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p · ce+ − Ė−p · ce−(xd)

Optimization problem formulation

• 2-step decomposition

6

1. Introduction    2. Methodology    3. Case Study    4. Results    5. Conclusions

• slave (MILP for each independent period): 

xd : decision variables
of MINLP problem

.



19th of June 2012

ESCAPE22,
17 - 20 June,
London

min CO,p =
nu∑

u=1

fu,p · (CO,u,p + İCO2,u,p · cco2) +
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(Ṙr,p · cr+ + ICO2,r · cco2) + Ė+
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May, July, 
August

June (MSWI 
shuts down)

April, 
September March, October

November-
February Design (-10°C)

Operating time [h] 2190 730 1460 1460 2920 0.1

Electricity demand 
[kWe/cap] 0.886 0.903 0.931 1.020 1.110 1.4

District heating 
demand [kWth/cap] 0.142 0.142 0.238 0.412 0.559 1.139

DH return 
temperature [°C] 38 38 39 41 43 45

DH supply 
temperature [°C] 90 90 92 96 99 120

• Min Cinv, Cop, GWP 100a

• 36 decision variables for master problem

• use of technologies, co2 tax (0-200 EUR/ton), wood biomass distribution over year, ratio between heat and power for MSWI

• Economic conditions

• electricity: 0.16 €/kWhe, NG: 0.078 €/kWh, Wood: 0.05 €/kWh, diesel: 1.75 €/kWh, petrol: 1.88 €/kWh, LFO:: 0.083 €/kWh 
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• Systematic methodology for design of urban energy systems

• Process design and integration

• Life cycle assessment

• Industrial ecology

• Help for decision-making and territorial planning

• Inclusion of environmental objectives

• Influences design decisions

• Identification of best pathways for waste treatment and resource 
valorization

• Seasonal variations accounted for
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• Energy and mass storage possibilities

• Optimal distribution over the year

• Extension to larger territories

• Constraints on locations of resources and services 
distribution

• Logistics has to be accounted for

‣ Integration of Geographic Information Systems in the 
computational framework

• Application to eco-industrial parks
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