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Abstract
The integration of environmental impacts in the conceptual design of energy systems can
be achieved by combining Life Cycle Assessment (LCA) with process integration tech-
niques. The use and the disaggregation of life cycle inventory (LCI) databases allows for
extending the systematic generation of resources to services conversion chains and for
including the environmental impacts in the process design procedure. This paper presents
how to systematically generate the superstructure of the energy conversion system, how
to solve the urban energy system design using a multi-period multi-objective optimization
and how the environmental objectives can be integrated in the process design procedure.
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1. Introduction
The industrial ecology aims at identifying in a given system the possible exchanges that
allow to mitigate the use of resources and the environmental impacts of industrial activi-
ties. The design of an industrial symbiosis can be solved by extending the process design
techniques to larger systems including not only the process flowsheet design but also the
choice of the raw materials, the supply chains and the waste management and recycling
options. In parallel, the integration of environmental impacts in the conceptual process
design procedure has gained considerable interest in the last decade, and several stud-
ies deal with the integration of environmental impacts in the process design procedure
and optimization (Guillén-Gosálbez et al. (2008); Hugo and Pistikopoulos (2005); Gerber
et al. (2011a)). One of the ways of achieving this is to combine Life Cycle Assessment
(LCA) tools with flowsheeting software and process integration techniques, which allows
for directly linking the Life Cycle Inventory (LCI) with the process design decisions such
as the configuration, scale and operating conditions (Gerber et al. (2011a)).

An application of this methodology concerns the design of urban energy systems with
several endogenous potential resources, multiple energy services to be supplied and waste
generated to be treated, in a context submitted to seasonal variations. This paper presents
an extension of the methodologies for LCA integration in process systems design using a
LCI database (Gerber et al. (2011a,b)) for urban energy conversion systems. It includes
the systematic generation of the superstructure of potential technologies and resources,
and the formulation of the optimization problem to integrate environomic (economic and
environmental) aspects in the selection of optimal configurations. A case study is as well
presented to illustrate the application of the methodology.

2. Methodology
To design the system, a computational framework is used for the simulation, the design
and the optimization of energy systems accounting for multi-period aspects (Fazlollahi
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and Maréchal (2011)), presented in Figure 1. The optimization problem, aiming at mini-
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Figure 1: Computational framework used for system design and optimization

mizing simultaneously the costs and the impacts is by essence a Mixed Integer Non-Linear
Programming (MINLP) multi-objective optimization problem. It is solved following a
two stage decomposition methodology with a master problem and a slave sub-problem.
The slave optimization sub-problem concerns the combined mass and energy integration
of the system, aiming at minimizing the system operating costs including the environ-
mental taxes. It is solved as a Mixed Integer Linear Programming (MILP) problem. The
master problem, subject to the slave sub-problem, deals with the process unit sizing vari-
ables and is solved as a multi-objective optimization of the non-linear investment costs
and impacts of the system.

A LCI database is used to account for the off-site emissions due to the auxiliary ma-
terials, the waste handling and the logistics included in the LCA system boundaries. The
decision perimeter of the system has to be extended beyond the flowsheet design to ac-
count for the decisions that can be taken on the average technologies, on the waste man-
agement and recycling options, and on the supply chains. LCI data from the ecoinvent
database (Frischknecht et al. (2005)) can be disaggregated in units with associated im-
pacts and material flows. Then, a superstructure based process design methodology can
be applied (Gerber et al. (2011b)). The superstructure of the system to be designed is
decomposed in three different types of sub-components: 1) the technologies on which ac-
tions can be undertaken and that are modeled in details, 2) the average technologies of the
LCI database, and 3) the resources imported in the system, taken from the LCI database.
Each one of the units having associated material and energy flows, the synthesis of the
system using process integration techniques allows for the systematic generation of mass
and heat exchanges opportunities in the system.

The superstructure used as a basis for the synthesis of an urban energy system contains
thus five different subsystems: 1) the available resources (endogenous and imported), 2)
the conversion technologies to convert resources into final energy services or intermediate
products, 3) the services to be supplied, 4) the waste to be treated and 5) the transfer
networks. Each unit contained in these subsystems has associated mass and energy flows,
operating (COu) and investment costs (CIu), and environmental impacts (Iu) calculated
with the disaggregated data of the LCI database, all calculated for a nominal size ( fu = 1).
It has as well a minimal and maximal sizing factor ( fmin and fmax), which depends on if
the unit is a process ( fu = 1), a utility with unlimited use ( fmax = unlimited) or with
limited use ( fmax = limited). The example of such a superstructure is showed in Figure 2.

Then, the system is synthesized for each period in order to account for the seasonal
variations of the demand in energy services and in the resource availability. A MILP
formulation is used to optimize the utilization factors of each unit of the superstructure,
minimizing the operating costs including the environmental tax due to the on-site and
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Figure 2: Example of a superstructure for urban energy systems synthesis

off-site CO2 emissions:

min (CO,p =
nu

∑
u=1

fu,p · (CO,u,p +ECO2,u,p · cco2 + Ė+
u,p · ce+ + Ė−

u,p · ce−)(xd)) (1)

where fu,p is the utilization factor of utility u during period p, CO,u,p its operating cost,
ECO2,u,p its equivalent CO2 emissions, cco2 the environmental tax, which can be given
as a decision variable of the master problem, Ė+

u,p is its electricity consumed, Ė−
u,p is its

electricity produced, ce+ is the specific cost of the electricity from the grid and ce− of
electricity sold to the grid. fu,p represent the decision variables of the MILP slave sub-
problem, and xd the ones of the master problem. This is submitted to the constraints of
the heat cascade with heat exchange restrictions (Becker and Maréchal (2011)), necessary
since the heat demand is satisfied via the district heating network, and to the constraints
of mass balance in the mass exchange superstructure (Gerber et al. (2011b)).

Once the system has been synthesized for each period, the final investment costs and
life-cycle environmental impacts are calculated accounting for the scheduled yearly op-
eration. They are then used as objective functions of the non-linear multi-objective opti-
mization problem:

min (Ctot =
nu

∑
u=1

max(Cinv,u,p(xd, fu,p))) (2)

where Cinv,u,p is the investment cost of utility u associated with period p, the maximum
value representing the investment to be realized. The second objective function concerns
the total environmental impacts calculated by life cycle impact assessment:

min (Itot =
nu

∑
u=1

(max(IC,u,p)+max(IE,u,p)+ tp ·
np

∑
p=1

IO,u,p)(xd,cco2, fu,p)) (3)

where IC,u,p is the impact associated with the construction of utility u for period p, IE,u,p
with its end-of-life (i.e. dismantling and disposal), and IO,u with its operation, including
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both the auxiliary materials and emissions. The impacts due to construction and end-of-
life can be assimilated to an environmental investment. Thus, their value within the multi-
period framework is calculated by analogy with the investment, by taking the maximal
value among the ones calculated for each period.

3. Case study
The methodology is applied to the design and synthesis of an urban energy system for
a city of 40’000 inhabitants in Switzerland, for which the seasonal quantities of energy
services, waste and availability of endogeneous resources have been characterized. The
superstructure of Figure 2 is considered. In order to satisfy the decomposition conditions
and make the sub-problem compatible with the objective of the master problem, the CO2
tax is considered as a master problem decision variable. An evolutionary non-dominated
algorithm (Molyneaux et al. (2010)) is used for multi-objective optimization, considering
the minimization of the investment costs and of the life cycle equivalent emissions of
carbon dioxide evaluated with the impact assessment method of the single score of the
impact assessment method ecoindicator99-(h,a) (Goedkoop and Spriensma (2000)). The
environmental objective is chosen to have a more global appreciation of the performance
than just the equivalence of CO2 emissions, and includes as well effects on the human
health, on the ecosystem quality and on the non-renewable resources.

4. Results
Results from the multi-objective optimization for the case study are displayed in Figure
3. Minimum and maximum CO2 emissions are correlated with the total environmental
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Figure 3: Trade-off between investment costs and impacts for synthesis of urban system
taken as a case study

impacts of the system. The limits for the CO2 tax were given between 0 and 200 EUR/kg
in the optimization, but the optimal configuration all have a tax comprised between 10
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and 90 EUR/kg. Indeed, beyond 90 EUR/kg, the tax does not allow to reduce the impacts
anymore. On the other hand, a tax inferior to 10 EUR/kg does not penalize the investment.

5. Conclusions
A systematic methodology for the environomic optimal design of urban energy systems
has been presented. It combines the principles of process design and integration, life cycle
assessment and industrial ecology, and accounts simultaneously for the potential conver-
sion technologies, supply chains, logistics and recycling possibilities. It can be applied
to provide some help in the decision-making procedures and in territorial planning. A
practical example is the determination of the optimal value of a CO2 tax to mitigate the
environmental impacts from energy services supply and waste treatment, and the iden-
tification of the optimal conversion chains for endogenous resources such as biomass or
biowaste processing.
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