

3: flip← 0
4: while ee != ew do
5: if flip == 0 then
6: ee ← ee + (1,−1), flip← 1 . move towards ew
7: CreatePivots(ee, affHash)
8: else if flip == 1 then
9: ew ← ew + (−1, 1), flip← 0 . move towards ee

10: CreatePivots(ew, affHash)

11: return affHash
12: function CreatePivots(ez = (uz, vz), affHash)
13: for v = uz + 1 to n do . Scan second component
14: e← (uz, v), p← (uz, ω(v))
15: SolveInsert(Op, Se, affHash)

16: for u = 0 to vz do . Scan first component
17: e← (u, vz), p← (ω(u), vz)
18: SolveInsert(Op, Se, affHash)

19: function SolveInsert(Op, Se, affHash)
20: if affHash.lookup(e) == ∅ then
21: (A, b)← LeastSquares(Op, Se)
22: affHash.insert(e, (A, b)) . insert(key, value)

23: if pivotHash.lookup(p) == ∅ then
24: pivotHash.insert(p, ∅) . null hash values

25: function LeastSquares(Op, Se)
26: pinv ← PseudoInv([Op,1m]) . Pseudo-inverse
27: (A, b)← pinv · Se
28: return (A, b)

series n. Moreover, the complexity of the SYMEX algorithm is O(g), where g is
the number of affine relationships produced by the algorithm; thus it is linear in
the number of affine relationships g. In Section 6, we perform experiments for
demonstrating the linear scalability of the SYMEX algorithm.

Lastly, we stress the fact that in the SYMEX algorithm it is not necessary to
store and track all the affine relationships. We can, if required, prune the unnec-
essary affine relationships on the basis of domain knowledge, query requirements
etc. This, however, is not the main focus of this paper, and would be considered
in subsequent works. On the contrary, here we consider all the affine relation-
ships returned by the SYMEX algorithm, for clearly demonstrating performance
and scalability results.

16

4. COMPUTING AFFINE RELATIONSHIPS

Pseudo-inverse cache.
Notice that, on Line 26, the SYMEX algorithm computes the pseudo-inverse of
the matrix [Op,1m]. This is necessary for solving the system of equations for
finding A and b by the least-squares method. Since there are many sequence
pairs e associated to a single pivot pair p, the same pseudo-inverse of [Op,1m]
is repeatedly re-computed for each pivot pair.

Thus, we propose another variant of the SYMEX algorithm that caches, in-
stead of re-computing, the pseudo-inverse. We call this variant the SYMEX+
algorithm. The proposed pseudo-inverse cache is populated by inserting the
pseudo-inverse of [Op,1m] with key p, before the calls to the SolveInsert func-
tion (Line 15 and Line 18). Then, the pseudo-inverse is only computed if the
cache lookup is unsuccessful. As we shall demonstrate in Section 6, the SYMEX+
algorithm is a factor of 4 times faster as compared to the SYMEX algorithm.

4.1 Measure Computation Query

We discuss the processing of Query 1, or the MEC query, using affine relation-
ships. Assume that the MEC query has requested to compute the covariance
matrix of the series identifiers ψ. Let us denote the sequence pairs formed by
the series identifiers ψ as eψ ∈ P.

The first step is the pre-processing step. This step fills the values in the
empty hash map pivotHash, which is returned by the SYMEX+ algorithm. For
each pivot pair p, contained in the pivotHash hash map, the value is set to the
covariance matrix of the pivot pair matrix Op. Our task is to compute Σeψ (S) for
each sequence pair eψ ∈ P. For performing this task we search for two things: (a)
covariance of the pivot pair pψ in the pivotHash hash map, denoted as Σ(Opψ),
and (b) affine relationship (A, b)eψ for the sequence pair eψ in the affHash hash
map. Using these inputs and Eq. (6) we compute Σeψ (Sψ) as:

Σeψ (S) = Σ12(Seψ) = a>1 Σ(Opψ)a2, (15)

where a1 = (a11, a21)> and a2 = (a12, a22)> are the first and second columns
of the transformation matrix Aeψ . This procedure is followed for all the other
sequence pairs eψ.

Similarly, a MEC query requesting computation of a L-measure, dot product,
or D-measure can be processed using their corresponding properties in Eqs.
(5), (7) and (8) along with the output of the SYMEX+ algorithm. For the D-
measures the separable normalizers are computed in the pre-processing step and
then utilized for normalization.

Cost Analysis: The total computational cost of the MEC query can be divided
into three parts: (a) a one-time cost of order O(nk) for computing and storing
the covariance matrices of all the nk pivot pairs, (b) the average run-time cost
of finding an affine relationship from affHash is of order O(1), and (c) a small
cost for computing the requested measure using Eq. (6). As it can be seen, the

17

5. INDEXING AFFINE RELATIONSHIPS

one-time cost O(nk) of (a) dominates the Big-O complexity. In contrast, the
naive approach always computes all the covariance matrices, which are of order
O(n2). Moreover, as we shall see in Section 6, since k << n in practice this
dominating one-time cost becomes nearly linear in the number of time series n,
leading to significantly large performance improvements.

Error Measurement: Another important issue is the error measure used for
characterizing the approximation error. Suppose Σ̂e(S) and Σe(S) respectively
are the true value (computed from scratch) and the approximated value (com-
puted using affine relationships) of the covariance for the sequence pair e. We,
then, compute the normalized values Σ̂n

e (S) and Σn
e (S), by dividing Σ̂e(S) and

Σe(S) with a normalizer (max(Σ̂e(S))−min(Σ̂e(S))), where the maximum and
the minimum are computed over all the sequence pairs in P. Next, we compute
the RMSE (root-mean-square error) between the normalized values as follows:

% RMSE =

√√√√∑e∈P

(
Σ̂n
e (S)−Σn

e (S)
)2

|P|
× 100 (16)

5 Indexing Affine Relationships

In this section we propose efficient methods for processing the MET and MER
queries described in Section 2.2. A straight forward way of processing these
queries is to either use the naive approach or the affine relationships approach
to first compute the value of the queried statistical measure and then trivially
evaluate the MET and MER queries.

A major drawback of this approach is that we have to re-compute the queried
statistical measure for every query and for all sequence pairs, which makes
this approach inefficient, especially when large number of queries are processed.
In contrast, the Scalar Projection or SCAPE index is designed in such a way
that: (a) queries over all the statistical measures can be processed without re-
computing the measure for every query, and (b) a single index can process queries
for all the L-, T -, and D-measures. Furthermore, using the SCAPE index we
can improve the efficiency of processing the MET and MER queries by orders of
magnitude.

The SCAPE index consists of a sorted container, like a B-tree, for each
pivot pair. Each sorted container, associated to a pivot pair, stores the affine
relationships assigned to that pivot pair. The key used for sorting is the most
crucial and novel component of the SCAPE index. The key chosen for the SCAPE
index should be measure-independent, only then we can index all the statistical
measures using the same index. Additionally, the key should be such that a
query (MET or MER) over any statistical measure could be converted into a
query (MET or MER) over the keys stored by the SCAPE index, guaranteeing
that the results from the converted and the original query are the same.

For choosing a key with the above properties, the SCAPE index uses an
interesting property of the scalar product between two vectors. Let us briefly

18

5. INDEXING AFFINE RELATIONSHIPS

understand this property through an example. Suppose we have a vector α
and vectors βl, where l is a positive integer, and our objective is to order the
scalar product α>βl ∈ R. Then, the scalar product can be defined as α>βl =
‖α‖·‖βl‖ cos(θl), where θl is the angle between α and βl. Notice, ‖α‖ is common
to all the ‖α‖ · ‖βl‖ cos(θl), therefore it is sufficient to use ‖βl‖ cos(θl) as a key
for ordering the scalar product (refer Fig. 6). ‖βl‖ cos(θl) is known as the scalar
projection of βl on α, and is denoted as ξl. The above example encourages us to
formulate the following observation:

Observation 1 Given a vector α and vectors βl, where l is a positive integer.
The scalar projections ξl = ‖βl‖ cos(θl) can be used as a key for ordering the
scalar products α>βl. αT

β2αT
β1 αT

β4 αT
β3αT

β5

0

m

*
1
p 1

a

*
2
p 2

a

*
Q
p

Q
a

1,1
p

1,1
x 1,2

p
1,2
x

11,D
p

11,D
x

2,1
p

2,1
x 2,2

p
2,2
x

22,D
p

22,D
x

,1Q
p

,1Q
x ,1Q

p
,2Q

x , QQ D
p

, QQ D
x

pivots () sequences ()*p p

*
1
p 1

a

*
2
p 2

a

*
Q
p

Q
a

1,1
p

1,1
x 1,2

p
1,2
x

11,D
p

11,D
x

2,1
p

2,1
x 2,2

p
2,2
x

22,D
p

22,D
x

,1Q
p

,1Q
x ,1Q

p
,2Q

x , QQ D
p

, QQ D
x

pivots () sequences ()*p p

*
1
p

1
a

*
2
p 2

a

*
Q
p

Q
a

1,1
p

1,1
x 1,2

p
1,2
x

11,D
p

11,D
x

2,1
p

2,1
x 2,2

p
2,2
x

22,D
p

22,D
x

,1Q
p

,1Q
x ,1Q

p
,2Q

x , QQ D
p

, QQ D
x

pivots () sequences ()*p p

L

L

1 1
cos()qb

2 2
cos()qb

4 4
cos()qb

3 3
cos()qb

a

4
b

2
b

1
b

3
b

2 2 1 1 3 3
cos() cos() cos()q q q< <b b b

Fig. 6. Toy example demonstrating Observation 1.

5.1 Scalar Projection (SCAPE) Index

Now let us discuss the application of Observation 1 for indexing affine relation-
ships. Assume that we obtained Q pivot pairs by executing the SYMEX+ algo-
rithm described in Section 4. Let us denote them as pq where q = (1, 2, . . .Q).
Also, assume that each pivot pair pq has Dq sequence pairs associated with it.
Let us denote these sequence pairs as eqd where d = (1, 2, . . .Dq). Suppose we are
interested in processing the MET and MER queries for the covariance. Recall,
given the affine relationship (A, b)eqd for a sequence pair eqd and the covariance
matrix of the pivot matrix Σ(Opq), the covariance Σeqd(S) can be estimated as
follows:

Σeqd(S) = a>2 Σ(Opq)a1, (17)

where a1 and a2 are first and second column of the transformation matrix Aeqd .
Since from Definition 2, we have a common time series, namely u, between the

19

5. INDEXING AFFINE RELATIONSHIPS

sequence pair eqd and the pivot pair pq, it simplifies the structure of a1 to (1, 0)>.
Thus, Eq. (17) becomes:

Σeqd(S) = (a12, a22)
(
Σ11(Opq)
Σ21(Opq)

)
. (18)

We then define αq = (Σ11(Opq), Σ21(Opq))
>, βqd = (a12, a22)> and thus

Σeqd(S) = α>q βqd. Now, similar to Observation 1, for ordering the scalar prod-
uctsα>q βqd it is sufficient to order only the scalar projections ξqd = ‖βqd‖ cos(θqd),
where θqd is the angle between αq and βqd. Notice that βqd is derived only us-
ing the affine relationships, and does not change even if αq changes. Thus, we
have essentially decoupled the affine relationship (captured by βqd) from the
statistical measure (captured by αq).

This decoupling allows us to define an αq for other measures without affecting
the ordering of the key ξqd. Thus, like covariance, we can find an αq for the other
L-measures and the dot product. Table 2 summarizes the values of αq and βqd
for all the L- and T -measures. In summary, by using the same ordering of ξqd
we can index all the L- and T -measures considered in this paper.

1
p

1
a max

1
 min

1

2
p

2
a max

2
 min

2

pa
max

min

sequence node

1q =

2q =

q =sorted containers
(B-tree)

T
L

pivot nodes

= --qd
e

qd
x

qd

Fig. 7. Example of the SCAPE index for indexing a T -measure and a D- measure.

Moreover, the SCAPE index contains two types of nodes: (a) pivot node that
includes the pivot pair pq and ‖αq‖ for all the statistical measures that are
indexed by the SCAPE index, and (b) sequence node that includes the sequence
pair eqd and the scalar projection ξqd = ‖βqd‖ cos(θqd). Furthermore, all the
sequence nodes, associated with a pivot node, are stored in a sorted container,
like a B-tree. The key for sorting is the scalar projection ξqd, which is found
in each sequence node. In addition, each pivot node also stores the reference to
the sorted container that stores its sequence nodes. A schematic depicting the
arrangement between the pivot nodes and the sequence nodes is shown in Fig. 7.
Thus, in short, using the SCAPE index we have essentially indexed all the L-
and T -measures at once.

20

5. INDEXING AFFINE RELATIONSHIPS

Table 2. Choices of αq and βqd. The third column refers to the affine relationship
(A, b) between pq and eqd.

αq βqd
Location

L2(Seqd) (L1(Opq),L2(Opq), 1)> (a12, a22, b2)>

Covariance

Σ12(Seqd) (Σ12(Opq), Σ22(Opq), 0)> (a12, a22, b2)>

Dot product

Π12(Seqd) (Π12(Opq), Π11(Opq), h1(Opq)) (a12, a22, b2)>

Indexing D-Measures: For indexing a D-measure, we should additionally store
the following two values with the existing SCAPE index structure. First, in
each sequence node, the normalizer Uqd of the indexed D measure, for e.g.,√
Σ(su)Σ(sv) for the correlation coefficient. Second, in each pivot node, the

maximum and the minimum value of the normalizer, Umax
q and Umin

q , found in
the B-tree associated with the pivot pair pq.

In Section 5.3, we show that the above two quantities are sufficient to prune
the SCAPE index and efficiently process the MET and MER queries on the
D-measures. Similarly, other D-measures, which are not included in this paper,
can also be indexed with the SCAPE index.

5.2 Processing Threshold and Range Queries

Consider the MET query requesting the sequence pairs such that the covariance
is greater than a user-defined threshold τ . We obtain the converted query by
dividing τ by ‖αq‖. We call this the modified threshold τ ′ = τ

‖αq‖ . For computing
the modified threshold τ ′ the value of αq corresponding to covariance in Table 2
is used. Note that the this conversion gaurantees that the result set of the original
and the converted query are the same. Next, we scan all the B-trees associated
with all the pivot nodes, using a binary search algorithm and collect eqd, such
that τ ′ > ξqd. Fig. 7 shows an example of this process. The collected set of eqd
is the result set ΛT of the MET query.

Secondly, consider the measure range query requesting all the sequence pairs,
such that their covariance is in between thresholds τl and τu. Similar to the
MET query, we compute the modified thresholds: τ ′l = τl

‖αq‖ and τ ′u = τu
‖αq‖ .

We, then, collect all the eqd from all the B-trees using a binary search such that
τ ′l < ξqd < τ ′u. The collected set of eqd is the result set ΛR of the measure range
query.

5.3 Index-based Pruning for D-Measures

Processing the MET and MER queries over the D-measures is a challenging
problem. Recall that a D-measure is derived by normalizing a T -measure. The

21

5. INDEXING AFFINE RELATIONSHIPS

primary challenge is that normalization destroys the ordering of the scalar projec-
tions ξqd, which is established for processing queries for the L- and T -measures.
Now, the idea here is to prune the sequence pairs stored in a sorted container
using the values Umax

q and Umin
q , stored in each pivot node. Our pruning tech-

nique quickly eliminates a large number of sequence pairs that do not satisfy the
query condition(s).

Suppose we have a SCAPE index and a MET query that is requesting all
sequence pairs such that the correlation coefficient, which is a D-measure, is
greater than τ . We start the processing by considering each pivot node at a time.

For a given pivot node, we compute the two modified thresholds: τ ′min = τ ·Umin
q

‖αq‖

and τ ′max = τ ·Umax
q

‖αq‖ . Observe that the sequence nodes, associated to a pivot node,
where ξpd > τ ′max, are definitely in the result set ΛT , and do not require further
processing. This situation in depicted in Fig. 8(a) and holds because of the
following:

ξpd > τ ′max ⇔
‖αq‖ · ξqd
Umax
q

> τ ⇔ ρeqd(S) > τ. (19)

Thus for all the sequence nodes where ξpd > τ ′max the correlation coefficient can
only be greater than τ .

Likewise, the correlation coefficient for all the sequence nodes where ξpd <
τ ′min can only be less than τ and can be excluded from the result set ΛT . The
sequence nodes where τ ′min < ξqd < τ ′max cannot be pruned. Thus, for these
sequence nodes, we compute the correlation coefficient and check whether it is
greater than τ and update the result set ΛT .

Similarly, consider a measure range query that is requesting all the sequence
pairs such that their correlation coefficient is between τl and τu. As before, we

compute four modified thresholds: τ ′lmin = τl·Umin
q

‖αq‖ , τ ′lmax = τl·Umax
q

‖αq‖ , τ ′umin =
τu·Umin

q

‖αq‖ , and τ ′umax = τu·Umax
q

‖αq‖ . Again, following a similar reasoning as the MET
query, the sequence nodes where ξpd > τ ′umax and ξpd < τ ′lmin cannot be in the
result set ΛR.

Furthermore, for the sequence nodes where τ ′lmax < ξqd < τ ′umin there could
be two cases: (1) case I : τ ′lmax < τ ′umin, and (2) case II : τ ′lmax > τ ′umin.
These cases are depicted in Fig. 8(b). For case I, the sequence nodes where
τ ′lmax < ξqd < τ ′umin can be directly included in the result set ΛR without fur-
ther processing. In case II, pruning like case case I is not possible. In both the
cases, for the unpruned sequence nodes we compute the correlation coefficient
and check whether it is in between τl and τu and update the result set ΛR.

Note that the same index pruning techniques can be utilized for other D-
measures. In Section 6, we compare the query processing methods using the
SCAPE index with: (a) a method that uses affine relationships to compute the
statistical measure and then process the MET or MER, and (b) a method that
first computes the statistical measure from scratch and then processes the MET
or MER query. Our experiments show that by using the SCAPE index structure

22

6. EXPERIMENTAL EVALUATION

*
1
p1

a

1,3
p

1,3
x

1,7
p

1,7
x

1,5
p

1,5
x 1, q

p 1, q
x

*pa

,2
p,2

x ,7
p,7

x

,1
p,1

x ,4
p,4

x , q
p , q

x

*
2
p2

a *
1

p -

1-a

L

pivot pairs
()*p

sequence pairs
()p

B-tree

max
t ¢min

't

-- processed

max minl u
t t¢ ¢<

(a) correlation threshold query

(b) correlation range query

case I:

-- pruned

1,1
p

1,1
x

qd
e

qd
x--

q
p

q
a max

q
 min

q
 case II:

1
p*1

a max
1
 min

1

2
p*2

a max
2
 min

2

p*a
max

min

sequence node

1q =

2q =

q =sorted containers
(B-tree)

T
L

qd

minu
t ¢

minl
t ¢

maxl
t ¢

maxu
t ¢

max minl u
t t¢ ¢>

minu
t ¢

minl
t ¢

maxl
t ¢

maxu
t ¢

Todo:
1) change to proper asterisk in MathType,
2) remove two links from pivot node. Add one more sequence node as root
3) remove commas in subscript

pivot nodes

= --qd
p

qd
x

qd

q
a max

q
 min

q
q

p

Fig. 8. Index-based pruning for processing MET and MER queries on D-measures.

we obtain a dramatic improvement in performance as compared to the other
methods.

6 Experimental Evaluation

In this section we perform extensive experimental evaluation on real datasets to
establish the efficacy of our approaches. In Section 6.1, we analyze the trade-off
between accuracy and efficiency for computing statistical measures using affine
relationships. We emphasize the performance improvements in query processing
using synthetic – but realistic – workloads in Section 6.2. The scalability of the
SYMEX algorithm is established in Section 6.3, and the performance gains by
using the SCAPE index are demonstrated in Section 6.4. Since we have more
than one method for computing and querying the statistical measures, as a
shorthand we use the following notations:
• WN : the naive method that computes a given statistical measure from

scratch,
• WA: the affine relationships method that uses affine relationships for com-

puting a statistical measure (refer Section 4.1),
• WF : an approach that uses the five largest DFT (Discrete Fourier Trans-

form) coefficients for approximating the correlation coefficient, and has been
introduced in [1–3].

23

6. EXPERIMENTAL EVALUATION

In this paper we use two real datasets. The first dataset contains 670 daily
time series obtained from 134 sensors monitoring environmental parameters on a
university campus. We refer to this dataset as sensor-data. The second dataset
consists of weekly, intra-day stock quotes from 996 stocks from the S&P 500
index and ETFs (exchange traded funds). We refer to this dataset as stock-data.
The most important characteristics of the datasets are summarized in Table 3.

Table 3. Summary of the datasets.

sensor-data stock-data

sampling interval 2 min. 1 min.
#time series (n) 670 996
#samples per time series (m) 720 1,950
max. affine relationships 224,115 495,510

6.1 Analyzing Trade-Off

For analyzing the tradeoff between efficiency and accuracy we consider a MEC
query that computes a statistical measure (L, T , or D) over all the time series
present in a dataset. Fig. 9 and Fig. 10 show the speedup and the percentage
RMSE error (refer Section 4.1) obtained for all the statistical measures as a
function of the number of affine clusters k. The speedup is computed as the
ratio of time taken by the WN method as compared to the WA method. To give
a sense of the absolute times, in Fig. 11 we show the absolute time comparison
for stock-data.

In particular, for computing statistical measures, the focus of our work, the
errors are negligible. The speedup obtained over all the statistical measures
varies largely from a factor 1.3 to 3500. The maximum speedup of approximately
3500 times is obtained for mode and the minimum speedups of 1.3x and 4x
are obtained for dot product and mean respectively. The speedup obtained for
mean and dot product is low due to the inherent simplicity of computing them
using the WN method. Thus, in summary, the WA method exhibits significant
improvements in efficiency and accuracy.

Since the stock-data is larger than the sensor-data, the efficiency improve-
ment for stock-data is more prominent than sensor-data. This demonstrates that
our approaches are capable of effectively handling large datasets. Moreover, for
all the statistical measures a small number of clusters (6) are sufficient to ob-
tain high accuracy; thus resulting in a nearly linear cost of processing the MEC
query.

6.2 Impact of Online Environments

Our task here is to analyze how the Affinity framework handles MEC queries
posed in online environments. Typically, in online environments, users frequently

24

6. EXPERIMENTAL EVALUATION

 0

 2

 4

 6

 8

6 10 14 18 22
 0

 4e-13

 8e-13

 1.2e-12

 1.6e-12

 2e-12

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(a) mean

 0

 3

 6

 9

 12

 15

 18

6 10 14 18 22
 0

 0.5

 1

 1.5

 2

 2.5

 3

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup RMSE

(b) median

100

101

102

103

104

6 10 14 18 22
 0

 2

 4

 6

 8

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup RMSE

(c) mode

 0

 3

 6

 9

 12

 15

 18

6 10 14 18 22
 0

 1e-12

 2e-12

 3e-12

 4e-12

 5e-12

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(d) covariance

 0

 0.5

 1

 1.5

 2

6 10 14 18 22
 0

 1e-12

 2e-12

 3e-12

 4e-12

 5e-12

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(e) dot product

Fig. 9. Efficiency and accuracy tradeoff for sensor-data. Note the logarithmic scale for
the speedup in (c).

request for computation of a particular statistical measure for only few entities
(stocks or sensors). To simulate this behavior, we generate realistic query work-
loads as follows: each query chooses uniformly at random a L-, T -, or D-measure
and uses a powerlaw distribution for choosing 10 different series identifiers to
form the set ψ. The intuition behind the powerlaw distribution is that since
some entities (stocks or sensors) are popular as compared to others, thus we
model their popularity with a powerlaw distribution.

Fig. 12 compares query processing performance as the number of queries
increase for the sensor-data and the stock-data. Here the parameters of the
SYMEX+ algorithm are chosen as: k = 6, γmax = 10, and δmin = 10. The
gains obtained by using the WA method are many-fold as compared to the WN

method. For example, the WA method is 10 to 23 times faster as compared to
the WN method when 90k queries are processed, and it is 2.5 to 9 times faster
when 15k queries are processed. Note that the time for the WA method shown
in Fig. 12 also includes the initial time taken by the SYMEX+ algorithm for
computing the affine relationships.

Thus, the proposed WA method is far superior than the WN method of
query processing and is suitable for deployment in online environments. Here we
cannot compare with the WF method, since the WF method only computes the
correlation coefficient and does not work for all the other statistical measures.

25

6. EXPERIMENTAL EVALUATION

 0

 3

 6

 9

 12

 15

6 10 14 18 22
 0

 4e-12

 8e-12

 1.2e-11

 1.6e-11

 2e-11

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(a) mean

 0

 8

 16

 24

 32

 40

6 10 14 18 22
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(b) median

100

101

102

103

104

6 10 14 18 22
 0

 0.5

 1

 1.5

 2

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup RMSE

(c) mode

 0

 4

 8

 12

 16

 20

 24

6 10 14 18 22
 0

 4e-12

 8e-12

 1.2e-11

 1.6e-11

 2e-11

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(d) covariance

 0

 0.5

 1

 1.5

 2

 2.5

 3

6 10 14 18 22
 0

 2e-11

 4e-11

 6e-11

 8e-11

 1e-10

s
p

e
e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(e) dot product

Fig. 10. Efficiency and accuracy tradeoff for stock-data. Note the logarithmic scale for
the speedup in (c).

6.3 Scalability of the SYMEX Algorithm

Now we compare scalability of the SYMEX and SYMEX+ algorithms when the
number of affine relationships generated by them increases. Fig. 13 shows the
scaling behavior of the SYMEX and the SYMEX+ algorithms as the number of
affine relationships handled by these algorithms increase. Clearly, the SYMEX
and the SYMEX+ algorithms scale linearly as the number of affine relationships
increase. Particularly, the SYMEX+ algorithm is a factor 3.5 to 4 times faster
as compared to the simple SYMEX algorithm. For experiments in Fig. 13, we set
k = 6, γmax = 10, and δmin = 10 as the parameters of the AFCLST algorithm.
Thus, the SYMEX+ algorithm exhibits attractive improvements as compared
to the SYMEX algorithm.

6.4 Impact of using the SCAPE Index

We discuss the performance improvements obtained by using the SCAPE index.
Here, all the experiments are performed on the sensor-data. Recall, the SCAPE
index uses the affine relationships returned by the SYMEX+ algorithm. For
processing the MET and MER queries on the correlation coefficient the index
pruning methods discussed in Section 5.3 are utilized.

We first analyze the scalability of constructing the SCAPE index as the num-
ber of indexed affine relationships increase. Fig. 14 shows the scaling behavior

26

6. EXPERIMENTAL EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

6 10 14 18 22

ti
m

e
 (

s
e
c
o

n
d

s
)

clusters (k)

W
N

 W
A

(a) mean

 0

 0.5

 1

 1.5

 2

 2.5

 3

6 10 14 18 22

ti
m

e
 (

s
e
c
o

n
d

s
)

clusters (k)

W
N

 W
A

(b) median

 0.01

 0.1

 1

 10

 100

6 10 14 18 22

ti
m

e
 (

s
e
c
o

n
d

s
)

clusters (k)

W
N

 W
A

(c) mode

 0

 10

 20

 30

 40

 50

6 10 14 18 22

ti
m

e
 (

s
e
c
o

n
d

s
)

clusters (k)

W
N

 W
A

(d) covariance

 0

 3

 6

 9

 12

 15

6 10 14 18 22

ti
m

e
 (

s
e
c
o

n
d

s
)

clusters (k)

W
N

 W
A

(e) dot product

Fig. 11. Absolute time comparison for stock-data. Note the logarithmic scale for the
speedup in (c).

 0

 700

 1400

 2100

 2800

 3500

15k 30k 45k 60k 75k 90k

ti
m

e
 (

s
e

c
o

n
d

s
)

number of queries

W
N

 W
A

(a) sensor-data

 0

 440

 880

 1320

 1760

 2200

15k 30k 45k 60k 75k 90k

ti
m

e
 (

s
e

c
o

n
d

s
)

number of queries

W
N

 W
A

(b) stock-data

Fig. 12. Comparing query processing efficiency.

of the SCAPE index when it indexes the affine relationships for a T -measure
(covariance) and a L-measure (mean). Clearly, the SCAPE index exhibits linear
scaling, which makes it a viable practical alternative for query processing.

27

6. EXPERIMENTAL EVALUATION

 0

 22

 44

 66

 88

 110

 5k 50k 95k 140k 185k 230k

ti
m

e
 (

s
e

c
o

n
d

s
)

number of affine relationships

SYMEX SYMEX+

(a)

 0

 90

 180

 270

 360

 450

 5k 105k 205k 305k 405k 505k

ti
m

e
 (

s
e

c
o

n
d

s
)

number of affine relationships

SYMEX SYMEX+

(b)

Fig. 13. Scalability of the SYMEX algorithm. (a) sensor-data and (b) stock-data.

 0

 3

 6

 9

 12

 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

no. of affine relationships

covariance mean

Fig. 14. Scalability of the index construction on sensor-data.

Next, we compare the performance improvement obtained by using the SCAPE
index for processing the MET and MER queries for the covariance and the cor-
relation coefficient. Here, all the affine relationships that are returned by the
SYMEX+ algorithm are used for creating the SCAPE index. Fig. 15 and Fig. 16
compares the results for query processing obtained using the SCAPE index with
the other methods. The other methods (WN , WA, and WF) first compute the
required statistical measure and then trivially evaluate the MET or MER query.
Note that sinceWF only computes the correlation coefficient, therefore it is only
include in Fig. 15(a) and Fig. 16(a).

Fig. 15 and Fig. 16 depict the orders of magnitude improvement (shown
using logarithmic scale) in efficiency while processing the MET and MER queries
using the SCAPE index. Table 4 shows a snapshot of the orders of magnitude
performance improvement for all the statistical measures, and also in particular
when comparing to the best known methods from the literature (WF) for the
computation of the correlation coefficient.

28

7. RELATED WORK

 0.1

 1

 10

 100

 0k 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A

W
F SCAPE

(a) correlation coefficient (threshold)

 0.01

 0.1

 1

 10

 100

 0k 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A SCAPE

(b) covariance (threshold)

 0.001

 0.01

 0.1

 0 132 264 396 528 660

ti
m

e
 (

s
e
c
o

n
d

s
)

result size

W
N

W
A SCAPE

(c) median

 0.01

 0.1

 1

 10

 0k 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A SCAPE

(d) dot product

Fig. 15. Comparing efficiency of the SCAPE index for the MET query.

It is clearly evident from Table 4, that by using the SCAPE index we obtain
orders of magnitude performance improvement. There is, however, one exception
– median. Since median is a L-measure, the maximum possible number of affine
relationships for it are low (linear in n). These affine relationships are insufficient
for demonstrating the efficacy of the SCAPE index. In summary, the proposed
indexing methods exhibit tremendous improvement in the efficiency of processing
MET and MER queries.

7 Related Work

Many prior works transform data from time domain to frequency domain using
the DFT and then use the equivalence of norms (Parseval’s theorem) property
of the DFT for approximating the correlation coefficient using the largest DFT
coefficients [1–3]. Computing the Pearson’s correlation coefficient using DFT-
based techniques provides inaccurate results when the time series contain white

29

7. RELATED WORK

 0.1

 1

 10

 100

 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A

W
F SCAPE

(a) correlation coefficient

 0.01

 0.1

 1

 10

 100

 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A SCAPE

(b) covariance

Fig. 16. Comparing efficiency of the SCAPE index for the MER query.

Table 4. Query processing speedup computed when the query returns the maximum
size of the result set ΛT or ΛR.

Query type Measure
Speedup

WN WA WF

MET

correlation coefficient 59x 13.4x 32x
covariance 160x 21x ×

dot product 41x 35x ×
median 5x 1.1x ×

MER
correlation coefficient 27x 6.4x 14x

covariance 155x 22x ×

noise. Cole et al. [4] call such time series uncooperative and propose methods for
discovering correlation amongst such signals. All these studies, however, typically
only consider the correlation coefficient and do not propose an unified approach
for computing and querying a wide variety of statistical measures, which includes
the correlation coefficient.

In addition to computing the correlation coefficient, there has been a large
body of related prior research using the DFT for: (a) exact or approximate se-
quence matching where the sequences could have undergone a similarity trans-
formation [13–15], (b) retrieving similar shapes [16, 17], (c) predicting future
values and answering similarity queries [18], and (d) reducing the dimensional-
ity of the time-series data [19, 20]. Our work, on the contrary, considers affine
transformations, which are a more generalized form of similarity transforma-
tions. Secondly, these techniques do not notice that affine transformations can
be used for efficiently computing statistical measures.

TAPER [5] defines an all-strong-pairs correlation query that returns pairs of
highly positively correlated items given a user-specified threshold. SPRIT [21],
on the other hand, uses PCA (Principal Component Analysis) for summarizing
a large collections of streams and discovering correlations. Our work differs from

30

8. CONCLUSION

those mainly due to the fact that those techniques are tightly coupled to a par-
ticular type of query or statistical measure, most often the correlation coefficient.
In that sense our work is unique.

Processing aggregate or related queries over time-series data is another area
related to our work. A method of computing correlated aggregates is proposed
in [22]. The Cypress framework [6] uses Fourier transform and random projection
based multi-scale analysis for segmenting the data into various form of trickles,
which are then used for query processing. Similarly, GAMPS [23] uses ratio sig-
nals for compressing time-series data and proposes approaches for query process-
ing over such compressed data. More recently, there has been research conducted
on indexing and querying correlated uncertain information using probabilistic
databases [24,25]. Lastly, Ke et al. [26] propose approaches for searching graphs
correlated to a given query graph.

8 Conclusion

In this paper, for the first time, we defined and proposed the notion of affine
relationships for computing and querying several statistical measures using an
unified approach. We proposed the affine clustering algorithm for clustering the
time-series data, such that high-quality affine relationships could be found. We
proposed the SYMEX and SYMEX+ algorithms that are capable of comput-
ing affine relationships in linear time. We demonstrated that the SCAPE in-
dex structure can easily index all the statistical measures and produce orders of
magnitude improvement in efficiency for processing measure threshold and range
queries, as compared to naive methods and methods proposed in the literature
for this problem. Comprehensive experiments highlight the effectiveness of our
approaches.

References

1. Y. Zhu and D. Shasha, “Statstream: Statistical monitoring of thousands of data
streams in real time,” in VLDB, 2002, pp. 358–369.

2. C.-S. Li, P. S. Yu, and V. Castelli, “Hierarchyscan: A hierarchical similarity search
algorithm for databases of long sequences,” in ICDE, 1996, pp. 546–553.

3. A. Mueen, S. Nath, and J. Liu, “Fast approximate correlation for massive time-
series data,” in SIGMOD, 2010, pp. 171–182.

4. R. Cole, D. Shasha, and X. Zhao, “Fast window correlations over uncooperative
time series,” in SIGKDD, 2005, pp. 743–749.

5. H. Xiong, S. Shekhar, P. Tan, and V. Kumar, “TAPER: A two-step approach for
all-strong-pairs correlation query in large databases,” TKDE, pp. 493–508, 2006.

6. G. Reeves, J. Liu, S. Nath, and F. Zhao, “Managing massive time series streams
with multi-scale compressed trickles,” in VLDB, 2009, pp. 97–108.

7. J. Hull, Options, futures and other derivatives. Prentice Hall, 2009.
8. M. J. Bommarito II, “Intraday Correlation Patterns between the S&P 500 and

Sector Indices,” SSRN, 2010.
9. J. Campbell, S. Grossman, and J. Wang, “Trading volume and serial correlation in

stock returns,” The Quarterly Journal of Economics, vol. 108, no. 4, p. 905, 1993.

31

8. CONCLUSION

10. W. Sharpe, “Capital asset prices: A theory of market equilibrium under conditions
of risk,” Journal of Finance, vol. 19, no. 3, pp. 425–442, 1964.

11. R. Maronna, R. Martin, and V. Yohai, Robust statistics. Wiley Series in Proba-
bility and Statistics, 2006.

12. G. Golub and C. Van Loan, Matrix computations. The Johns Hopkins University
Press, 1996.

13. R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence
databases,” in FODO, 1993, pp. 69–84.

14. R. Agrawal, K. Lin, H. Sawhney, and K. Shim, “Fast similarity search in the
presence of noise, scaling and translation in time-series databases,” in VLDB, 1995.

15. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence matching
in time-series databases,” in SIGMOD, 1994, pp. 419–429.

16. D. Rafiei and A. Mendelzon, “Similarity-based queries for time series data,” in
SIGMOD, 1997, pp. 13–25.

17. H. Jagadish, A. Mendelzon, and T. Milo, “Similarity-based queries,” in PODS,
1995, pp. 36–45.

18. X. Lian and L. Chen, “Efficient similarity search over future stream time series,”
TKDE, vol. 20, no. 1, pp. 40–54, 2008.

19. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Locally adaptive dimen-
sionality reduction for indexing large time series databases,” in SIGMOD, 2001,
pp. 151–162.

20. ——, “Dimensionality reduction for fast similarity search in large time series
databases,” KAIS, vol. 3, no. 3, pp. 263–286, 2001.

21. S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern discovery in mul-
tiple time-series,” in VLDB, 2005, pp. 697–708.

22. J. Gehrke, F. Korn, and D. Srivastava, “On computing correlated aggregates over
continual data streams,” in SIGMOD, 2001, pp. 13–24.

23. S. Gandhi, S. Nath, S. Suri, and J. Liu, “GAMPS: Compressing multi sensor data
by grouping and amplitude scaling,” in SIGMOD, 2009, pp. 771–784.

24. C. Ré, J. Letchner, M. Balazinksa, and D. Suciu, “Event queries on correlated
probabilistic streams,” in SIGMOD, 2008, pp. 715–728.

25. B. Kanagal and A. Deshpande, “Indexing correlated probabilistic databases,” in
SIGMOD, 2009, pp. 455–468.

26. Y. Ke, J. Cheng, and W. Ng, “Correlation search in graph databases,” in SIGKDD,
2007, pp. 390–399.

32

