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ESCAPE22 3. Case Study
17 - 20 June,

London Simulation and Optimization

* Year subdivided in 6 operation periods (average days)

e
Operating time [h] 2190 730 1460 1460 2920 0.1
E'“EE&‘ZS:PT”‘J 0.886 0.903 0.931 1.020 1110 | 4
dea:;gc[tkm'/“fa ’ 0.142 0.142 0.238 0.412 0.559 1.139
tem[;eHr;titr”e”EoC] 38 38 39 41 43 45
DH supply 90 90 92 9% 99 120

temperature [°C]
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ESCAPE22 3. Case Study
17 - 20 June,

London Simulation and Optimization

* Year subdivided in 6 operation periods (average days)

e A e, octaber YT et 10°
Operating time [h] 2190 730 1460 1460 2920 0.1
E'ecflf\j\‘gfaepr;a“d 0.886 0.903 0.931 1.020 1110 | 4
dea:;';f[tk{‘,\e,ﬁ',“fa . 0.142 0.142 0.238 0.412 0.559 1.139
tem[;eHr;titr”e”EoC] 38 38 39 41 43 45
tem[;:,:‘t‘:ﬂe"y[oc] 90 90 92 % 99 120

J Min Cinv, Cop, GWP 100a

e 36 decision variables for master problem

. use of technologies, co2 tax (0-200 EUR/ton), wood biomass distribution over year, ratio between heat and power for MSWI

o Economic conditions

. electricity: 0.16 €/kWhe, NG: 0.078 €/kWh,Wood: 0.05 €/kWh, diesel: I.75 €/kWh, petrol: |1.88 €/kWh, LFO:: 0.083 €/kWh
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ESCAPE22 4. Results
17 - 20 June,

London Pareto curve

Life cycle CO2 emissions [tCO2-eqg/yr/cap]
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ESCAPE22 4. Results
17 - 20 June,

London Typical configurations

Investment costs OE)eratmg costs
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4. Results
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ESCAPEZZ, 4. Results
17 - 20 June,

London Optimal system design

 Seasonal operation
_y Cinv:4.27 mioEUR

* Example of heat and electricity flows for configuration 4 -----» Cop: 584 mioEUR/yr

A [:2.77 tCO2-eq/lyr/cap
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ESCAPE22 4. Results
17 - 20 June,

London Optimal system design

* Seasonal operation | |
_y Cinv:4.27 mioEUR

* Example of heat and electricity flows for configuration 4 -----» Cop: 584 mioEUR/yr

A [:2.77 tCO2-eq/lyr/cap

Electricity UCTE 0.181 kWe
Electricity
Electricity hydro 0.536 kWe 0.886 kWe/cap
N
Wood drying |Wood gasification;
10.2 th 0.157 kWth
Wood 0.053 kWe

Organic waste
4.3e-6 kg/s/cap

Biogas turbine

Biomethanation

092 kWih 0.119'kWe

Wastewater :0.016 KWth District Heating |
9.5e-6 m3/s/cap | WWT Plant

i Network
Heating
0.142 kWth/cap
0435 kWith
MSW Incineration

5e-5 kg/s/cap

May, July & August
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ESCAPE22,
17 - 20 June,

London

 Seasonal operation

* Example of heat and electricity flows for configuration 4

4. Results

Optimal system design

y Cinv:4.27 mioEUR
..... > Cop: 58.4 mioEUR/yr

A
Electricity UCTE R — — 1:2.77 tCO2-eq/yr/cap
A e
Electricity Electricity
Electricity hydro 0.536 kWe 0.886 kWe/cap Electricity hydro 0536 1.110 kWe/cap
o : ¢
Wood drying {Wood gasification ) Boilor
£ 0.2 th kWth // ‘
Wood 0.063 kWe - 0.002 kWe
Naturalgas %7 041 kWth
| 0,024 kWe
Organic waste ; ; . ; , \
4.3e-6 kg/s/cap Biomethanation . Biogas turbine fgg?g'ﬁg\;\f;z;% Biomethanation \\ > Biogas turbine
2 kwth 0.119'kWe \W
Wastewater :0-016 kWi District Heating |
9.5e-6 m3/s/cap WWT Plant  —— Network 9.5\/!?2,[;\’;226 0 WWT Plant . Dlst“g’ivl;i:raktmg
Heating 0.174 kWth Heat
eating
0.142 kWth/cap 0.559 kWth/cap
0,435 kWth
MSW . :
MSW 0.342 kWth
5e-5 kg/s/cap Incineration 5e-5 kg/s/cap Incineration
May, July & August November-February
I — —
19th of June 2012 13
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ESCAPE22 4. Results
17 - 20 June,

London Optimal system design

* Seasonal operation | |
_y Cinv:4.27 mioEUR

* Example of heat and electricity flows for configuration 4 -----» Cop: 584 mioEUR/yr

A 77 tCO2-eq/yr/cap

Electricity UCTE 0-187 ke Electricity UCTE 0.548 kW
L e
Electricity Electicity
Electricity hydro 0.536 kWe 0.886 kWe/cap Electricity hydro 0536 1.110 kWe/cap
o : ¢
Wood drying |Wood gasification; ) Boilor
1 0.2 th 0.15¢ kWth e ‘
Wood 0.063 kWe - 0.002 kWe
Naturalgas %7 041 kWth
“ 0.024 kWe
Organic waste . . - . -
4.3e-6 kg/s/cap Biomethanation . Biogas turbine fgg?g'ﬁg\;\f;z;% Biomethanation > Biogas turbine

052 kWth o. 110806 0003 kWih
.0.016 kWA ;

: N District Heating P e
i WWTPlant ——— ] Wastewater : District Heating
’ : Network 9.5e-6 m3/s/cap WWT Plant ‘ Network
. 0.174 kWth '
Heating Heating
0.142 kWth/cap 0.559 kWth/cap
0,435 kWth

0.342 kWth

Wastewater
9.5e-6 m3/s/cap

MSW : : VISW : : '
5e-5 kg/s/cap Incineration 5e-5 kg/s/cap t  Incineration

May, July & August November-February

» Adapted operation of waste treatment facilities
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ESCAPE22 4. Results
17 - 20 June,

London Optimal system design

e Pathways for resource conversion . Cinv: 427 mioEUR

e Example of Biomass (Wood & OW) for configuration 4 > <op:384mioEUR/yr
A :2.77 tCO2-eq/yricap
Wood Electricity

0.223 kWth/cap 0.050 kWe/cap

Heating
Organic waste : District Heating , 0.090 kWth/cap
~0.058 kW/cap Network
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Wood Electricity
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_ Heating
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~0.058 kW/cap Network

Never selected Not selected for these weights for criteria
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ESCAPE22 5. Conclusions
17 - 20 June,

London Conclusions

* Systematic methodology for design of urban energy systems
* Process design and integration
e Life cycle assessment
* Industrial ecology

* Help for decision-making and territorial planning

* [nclusion of environmental objectives

e [nfluences design decisions

e |dentification of best pathways for waste treatment and resource
valorization

o Seasonal variations accounted for
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ESCAPE22 5. Conclusions
17 - 20 June,

Londor Perspectives

* Energy and mass storage possibilities
 Optimal distribution over the year
* Extension to larger territories

e (Constraints on locations of resources and services
distribution

* Logistics has to be accounted for

» Integration of Geographic Information Systems in the
computational framework

* Application to eco-industrial parks
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