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Abstract

We introduce a precise interprocedural effect analysis for programs
with mutable state, dynamic object allocation, and dynamic dis-
patch. Our analysis is precise even in the presence of dynamic dis-
patch where the context-insensitive estimate on the number of tar-
gets is very large. This feature makes our analysis appropriate for
programs that manipulate first-class functions (callbacks). We first
present a framework in which programs are enriched with special
effect statements, and define the semantics of both program and
effect statements as relations on states. Our framework defines a
program composition operator that is sound with respect to relation
composition. Computing the summary of a procedure then consists
of composing all its program statements to produce a single effect
statement. We propose a strategy for applying the composition op-
erator in a way that balances precision and efficiency.

We instantiate this framework with a domain for tracking read
and write effects, where relations on program states are abstracted
as graphs. We implemented the analysis as a plugin for the Scala
compiler. We analyzed the Scala standard library containing 58K
methods and classified them into several categories according to
their effects. Our analysis proves that over one half of all methods
are pure. We also analyze how context sensitivity and composition
operator application strategies impact the analysis precision and
performance.

Categories and Subject Descriptors F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Theory, Verification

Keywords Effect analysis, Static analysis, Callbacks, Scala

1. Introduction

An appealing programming style uses predominantly functional
computation steps, with higher-order functions and a disciplined
use of side effects. An opportunity for parallel execution further in-
creases the potential of this style. Whereas higher-order functions
have always been recognized as a pillar of functional programming,
they have also become a standard feature of object-oriented lan-
guages such as C# (in form of delegates), the 2011 standard of C++,
and Java 8.' Moreover, design patterns in object-oriented program-
ming community also rely on callbacks, especially the the strategy
pattern and the visitor pattern [13].

Precise analysis of side effects is essential for automated as
well as manual reasoning about such programs. The combination of
callbacks and mutation makes it difficult to design an analysis that
is both scalable enough to handle realistic code bases, and precise

'See JSR 335 “Project Lambda” http://www.jcp.org/en/jsr/
detail?id=335.

enough to handle common patterns such as local side effects and
initialization, which arise both from manual programming practice
and compilation of higher-level concepts. Among key challenges is
flow-sensitivity and precise handling of aliases, as well as precise
and scalable handling of method calls.

Our aim is to support not only automated program analyses and
transformations that rely on effect information, but also program
understanding tasks. We therefore seek to generate readable effects
that the developers can compare to their intuition of what methods
should and should not affect in program heap. Moreover, we expect
our results to help in bootstrap annotations for Scala effect type
systems [25] as well as lead to the design of more precise versions
of such systems.

This paper presents the design, implementation, and evaluation
of a new static analysis for method side effects, which is precise and
scalable even in the presence of callbacks, including higher-order
functions. Key design aspects of our analysis include:

e a framework for relational analysis that can compute higher-
order relational summaries of method calls, which are parame-
terized by the effects of the methods being called;

e a relational analysis domain that computes summaries of code
blocks and methods by flow-sensitively tracking side effects
and performing strong updates;

e an automated effect classification and presentation of effect
abstractions in terms of regular expressions, facilitating their
understanding by developers.

Our static analyzer, called Insane, is publicly available>. We have
evaluated it on the full Scala standard library, which is widely used
by all Scala programs, and is also publicly available. Our analysis
works on a relatively low-level intermediate representation that is
close to Java bytecodes. Despite this low-level representation, we
were able to classify most method calls as not having any observa-
tional side effects. Moreover, our analysis also detects condition-
ally pure methods, for which purity is guaranteed provided that a
specified set of subcalls (typically to closures) are pure. We also
demonstrate the precision of our analysis on a number of exam-
ples that use higher-order functions as control structures. We are
not aware of any other fully automated static analyzer that achieves
this precision while maintaining reasonable performance.

2. Overview of Challenges and Solutions

In this section, we present some of the challenges that arise from
analyzing programs written in a higher-order style, and how Insane
can tackle them.

2Insane stands for “INterprocedural Static ANalysis of Effects” and is
available at https://github.com/colder/insane
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Many static analyses compute approximations of sets of states
at each program point. However, by definition, an effect analysis
needs to describe changes to program state, as opposed to sets of
program states. As a result, it needs to be a relational analysis. A
key complication is that in languages with mutation and dynamic
allocation, there is no simple static way to refer to objects in the
heap. Finally, it is widely understood that analysis in the presence
of aliasing may give different results depending on the initial alias-
ing configuration. It is also essential that a method summary is not
characterized by too specific precondition information, because this
would limit its reusability. For example, if the analysis does not
write to certain parts of the heap (if e.g. it accesses only certain
bounded part in the middle of a tree or graph structure), it should
not be necessary for the analysis to be aware of those parts of the
heap. These challenges make precise effect analysis unique com-
pared to most other abstract interpretation techniques, including
many shape analyses. Fortunately, they have been addressed to a
large extent by Salcianu, Rinard and Whaley [26, 31], whose work
this paper extends. The remaining challenge lies in overcoming im-
precision arising from highly dynamic method invocations, such as
the ones arising from first-class function invocations.

Effect attribution.  Specific to higher-order programs is the prob-
lem of correctly attributing heap effects. Consider a simple (first-
order) function:

def inc(c : Cell) = { c.value = c.value.next() }

Any reasonable analysis for effects would detect that inc potentially
alters the heap, as it contains a statement that writes to a field of
an allocated object. That effect could informally be summarized as
“inc may modify the field .value of its first argument”. That informa-
tion could in turn be retrieved whenever inc is used. Consider now
the function

def apply(c : Cell, f : Cell=-Unit) = { f(c) }

where Cell=-Unit denotes the type of a function that takes a Cell
as argument and returns no value. What is the effect of apply
on the heap? Surely, apply potentially has all the effects that inc
has, since the call apply(c, inc) is equivalent to inc(c). It can also
potentially have no effect on the heap at all, e.g. if invoked as
apply(c, (cell = ())). The situation can also be much worse, for
instance in the presence of global objects that may be modified
by f. In fact, in the absence of a dedicated technique, the only
sound approximation of the effect of apply is to state that it can
have any effect. This approximation is of course useless, both from
the perspective of a programmer, who doesn’t gain any insight on
the behaviour of apply, and in the context of a broader program
analysis, where the effect cannot be reused modularly.

The solution we propose in this paper is, intuitively, to define
the effect of apply to be “exactly the effect on calling its second
argument with its first as a parameter”. To support this, we extend
the notion of effect to be expressive enough to represent control-
flow graphs where edges can themselves be effects (see Section 3).

Compilation artifacts. Any theoretical framework, when faced
with the mundane task of analyzing real-world programs, will face
unforeseen hurdles. Somewhat ironically, many of these practical
challenges arise from the compilation phase, as the compiler needs
to transform functional aspects of the code into objects and meth-
ods suitable for interpretation by the virtual machine. Typically, a
clean model of side-effect free first-class functions can get trans-
lated into a score of anonymous classes passing around mutable
references representing the captured environment. An effect anal-
ysis, to be useful, should then at least revert these compiling ar-
tifacts. Other potential sources of misdirections include automat-
ically generated getters and setters, and initialization code (con-
structors), which may introduce an undesired level of indirection

Statement | Meaning

vV=w assign w to v

v=o.f read field o.f into v

of=v update field o.f with v

v = new C allocates an object of class C
v =o.m(al, ..., an) | calls method m of object o

Figure 1. Program statements considered in the target language.

in effects or irrelevant write effects respectively. To tackle these is-
sues, we have designed an analysis that supports strong updates,
allowing us to reverse many important compilation artifacts (see
Section 4). This turned out to be crucial to allow us to analyze the
entire Scala standard library, on which we report in Section 6.

Making sense of effects. The last challenge we address in this pa-
per is one of presentation: when a function is provably pure, this can
be reported straightforwardly to the programmer. When however it
can have effects on the heap, the pure/impure dichotomy falls short.
Consider a function that updates all (mutable) elements stored in a
linked list. That function has an effect, but a summary stating only
that it is impure is highly unsatisfactory: crucially, it does not give
any indication to the programmer that the list itself is not affected
by the writes. As we will see, the internal representation of effects,
while suited to a compositional analysis, is impractical for humans,
not the least because it is non-textual. We propose to bridge the rep-
resentation gap by using an additional abstraction of effects in the
form of regular expressions that describe sets of fields potentially
affected by effects (see Section 5). This abstraction captures less in-
formation than the internal representation but can readily represent
complex effect scenarios, as our evaluation on Scala collections il-
lustrates (Section 6.3). For the example given above, the regular
expression displayed to the programmer could be:

list(.next)".elem.value

This indicates that the fields affected are those reachable through
the list (by following .next), but belonging to elements only, thus
conveying the desired information.

3. A Compositional Analysis Framework

In this section, we present a framework for interprocedural analysis
that allows trading off between precision and efficiency. We start
by describing a target language that is expressive enough to encode
most features of Scala. (Section 4.3 describes how we handled a
few extra features in practice.)

3.1 Target Language

The language we target is a typical object oriented language with
dynamic dispatch. A program is made of a set of classes C which
implement methods. We identify methods uniquely by using the
method name prefixed with its declaring class: C.m € M. We as-
sume without loss of generality that the language does not support
method overloading —affected methods can always be renamed.
We assume that for each method, a standard control-flow graph
is available, where edges are labeled with simple program state-
ments. Each of these graphs contains a source node entry, and a
sink node exir. Figure 1 lists the statements we consider along with
their meaning.

Because of dynamic dispatch, a call statement can target mul-
tiple methods, depending on the runtime value of the receiver.
For each method call o.m(), we can compute a set of targets
targets(o.m) C M U {?} using the static type of the receiver.
If the hierarchy is not bounded as it can be with final classes or
methods, we also include the special ”?” target to represent the ar-
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bitrary methods that could be defined in unknown extensions of the
program. Indeed, we do not always assume that we have access to
the entire program: this assumption is defined as a parameter of the
analysis, and we will see later how it affects it.

Our framework is applicable to abstract domains R that repre-
sent relations between program states. We thus have that vy : R —
259 Such abstract domains have for example been shown to el-
egantly describe memory effects as abstract heap transformers. We
assume the existence of a composition operator o : R X R — R
for elements of the abstract domain, with the following property:

Ve,f € R . (v(e)ov(f)) Sv(eof)
that is

Vso, 51,52 . 51 € y(€)(so)As2 € Y(f)(s1) = s2 € y(eof)(s0)

In other words, ¢ must compose abstract relations in such a way
that the result is a valid approximation of the corresponding com-
position in the concrete domain.

We define analyze : CFG — R as a procedure performing
the analysis on the provided CFG and returning the facts at the exit
node once a fix-point is reached.

3.2 Control-Flow Graph Reductions

In order to support reductions, we first augment the language with
a special summary statement: Stmtey: = Stmt U {Smr} that
is characterized by an abstract value: Smr(e € R). Assuming a
transfer function T : Stmt — R — R is defined, we extend it for
Stmtes: by defining:

Teext(s)(p) = { pT;(j)(p) gz iSStI;]rt(e)

Let ¢ be the CFG of some procedure, and a and b two nodes of
c such that a strictly dominates b and b post-dominates a. In such a
situation, all paths from entry to b go through a and all paths from a
to exit go through b. Let us consider the sub-graph between a and b,
which we denote by a < b. This graph can be viewed as a control-
flow graph with a as its source and b as its sink. The reduction
operation consists of replacing a < b by a single edge labelled
with a summary statement. We will refer to this transformation by
reduce : CFG x Node x Node — CFG. The summary statement
is obtained by analyzing the CFG a < b in isolation.

We observe that while o over the concrete domain is associative,
it is generally not the case for ©. Moreover, different orders of
applications yield incomparable results. In fact, the order in which
the reductions are performed plays an important role in the overall
result. When possible, left-associativity is preferred as it better
encapsulates a forward analysis and can leverage past information.

3.3 Multi-Target Inlining

Control-flow graph reductions, presented above, are one of the
building blocks of our compositional framework. The other one is
a mechanism for replacing method invocations by summaries, or
inlining, which we present here.

In our framework, inlining consists of replacing a call statement
by a summary for the corresponding code. The first step is to
identify the possible targets of the method call. Given that this
set is potentially unbounded because of unknown descendants in
the class hierarchy, one common approach is to assume that the
entire program is known (a closed world assumption). We leave that
assumption for now as a parameter to the analysis and adopt instead
an approach that relies on partial inlining: we associate the decision
of inlining a method call with a set of targets 7' C targets(o.m)
for which summaries are available. The special ”?” target, having
no implementation, can never be selected for inlining.

To ensure the validity of the partial inlining operation, we first
apply a semantic-preserving rewrite: we split the call edge, thus
making it explicit which fully determined (non-virtual) calls should
be inlined, and record the set of inlined targets in the original edge.
This intuitively amounts to annotating call edges with the targets
that have already been inlined. For instance, for a set of targets
T = {C1.m, Cz.m}, we get

@ r = 0.m(args) @

r = 0.m[C;y.m](args)

r = 0.m[C2.m](args)

r = o.m(T)(args)

For an annotated call edge r = o.m(T")(args), we can compute
its targets: targets(o.m) \ 7. The fully determined call edges are
here displayed for explanation purposes. In practice, we immedi-
ately replace them with their corresponding CFGs, properly ver-
sioned and surrounded with appropriate assign statements for the
arguments and return values:

r = o.m(T) (args)

If it is available, we can rely on abstract information on o to re-
fine the number of potential targets. By keeping the call statement
and recording inlined targets, we can perform this inlining oper-
ation before we reach a fix-point. We argue this by making two
observations:

e In the absence of precise information on the runtime type of
0, we may have to inline too many targets. Being an over-
approximation, it remains sound.

e If during the abstract interpretation the facts at a increase in
a way that include new potential targets for o.m, they will
be included semantically in the alternative edge and become
candidates for inlining. Consequently, the partial inlining does
not prevent the discovery of other potential targets at a later
stage.

In certain situations, we can conclude that we have inlined all
potential targets. In such cases, the alternative call edge becomes
infeasible and can be removed. This can happen either because the
exact type is known for the receiver, if some methods or classes
are known to be final, or we parametrize the analysis to assume a
closed world.

3.4 Combining Inlining and Reductions

We distinguish between two main kinds of summaries. A summary
that contains unanalyzed method calls is said to be conditional.
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class A { // .. continuing class A
def m1() {
val o = new A; def m3() { }
this.m2(o)
def f() { }

def m2(o: A) {
this.m3() class B extends A {
o.f() override def f() { .. }

Figure 2. Example of a chain of method calls.

In contrast, a definite summary is fully reduced, thus containing
a single edge with a summary statement.

There are in general multiple ways to generate a definite sum-
mary from a CFG, depending on the interleaving of reduction and
inlining operations. To facilitate the description of such interleav-
ings, we introduce the following notations:

l¢]stmts = CFG c reduced around statements stmts
Lefo
call

c1<{c2} := CFG ¢1 in which call is inlined with c2

reduce(c, c.entry, c.exit)

The CFG |[c]{s,,s,} Tepresents a reduction “down to” the
method calls s1 or s2. In other words, it represents the result of
applying reduction operations on c until the CFG contains only
edges with either summary statements or the specific call state-
ments s1 or sg. Consequently, we have that |c]y is the CFG with
one unique summary statement obtained after completely reducing

c. The inlining operator is defined as follows: co Z<C {c1, ca} repre-
sents the CFG co in which the call statement o.c has been inlined
using the CFGs c¢; and c2 (which corresponds to the targets of o.c
inferred given co).

We now illustrate the flexibility provided by our framework
through a simple example. The code for the example is displayed
in Figure 2.

Using the notation introduced above, we can describe several in-
terleavings. For instance, one way to generate a summary for A.m1
would consist of the following steps: first, we fully reduce A.m3,
A.e and B.e, we inline them in A.m2, reduce the result, inline it
in A.m1 and finally reduce it. This would represent a completely
modular approach, where summaries are reused as much as possi-
ble. The corresponding inlining/reduction interleaving is:

t1 = LA.m3J@

t2 = [Af]g

ts = [Bflg

o= [(Am2E (s, ts1) "< [t}
s o= [Am"<L ),

While being perhaps the most efficient way to compute a sum-
mary (since intermediate summaries t;...t4 are small, definite ef-
fects) it is also the least precise. Indeed, in this order, we have no
precise information on o at the time of inlining o.f() and thus we
have to consider every static target, leading to an imprecise sum-
mary, depicted here by having to inline both 2 and ¢3. In contrast,

we can instead perform the operations in the following order:

this.m2
ti = Aml < {Am2}
o.f
to = t1<~<{A.m2}
this.m3 o.f
s2 = |(t2 < {Am3}) <{Af}]y

Here s; is a fully precise summary of A.m1: at the time of
inlining the o.f() call we already have precise information on o.
On the other hand, this order forces us to deal with larger CFGs,
which can have an impact on performance. We can imagine a third
order, in which A.m2 is partially reduced early on:

t1 = LA.m3J@
this.m3
to = LA.m2 < {tl}J {of}
his.m2
ts = A.m].t < {tz}
ty, = LA.fJ@
o.f
s = [ts<{ta}]o

Depending on the size of A.m3, s3 may be much more efficient to
compute than so due to the early partial reduction. In this case, the
partial reduction does not alter the precision of the resulting effect.
We can see from this example that it will often be beneficial to delay
the analysis of some method calls, and handle others immediately.

3.5 Heuristic Based Delaying

We have seen through the examples above than choosing when to
inline a method summary can be difficult. We refer to the opposite
of inlining as delaying. The decision to delay or to inline is typically
based on a heuristic function h. Formally:

" _ { t < smrc(c) if 3e. - h(c,...)
741 — .
t; otherwise
smre(c) = {smry,(m)|m € targets(c)}
smr,(m) = |lfiz]{c| n(e,..)}

The precision and performance of the analysis are thus parametrized
in h(...). Fixing h(...) = true for instance forces the analysis to
delay every method call, leading to the analysis of the complete
CFG at the entry point. This results in a slow, but fully precise
analysis. On the other hand, having h(. ..) = false ensures that ev-
ery method is analyzed modularly, in a top-down fashion, leading
to an efficient but imprecise analysis.

3.6 Handling Recursion

We note however that the overall analysis needs to terminate. As-
suming the underlying abstract interpretation-based analysis does
terminate, we still need to ensure that the CFG does not keep chang-
ing, in other words, ¢ ;. must eventually be reached. For this rea-
son, we need to force h(...) = false whenever the analysis is
within a cycle in the call-graph.

Detecting recursion statically is non-trivial, especially in the
presence of callbacks. An attempt using a refined version of a class
analysis proved to be overly imprecise, flagging every higher-order
functions as recursive. For this reason, Insane discovers recursive
methods lazily during the analysis when closing a loop in the
progressively constructed call-graph. It then rewinds the analysis
until the beginning of the loop in the lasso-shaped call-graph in
order to handle the cycle safely.

It is worth noting that while the heuristic h is required to be true
within the cycle, we are free to decide to delay when located at the
boundaries of a cycle. It is in general critical for precision purposes
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to delay the analysis of the entire cycle as much as possible. When
analyzing a recursive cycle, we apply a standard fix-point iterative
process by setting all the summaries to L and building up effects
until convergence.

4. An Abstract Domain for Effect Analysis

In this section, we describe the relation abstract domain with which
we instantiate the framework described in the previous section.

We use as a basis the modular, graph-based representation of
effects introduced in [26], which we refer to as the WSR analysis.
We interpret these graphs as heap transformers, similarly to what
was presented in [17]. Adopting this view, these graphs fit the
description of an abstract domain that maps to relations in the
concrete domain. We refine this model to support strong updates
and extend it to be expressive enough to represent unbound local
variables.

Graphs are composed of nodes generally representing memory
locations. We distinguish three kinds of nodes: inside nodes are
allocated objects. Since we use the allocation-site abstraction for
these, we associate them with a flag indicating whether the node
is a singleton or a summary node. External or load nodes repre-
sent unknown fields. The general semantic of load nodes is that
they represent accesses to unknown parts of the heap. Finally, we
have nodes for unknown local variables, similar to the parameter
nodes introduced in the WSR analysis, but generalized to arbitrary
local variables. We also define two types of edges, both labelled
with a field. Write edges represented by a plain (solid) edge, and
read edges represented by dashed edges in the graph. Read edges
provide an access path to past or intermediate values of fields, and
are used for the resolution of load nodes. One of the main improve-
ments over the WSR analysis is that our write edges represent must-
write modifications as opposed to may-write. We describe below
how it alters the original analysis and argue that it increases preci-
sion while remaining sound. Along with the graph, we also keep a
mapping from local variables to sets of nodes.

A graph transformer is thus represented by the tuple

<Ni7leNU7E'r7Ew77T>

where N; C V is the set of inside nodes, IN; C V is the set of load
nodes and N,, C V is the set of local variable nodes. We define
N = N;UN;UN, to be the set of all nodes. E. C (N xFieldx N)
is the set of read edges, F,, C (NN x Field x N) is the set of
write edges. Similarly, we have £ = FE,, U E,. ™ encodes the
mapping between local variables and their value in terms of nodes:
7 € Vars — 2~ . We have the property that every local variable
is mapped to at least one node in 7.

4.1 Abstract Semantics

We now describe how we compute method summaries [C.m],, and
show that the abstract summaries are valid over-approximations of
the concrete semantics of the method:

y([C.m]a) e [C.m].

We start by providing semantics to simple statements of our ex-
tended language with summary statements, as depicted in Figure 3.
In order to simplify their specification, we define the following aux-

Statement Abstract Semantics
vV=w <Ni7leNv7Er7Ewa7T[n'_>7T(w)]>
£:v = new C alloc(i,v, C, £)

l:v=of read(i,v, 0, f,£)
Liof=v write(i, w(0), f, w(v), true, £)
[branch on v1..] branch(z,v1,..)
l:v =o0.m(al, ..., an) | call(i,v,0,m, (al,...,an),¥)
£: Smr(e) compose(i, e, £)

Figure 3. Extended program statements and their associated ab-
stract semantics.

iliary functions:

targ(n, f, E) = {m|n Hme E}
WTaLrg(n7 f) = targ(n, f, Ew)
rTarg(n, f) = targ(n,f, Er)

allTarg(n, f) = targ(n,f, EwUE;)

coalesce(s .
(51,52 so ifs1 =10

)
)
)
)
) = {51 if sy #10
)

wTrTarg(n, f) := coalesce(wTarg(n, f),

rTarg(n, f))

We provide the abstract semantics of each statement by speci-
fying its transfer function o = T (s)(4), where i is the tuple corre-
sponding to the incoming abstract value.

7= <N7,a Nl7N’U>E’V‘7Ew>7T>

We provide mostly informal descriptions of the mechanics of
each of the transfer functions.
Formal algorithmic descriptions can be found in appendix.

4.1.1 Lattice Join

We start by describing the join (LJ) operation, used notably when
combining the effects of two or more branches. In essence, the join
takes the union of all edges and nodes from incoming effects. One
notable exception is with respect to writes. In case a write operation
is performed only on one of the effects, and the write is made from a
node that is accessible in both, the update must become weak. For
instance, if the write is performed on an inside node that is only
allocated in one branch, the update can remain strong. On the other
hand, if the update is made to a load node and not in all branches,
the update becomes weak. Load nodes are introduced when needed
to represent past values.

Figure 4 shows an example of this classification of different
write operations. We join two effects both containing strong up-
dates. The strong update on a.f in (G; remains strong, since [ is
only accessible in GG1. On the other hand, Given that L, may be
accessible in both, the update of b.g becomes weak. We also see
that a load node is introduced to represent the old value of b.g.

4.1.2 Object Allocation

The transfer function for object allocation creates an inside node
and flags it as singleton by default. Depending on whether this node
already exists in the graph —an indication that at least two instances
from the same allocation site may co-exist, we replace that single-
ton node with a summary node. We illustrate the necessity of this
simple recency abstraction with the following example:

def f(i: Int) {
¢1: wvaro = new C;
while(i < 42) {
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&) @

Figure 4. Example of join operation on two effects containing
strong updates. Based on the context, strong updates become weak
when joining.

/\/L\

AN

Loy Loyt Lg) - Ly

3
. : £ f f
v A
@ ) ; @ Ly) (Ly)

\

Figure 5. Graph on the right is the result of applying v = o.f to
the graph on the left. When possible, reading uses write edges as
they represent more recent values. When nothing is available, load
nodes are introduced and associated to the label £.

The object allocated at ¢; is never contained in the incoming
facts, and thus remains a singleton node. For /2, it is first created as
a singleton node during the first loop iteration. In the second loop
iteration, the corresponding node is found in the incoming facts,
and is replaced by a summary node. At the end of the function, o
either points to the singleton node from ¢; or to the summary node
from /5.

4.1.3 Reading Fields

In order to handle the statement v = o.f, we look for existing targets
starting from every node representing the value of o. When looking
for targets of a certain field, we privilege write edges over read
edges, as they point by construction to more recent values. In case
no write edge exists, we look through read edges for a potential
value. In the absence of read edges, we introduce a load node to
represent this unknown value. Finally, we modify 7 so that v points
to the set of discovered targets. Figure 5 shows an example of the
modifications performed to handle a read statement, providing an
example of all the access scenarios explained above.

4.1.4 Writing Fields

One of the main improvements of our analysis compared to previ-
ous iterations is its optimistic (and sound) handling of strong up-
dates. The key observation here is that an update may often be con-
sidered as strong even if the set of objects to which it is applied
is unknown at the time. Basically, it considers an update as strong
as long as possible until it is forced to be weak. Additionally, even
though the updates may end up being weak when applied in a con-
crete context, they are often locally strong, allowing us to discard
intermediate values and simplify effect summaries.

9 v
Ly W5

fo Lf If
/*\ : /*\
(1) L) L)

Figure 6. Applying the effect of o.f = v in a context that permits
strong updates. However, the old value cannot be entirely discarded
since an existing load node might be referencing it, depending on
aliasing.

/ N

We decompose the transfer function for o.f = v into multiple
cases, depending on the environment. First, we check if the update
can be strong, this is given by

strong = 7(0) = {n} A —~isSummary(n)

where isSummary() returns true for inside nodes that are not
singleton nodes. It is worth noting that we also allow strong updates
on load nodes.

Strong updates. In case an update can be strong, we check
whether its old value should still be reachable via read edges, this
is given by

keep = dn € LN . n.field = f

In such cases, the intermediate values of a field need to be reachable
via read edges in order to ensure that the existing load nodes can
be resolved correctly. The following code example illustrates this
necessity:

def f(ol: A, 02: A) {
l1: ol.f=vl,
lo: ol.f=v2
l3: val tmp = 02.f;
ly: ol.f=v4

}

In /2, the old value v2 completely overwrites v1, and v1 is no longer
reachable via o.f. However, when updating ol.f in {4, a load node
on the same field exists from /3, potentially referring to ol.f if ol
and o2 turn out to be aliases. For this reason, the write at ¢4 need
to make sure that the intermediate value v2 is reachable via ol.f
using read edges, allowing the load node to be resolved to that
intermediate value later on. It is worth noting though that only v4
is reachable via write edges from o1, indicating that it is the only
value that may remain assigned to ol.f after £4.

An example of a strong update for which the old value must be
preserved is illustrated in Figure 6. We can see that the conditions
for a strong update are met. Also, we notice that the load node
L might alias /> depending on aliasing between L, and I;. For
this reason, /o must be still be reachable via I;. This allows L
to be resolved correctly in case L, and I; turn out to be aliases
later on. However, the update remain strong. As a result, o.f points
exclusively to I3 after this update.

Weak updates. The handling of weak updates is more compli-
cated, as it needs to keep the old value around even if it is unknown.
This is done by introducing a load node when necessary. We first
follow write edges and then read edges to find old values. It is worth
noticing that, as expected, previous values cannot be overwritten
when performing a weak update.

Figure 7 gives an example of a situation where a weak update is
inevitable. Load node L is introduced to represent the old value of
the field fon L,.
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Figure 7. Applying the effect of o.f = v in a context that does not
permit strong updates. Load nodes representing the old values are
introduced when needed.

4.1.5 Handling Branches

We can handle multiple kinds of branches precisely. This allows
us to filter effects depending on the conditions, or even rule out
unfeasible paths. The main categories of branches we handle are
type checks and reference equalities.

Type checks. Type checks are commonly used by pattern match-
ing, an ubiquitous feature of Scala. It is in practice important to han-
dle type checks precisely, allowing us to rule out impossible effects
early. When performing type checks, we not only check whether
the path is feasible or not, but also filter the nodes accordingly. The
statements we handle here are of the kind: o.islnstanceOf[T]. The
transfer function filters 7(0) and retain only nodes which type is
compatible with 7, that is

r={n|n &€ n(o) ANtype(n) T # L}

where 1 is the greatest lower bound of the two types. If r = 0,
the branch is considered to be impossible, the resulting effect is L.
Otherwise, we update 7 to w[o — 7).

Reference equalities. Insane also handles equality constraints
on branches, such as vl = v2 or vl != v2. Here again we check
whether, based on the types of the nodes of v1 and v2, the branch is
feasible. If all the nodes of v1 are incompatible with all the nodes
of v2, the branch becomes impossible, and consequently _L is re-
turned.

4.1.6 Composing Summaries

Composing effects is one of the central feature of this analysis as
it is required both by the interprocedural aspect of the analysis,
and to handle summary statements, generated by the reductions in
the analysis framework. Effect composition G; ¢ G2 is handled by
merging the graph G2 within G1. We thus identify G2 as the inner
graph, and G as the outer graph.

When merging graph, we also provide an initial map identifying
an equivalence relation between nodes from the inner graph and
nodes from the outer graph. This map, initially incomplete, expands
during the merging process. The procedure can be summarized
informally by Algorithm 1.

Algorithm 1 Composing Summaries
1: function COMPOSE(Z, 0, m, £)

2: <40

3 importInsideNodes()

4 repeat

5 resolveL.oadNodes()
6: apply Writes()

7 until r did not change

8 return r

9: end function

result,

inner outer

Figure 8. Merging a graph with load nodes and strong updates in
a context that does not permit a strong update. Inside nodes are
imported after refining their label. As usual, the load nodes repre-
senting old values for weak updates are introduced when necessary.

Importing inside nodes. In order to import an inside node node
from the inner graph, we first refine the label representing its allo-
cation site. We do this by composing its label with the label rep-
resenting the point at which we compose the effects. This operator
allows the composition of distinct labels in order to distinguish the
same node being inlined at distinct places. This allows for instance
to precisely handle multiple calls to a factory method.

We define composition operator over labels: &. We in fact inter-
pret labels as multisets and define & as & with bounded multiplicity
as follows:

b @ ly =1y sit. Vo € 6y ULy . lp(z) = min(l1(z) + £2(x), M)

M is given as a parameter of the analysis. Having M > 1 allows
to refine the analysis of certain loops and recursive methods. It
however has exponential cost. Note that when M = 1, our labels
become simple sets and & becomes U. When M = 0, we define &
as

L@l =10

It looks in the outer graph if a similar node already exists, in which
case it makes sure that it becomes a summary node. This is similar
to what is done in order to handle object allocation.

Once the refined label is determined, we check that we do not
import a singleton node in an environment in which it already
exists. In such case, the node is imported as a summary node. This
mimics the checks performed by the transfer function for object
allocation.

Resolving load nodes. Another important operation when merg-
ing two graph is the resolution of load nodes from the inner graph
to nodes in the outer graph. The procedure works as follows: for
each load node we look at all its source nodes, by following read
edges in the opposite direction. Note that the source node of a load
node might be a load node itself. In this case, we recursively invoke
the resolution operation. We then obtain all the nodes in the outer
graph corresponding to the source nodes.

The resolution follows by performing a read operation from the
corresponding source nodes in the outer graph. As described in
Section 4.1.3, reading may create additional load nodes, and returns
the set of targets. Once a load node is resolved to a set of nodes in
the outer graph, the map is updated to reflect this.

Applying write effects. Given the map obtained by resolving load
nodes, we apply write edges found in the inner graph to correspond-
ing edges in the outer graph. Again, we need to make sure that a
strong update in the inner graph can remain strong, given the outer
graph and the map.
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4.1.7 Method Calls

In order to analyze a method call, we need to distinguish whether
we are within a cycle in a call-graph, or not. Either way, we start
by computing the call context, as described in Section 4.2. This
context is then used to specialize the analysis of the potential targets
of the call.

Recursive calls. 1In case recursion is detected, meaning that the
current call happens within a cycle in the call graph, we check
whether the number of target is not too big. In practice, we consider
this upper limit to be 50. We argue that effects would become
overly imprecise anyway once we exceeds this many targets for
a single call. In such cases, the effect becomes T immediately.
Otherwise, each target is analyzed independently until a fix-point
is reached. Note that, by construction, we always obtain a definite
summary from analyze,, ().

Non-Recursive calls. In the case of non-recursive call, we query
the heuristic to check whether, depending on the current facts,
we should delay the analysis of the method call. We can imagine
different ways to estimate the benefits from delaying. In practice,
we not only use the number of targets, but we also check whether
o escapes, indicating that the number of targets might shrink when
delaying.

If the heuristic decides to delay the analysis, the effect that
flows out of this analyzed method is stripped from anything that
might be modified by the call itself. We conservatively assume
that the unanalyzed call might modify every mutable fields. The
stableEffectsOf function consequently removes effects on muta-
ble fields, as they might relay information that is invalidated by the
call.

In case the analysis is not delayed, we check whether one of the
summary is conditional. In such cases, we perform the inlining de-
scribed in Section 3.3 after having properly renamed and versioned
the conditional summary. If all summaries are definite, we merge
them within the current effect using the composition operator. Of
course we map variables such as parameters accordingly.

Finally, we join the effects obtained from multiple targets using
the lattice join operation described in Algorithm 4.1.1.

Algorithm 2 Calling methods

1: function CALL(Z, v, 0,m, (al,...,an), £)
2: ctx = Ctx(o0, a1, ...,an)

3 targets = targets of o.m
4 if within recursion then
5: if too many targets then
6: return T
7: else
8: smrs = {analyze,, (f,ctx) | ¢ € targets}
9: end if
10: else
11: ifh(o.m,...) then
12: return stableEffectOf (in)
13: else
14: smrs = {analyze(t, ctx) | t € targets}
15: if 3s € smrs . s is conditional then
16: Interrupt analysis and inline CFGs of smrs
17: end if
18: end if
19: end if
20: return | [{inos|s € smrs}

21: end function

4.2 Context Sensitivity

Using relational summaries already gives us a powerful form of
context sensitivity, but it is not always sufficient in practice. In order
to analyze recursive methods precisely, Insane needs to implement
an additional form of context-sensitivity, associating different rela-
tional summaries based on the call context. We implemented this
context-sensitivity by identifying methods by a tuple (C.m, ctx)
where ctx corresponds to the call context. In order to describe our
contexts, we first introduce a notion of type signature which is re-
cursively defined by:

TypeSig := Typelnfo x 2Fie|ds><TypeSig

Typelnfo := Type x Boolean

Type signatures represent type information about a particular
object. They not only give information about the type of the object
itself, but can also provide a type signature for some of its fields.
Each type information is annotated with a flag, indicating whether
subtypes should also be considered in order to distinguish - T T
and - = T. We define the depth of a type signature to be the
maximum depth until no field information is specified:

depth(s) := 1+ max {0} U {depth(sy) | (f,ss) € s.fields}

We also introduce TypeSig,; C TypeSig to represent signatures
of maximum depth d. The call context of each method belong to
the domain TypeSig}f’" where n is the number of its arguments.
In other words, the calling context is composed of type signatures
of maximum depth d for its receiver and each of its arguments.

4.3 Application to the Analysis of Real-World Scala Code

Analyzing real-world Scala code adds practical complications that
were not directly embedded into the target language described in
Section 3.1 and thus not originally accounted for. We here list
several of these complications and explain how we handled them.

Java dependencies. The Scala library depends heavily on the
Java library, it is thus crucial for our analysis to handle Java code as
well. While the Scala compiler does not compile Java source-code,
it provides an utility to read Java byte-code into one of its interme-
diate representation used later in the pipeline. We were able to con-
vert this stack-based intermediate representation into our CFGs, al-
lowing us to analyze the Java dependencies. However, due to tech-
nical limitations in this utility, some Java classes fail to parse and
thus not all dependencies are available. In such cases, the method
calls to those unknown dependencies get delayed, just like impre-
cise method calls, and eventually yield conditional summaries.

Native code. Having access to all Java dependencies in the avail-
able jar files is not be sufficient to completely analyze the Scala
library. Indeed, both the Java and Scala library rely on classes that
are implemented as native (C) libraries, or by the JVM itself. This
is the case for instance for arrays. In order to handle them cor-
rectly, Insane relies on custom, stub implementations for these na-
tive classes and methods: it intercepts the calls to native methods
and redirects them to the stub implementations. Arrays for instance
are implemented as an instance of a class containing one field act-
ing as a store. Writing to the array becomes a weak update on that
store. (We thus do not distinguish between two elements stored at
different array indices.) This store field is notably apparent in Fig-
ure 12 as store. As an illustration, we provide the skeleton of the
stub implementation for arrays:

class ArrayStub[T](val length: Int) {
var store: T = _
def update(i: Int, v: T) = if (?) { store =v } else { }
def apply(i: Int) = store
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Exceptions. Accounting for exceptional flow is a challenging
precision problem as it typically clutters the CFG with several
edges to exception handlers. Scala has no checked exception and
thus its compiler provides no information on which exceptions a
method call might throw. We decided to ignore exceptional flow
in this version of our analyzer. We are thus in general unsound in
the presence of exceptions. Currently, throwing an exception in one
branch results in a bottom effect, indicating an impossible branch.
This is consistent with the view that the results should be valid for
non-exceptional executions.

Specialization for literal values. 1t is also worth noting that In-
sane specializes Integers and Boolean types in order to distinguish
between different literal values. Consequently, graphs can contain
nodes representing AnyInt as well as IntVal(n) Vn € Int. This
specialization is both at the node and type level, we thus have that:

type(BoolVal(true)) M type(BoolVal(false)) = L

This is especially useful for boolean values, as it allows us to filter
branches protected by unsatisfiable boolean conditions.

5. Producing Readable Effect Summaries

We have demonstrated that summaries based on control-flow
graphs are a flexible and expressive representation of heap mod-
ifications. They are, however, typically not suitable as such as feed-
back to provide to programmers: they capture both read and write
effects, while users are presumably interested primarily in writes.
They can expose memory cells that are allocated in a method and
do not participate directly in an effect. Perhaps most importantly of
all from a usability point of view, they are not in textual form.

To improve the usefulness of the analysis for program under-
standing purposes, we aim to describe effect summaries of methods
in a concise and textual manner. We found regular expressions to be
suitable, as they are a common tool to describe potentially infinite
sets of strings. We show below how to construct a regular expres-
sion from a definite summary, and highlight the main differences in
terms of expressive power.

For definite summaries, a graph-based effect is available that
summarizes the method. The graph not only describes which fields
can been modified, but also to which value they can be assigned. On
the other hand, the corresponding regular expression only describes
which fields could be written to. The task therefore reduces to gen-
erating a conservative set of paths to fields that may be modified.
We construct the following non-deterministic finite state automaton
(Q,%,0,q0,{qs}) based on a graph effect G:

Y = {f|v1i>vzeGAE}
§ = G.EU{q > n|n€G.V Aconnecting(n)}

U{vlgqﬂm i)’UQGG.[E/\
v1 is not an inside node}

The NFA accepts strings of words where “letters” are names
of the method arguments and field accesses. Given an access path,
o.f1.fa.- -+ .fn—1.fn, the NFA accepts it if f, might be modified
on the set of objects reached via o.f1.f2. - .frn—1. We exclude
writes on inside nodes, as they represent writes that are not be ob-
servable from outside, since the node represents objects allocated
within the function. From the NFA, we produce a regular expres-
sion by first determinizing the automaton, then minimizing the ob-
tained DFA, and finally applying a standard transformation into a
regular expression by successive state elimination. We found the
passage through DFA and minimization to be very important for
the conciseness of the final expression. As an illustration, the reg-

ular expression for TreeSet in Figure 12 originated from an effect
graph with 14 nodes. The corresponding NFA has 10 nodes, and
so does the non-minimal DFA. The minimal DFA has 5 nodes and
translates into the compact regular expression as shown in the fig-
ure.

For a conditional summary, we extract the set of unanalyzed
method calls, then compute a (definite) effect assuming that they
are all pure, and present the corresponding regular expression along
with the set of calls. The natural interpretation is that the regular
expression captures all possible writes under the assumption that
no function in the set has a side effect.

Section 6.3 and in particular Figure 12 below show some of the
regular expressions that were built from our analysis of collections
in the standard Scala library.

6. Evaluation

We implemented the analysis described in the previous sections as
part of a tool called Insane. Insane is a plugin for the official Scala
compiler.

6.1 Overall Results

To evaluate the precision of our analysis, we ran it on the entire
Scala library, composed of approximately 58’000 methods at our
stage of compilation. We believe this is a relevant benchmark: due
to the functional paradigm encouraged in Scala, several methods
are of higher-order nature. For instance, collection classes typically
define traversal methods that take functions as arguments, such
as filter, fold, exists, or foreach [21]. It is worth noting that we
assumed a closed-world in order to analyze the library. Indeed,
since most classes of the library are fully extensible, analyzing it
without this assumption would not yield interesting results. Given
that even getters and setters can in general be extended, most of
effects would depend on future extensions, resulting in almost no
definite summary.

We proceeded as follows: for each method, we analyzed it us-
ing its declaration context and classified the resulting summary as
a member of one of four categories: if the summary is definite, we
look for observable effects. Depending on the presence of observ-
able effects, the method is flagged either as pure or impure. If the
summary is conditional, we check if the effect would be pure under
the assumption that every remaining (delayed) method call is pure.
In such cases, the effect is said to be conditionally pure. Otherwise,
the effect is said to be impure. Lastly, an effect can be rop if either
the analysis timed out, or if more than 50 targets were to be inlined
in a situation where delaying was not available (e.g. recursive meth-
ods). We used a timeout of 2 minutes per function. We note that
while these parameters are to some extend arbitrary, we estimate
that they correspond to reasonable expectations for the analysis to
be useful. The different categories of effects form a lattice:

pure C conditionnally pure C impure C T

Figure 9 displays the number of summaries per category and
per package. We can observe that most methods are either pure or
conditionally pure, which is what one would expect in a library that
encourages functional programming.

Overall, the entire library takes short of twenty hours to be
fully processed. This is mostly due to the fact that in this sce-
nario, we compute a summary for each method. Thanks to its mod-
ularity though, this analysis could be used in an incremental fash-
ion, reanalyzing only modified code and new dependencies while
reusing past, unchanged results. Depending on the level of context-
sensitivity, past results can be efficiently reused in an incremental
fashion and allow the analysis to scale well to large applications.
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Package Methods | Pure | Cond. Pure | Impure T
scala 5721 | 79% 11% 10% 1%
scala.annotation 41 | 93% 2% 2% 2%
scala.beans 25 | 64% 8% 28% 0%
scala.collection 5182 | 52% 28% 17% 4%
scala.collection.concurrent 608 | 40% 19% 37% 4%
scala.collection.convert 1106 | 62% 23% 13% 1%
scala.collection.generic 649 | 61% 22% 12% 5%
scala.collection.immutable 6027 | 58% 13% 23% 6%
scala.collection.mutable 7263 | 48% 18% 29% 5%
scala.collection.parallel 13842 | 36% 13% 37% | 14%
scala.collection.script 132 | 86% 1% 13% 0%
scala.compat 9 | 22% 33% 44% 0%
scala.io 546 | 47% 11% 40% 2%
scala.math 1847 | 67% 28% 5% 0%
scala.parallel 39 | 77% 23% 0% 0%
scala.ref 113 | 58% 3% 39% 0%
scala.reflect 5862 | 50% 9% 40% 1%
scala.runtime 1620 | 61% 25% 14% 1%
scala.sys 767 | 44% 22% 30% 4%
scala.testing 44 | 52% 2% 43% 2%
scala.text 115 | 87% 0% 11% 2%
scala.util 1786 | 51% 11% 32% 6%
scala.util.parsing 2206 | 56% 12% 27% 5%
scala.xml 2860 | 56% 11% 30% 3%
Total: 58410 | 52% 15% 27% 6%

Figure 9. Decomposition of resulting summaries per package.

6.2 Comparative Analysis

To motivate some of the key features of Insane, we analyzed parts
of the Scala library in three different settings: 1) the default con-
figuration and strategy that ship with Insane 2) disabled context-
sensitivity 3) delaying and context-sensitivity both disabled. We
analyzed a representative subset of the Scala library, namely all
mutable and immutable collections, under the three analysis con-
figurations.

Figure 10 displays the decomposition of effects for each of the
analysis settings. First of all, we can see that the default configu-
ration used by Insane is more precise than the alternatives. Indeed,
it produces the largest number of purity guarantees. This precision
has a cost though: it is also the slowest configuration. In the second
configuration, Insane without context sensitivity, we can first notice
that while it produces a smaller number of definite-pure guarantees,
it is also able infer a lot of conditionally pure methods. However,
the quality of those conditional summaries is likely to be worse than
for the first setting, resulting in assumptions that probably does not
hold in practice. By comparing to the default Insane, we even see
that some of the conditionally pure are in fact most likely impure,
but that additional precision is required to figure this out. The re-
sults for the third configuration need to be interpreted with care. In
this setting, delaying is not permitted. As a result, methods relying
on higher order functions are in general misclassified as impure. In
fact, we see that more than 50% of the methods are considered to
be impure when running the analysis in this configuration.

6.3 Selected Examples

In order to demonstrate the precision of the analysis, we now take
a closer look at a few methods relying on the library, for which the
pre-computed summaries can be reused in order to efficiently pro-
duce precise results. We targeted five collections, two immutable
ones: TreeSet and List, and three mutable ones: HashSet, LinkedList
and

Default
53 15 24 \ B:

No CS

33 o 5
No delaying,
no CS

46 45 9

D Pure D Cond. pure D Impure D Top

Figure 10. Comparing strategies. Numbers below boxes are per-
centages. Running times are 166, 123 and 57 minutes respectively.

ArrayBuffer. For each of these collections, we performed four
standard operations: 1) Generic Traversal: calling foreach with an
arbitrary closure 2) Pure Traversal: calling foreach with a pure clo-
sure 3) Impure Traversal: calling foreach with a closure modify-
ing the collection elements and 4) calling a “grow” operation that
builds a larger collection, either by copying and extending it for im-
mutable ones, or by modifying it in place otherwise. The method
used to grow depends on what is available in the public interface
of the collection, e.g. add, append or prepend. As an illustration,
Figure 11 shows functions corresponding to these four operations
when applied to a TreeSet.

The resulting effects are converted into a readable format, as
described in Section 5 and displayed in Figure 12. We note that
producing these regular expressions takes in each case under 5
seconds. First of all, we can see that all pure traversals are indeed
proved pure and have no effect on the internal representation of
the collections. Also, we are often able to report that a generic
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class Elem(val i: Int) {
var visited = false

}

def genTrav(es: TreeSet[Elem], f: Elem = Unit) = es.foreach(f)
def pureTrav(es: TreeSet[Elem]) = es.foreach { e = () }
def impureTrav(es: TreeSet[Elem]) = es.foreach { _.visited = true }

def grow(es: TreeSet[Elem], e: Elem) = es + e

Figure 11. Using a TreeSet collection in four different ways.

traversal has no effect on the collection assuming the closure passed
is pure. The exceptions are the generic traversals of TreeSet and
ArrayBuffer. In these two cases, the computed effect is T, due to the
fact that their respective traversal routines are implemented using
written using a recursive function. Without the ability to delay, we
cannot produce a conditional summary and thus T is returned. We
can see however that thanks to context sensitivity, we are able to
obtain precise results when the closure is determined.

In the cases of impure traversals, the effects correctly report that
all elements of the collections may have been modified. Addition-
ally, they uncover the underlying implementation structures. For
example, we can see that the HashSet class is implemented using a
flat hash table (using open addressing) instead of the usual array of
chained buckets. It is worth noting that TreeSet is implemented us-
ing red-black trees. For mutable collections, growing the collection
indeed has an effect on the underlying implementation. Growing
immutable collections remains pure since the modifications are ap-
plied to the returned copy only.

Overall, we believe such summaries are extremely useful, as
they qualify the impurity. In almost all cases, the programmer can
rely on the result produced by Insane to conclude that the collection
itself will not be affected by changes.

7. Related work

Our goals stand at the crossroad of two long-standing, fundamental,
problems: on one hand, effect analysis and the related problem
of alias analysis [7, 9, 16, 20, 24, 30] and on the other hand the
question of control-flow analysis [28], originally developed for
analyzing functional programs. While we have so far focused most
of our efforts on ideas adopted from the first category, we hope in
the future to be able to incorporate recent insights from the latter
[19].

The analysis domain presented in this paper builds on the work
of Salcianu, Rinard and Whaley [26, 27, 31], who used graphs to
encode method effect summaries independently from aliasing re-
lations. The elements of this abstract domain are best understood
as state transformers, rather than sets of heaps. This observation,
which is key to the applicability of the generic relational framework
described in Section 3, was also made by Madhavan, Ramalingam,
and Vaswani [17], who have formalized their analysis and applied
it to C# code. The same authors very recently extended their analy-
sis to provide special support for higher-order procedures [18]. An
important difference with our work is that [18] summarizes higher-
order functions using only CFGs or a particular, fixed, normal form:
a loop around the un-analyzed invocations. Because our analysis
supports arbitrary conditional summaries, it is a strict generaliza-
tion in terms of precision of summaries. Another distinctive feature
of our analysis is its support for strong updates, which is crucial
to obtain a good approximation of many patterns commonly found
in Scala code. In fact, the reduction of CFGs to normal form in

[18] relies on graph transformers being monotonic, a property that
is incompatible with strong updates. Finally, our tool also produces
regular expression summaries, delivering results that can be imme-
diately useful to programmers.

The idea of delaying parts of the analysis has been explored
before in interprocedural analyses to improve context-sensitivity
[10, 32] or to speed up bottom-up whole-program analyses [14].
Our work shows that this approach also brings benefits to the
analysis of programs with callbacks, and is in fact critical to its
applicability.

Our analysis masks only effects that can be proved to be per-
formed on fresh objects in given procedure call contexts. A more
ambitious agenda is to mask effects across method calls of an ab-
stract data types, which resulted in a spectrum of techniques with
different flexibility and annotation burden [1, 2, 4-6, 8, 12, 15, 23].
While analysis is fully automated, we expect it could still benefit
from the work in the area of encapsulation, information hiding, and
representation independence.

Separation logic [3, 11] and implicit dynamic frames [22, 29]
are two popular paradigms for controlling modifications to heap
regions. We note that effect analysis is a separate analysis, whereas
separation logic analyses need to perform shape and effect analyses
at the same time. This coupling of shape and effect, through the no-
tion of footprint, makes it harder to deploy separation logic-based
analyses as lightweight components that are separate from subse-
quent analysis phases. Moreover, the state of the art in separation
logic analyses is such that primarily linked list structures can be
analyzed in a scalable way, whereas our analysis handles general
graphs and is less sensitive to aliasing relationships.

The importance of conditional effects expressed as a function of
arguments has been identified in an effect system for Scala, which
requires some type annotations and is higher-level, but provides
more control over encapsulation [25]. The resulting system is fully
modular and supports, e.g. separate compilation. In the future, we
expect to be able to use Insane as an automated annotation engine
for the effect system of Rytz et al., thus alleviating the bootstrap-
ping problems that come with the annotation requirements.

8. Conclusion

We have presented a generic framework for relational effect anal-
yses. Our framework is designed to support various strategies, al-
lowing analysis designers to experiment with trade-offs between
precision and time. We have also presented the key features of an
abstract domain designed to track read and write effects on the
heap. Combining our generic framework with this abstract domain,
we have developed an effect analysis for Scala programs and have
evaluated it on the entire Scala standard library, thus producing a
detailed breakdown of its 58K functions by purity status. Finally,
we have proposed a technique to produce human-readable sum-
maries of the effects to make them immediately useful to program-
mers. We have shown that these summaries can concisely and nat-
urally describe heap regions, thus producing feedback that conveys
much more information than a simple pure/impure dichotomy. In-
sane works on unannotated code and can thus readily be applied to
existing code bases.
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A. Additional Algorithms
A.1 Object Allocation

Algorithm 3 Allocation: £ : v = newC'

1: function ALLOC((N;, Ni, Ny, Ey, Ey,m),v,C, £)
2 n. = tnode(C, £, summary)

3 n1 = inode(C, £, singleton)
4 if n1 € N; then

S5: = Nk
6

return (N;jjn1  —  n.,N, Ny, Er[m

ny], Bw[ni = n., 7o = n.])
7: else if n. € N; then

8: return (N;, Ni, Ny, E, By, w[v — nu])

9: else

10: return (N; U {n1}, N;, Ny, Er, Ey, 7[v — n4])
11: end if

12: end function

—

A.2 Field Reads

Algorithm 4 Reading: £ : v = o.f

1: function READ(({N;, Ni, Ny, Er, Ew, ), v, 0, f,£)

2: E’new - @

3: Nnew = @

4: targs =

5: for n € m(0) do

6: targ = wTrTarg(n, f)
7: if targ = () then

8: ne = loadNode(f,{)
9: Enew = Enew U {n J, ne}
10: Nnew = Npew U {'I’L/}
11: targ = {n.}

12: end if

13: targs = targs Utarg

14: end for

15 return (N;, N; U Npew, No, Br U Enew, Buw, v —

targs])
16: end function

A.3 Field Updates

Algorithm 5 Writing Fields: £ : o0.f = v

1:
2:

3
4
5:
6:
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:

29:
30:

function WRITE(in, os, f, vs, allowStrong, £)
<Ni7Nl7NU7E’I"7Ew77T> =1n
strong = allowStrong Aos = {n} A—isSummary(n)
if strong then
keep =3in € N; . In.field = f
old = wTargets(o, f)

writes = {oiﬂt\t € vs}

if keep then

reads = E, U old
else

reads = E,
end if

return (N;, Ni, N,,, reads, (E,, Uwrite) \ old, 7)
else

Er,new = @
Ew,new - @
NrLew = Q)

for n € m(0) do
old = wTrTargets(o, f)
if old = () then
ne = loadNode(f, £)

Er,new - Er,new U {’I’L i) ’I’L[}
Nnew = Nnew U {né}

old = {ne}
end if
Evnew = Fwnew U {n A |z € oldUvs}
end for
return <Ni7Nl u Nnew,Ny,Er U Er,new,Ew U
Ew,new,“’)
end if

end function

A.4 Branch Filtering

Algorithm 6 Checking types: [v <: t]

1:
2
3
4:
5:
6.
7
8:
9:

10:

12:
13:

function BRANCH({N;, Ni, Ny, By, By, 7),v,T)
=0
for n € w(v) do
if (type(n) Mt) # L then
N =NU{n}
end if
end for
if N = () then
return |
else
return (N;, N, N, E,, By, w[v — NJ])
end if
end function
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Algorithm 7 Checking equalities: [v1 = v2] Algorithm 10 Composing summaries: Smr(inner)

1: function BRANCH({N;, N;, Ny, Ey, By, ), v1,v2) 1: function COMPOSE(outer, inner, £)
2: ifIn; € m(v1), ne € m(v2) . (type(ni)Mtype(na)) # L 2 if (outer U inner) = T then
then 3 return |
3: return (N;, Ni, Ny, E,, E,,, ) 4 else
4 else 5: map; = 0
5: return | 6: for n € inner.\N, do
6: end if 7 mapy = map1[n — outer.w(n.ref)]
7: end function 8: end for
9: (res, map2) = merge(inner, outer, mapi, £)
10: Tnew = T'E€S.T
A.5 Load Nodes Resolution 11: for (r — ns) € inner.w do
12: Tnew = Tnew | — J{map2(n) | n € ns}]
Algorithm 8 Resolving load nodes 13: end for
- — 14: return res[m — Tpew)
1: function RESOLVE(outer, n, visited, ) 15: end if
z f=mn.field 16: end function
3: innerFrom = {n1 | n1 Jon € outer.E,}
4: fromNodes = ()
5: result =0 Algorithm 11 Merging graphs
6 for ?n.E .mnerFrom dp . 1: function MERGE(outer, inner, map, £)
7: if in is load node A in ¢ visited then 9 for n € inner.N; do
8: (outer, ons) = resolve(in, visited U {in}) 3. (outer, n;) = mergel Node(outer, n, £)
%: else . 4: map = map[n — {n;}]
10: ons = map(in) s. end for
11: end if 6 repeat
12: fromNodes = fromNodes[in — ons] 7. old = (outer, map)
13: end for o )
14: for (in — ons) € fromNodes A on € ons do 8: for _(ZI. - i2) € inner.Er do
15: pointed = targ(on, f, outer.E) 9: if i1 is load node then
16: if pointed = () then 10: (outer, 018) = resolve(outer, iy, {i1}, )
17: ne = loadNode(f,n. ® ) 11 else )
18: outer = outer|E, — outer.E, U {on 4, ne}| g endoi}'s map(ix)
19: outer = outer[N; — outer.N; U {n,}| 14: if 15 is load node then
20: result = result U {ne} 15: (outer, 028) = resolve(outer, iz, {iz2}, £)
21 else ) 16: else
22: r.esult = result U pointed 17: 025 = map(iz)
23 end if 18: end if
24: end for f
25 return (outer, result) 19: outer = outer[E, — outer.E, U {01 =
26: end function 02|01 € 015 Aoz € 025}
20: end for
21: wr =
A.6 Tmporting Inside Nodes 22: for o, EN 02 € inner.Ey, An1 € map(o1) Ang €
map(o2) do
23: wr = wr((n, f) = (wr((n1, f)) U{(n2,01)})]
Algorithm 9 Merging inside nodes 24: end for
1: function MERGEINODE((N;, Ni, Ny, By, Eu, ), 1, £) 25: for ((n1, f) — tos) € wr do
2: n. = inode(n.type, n.L & ¢, summary) 26: (n2s, 018) = tos.unzip
3: ny1 = inode(n.type,n.t & £, singleton) 27 allowStrong = Vo € o1s . [map(o)| = 1
4: if n1 € outer.N; then 28: env = write(env, {n1}, f,n2s, allowStrong, £)
5: return ((N;[n1  — 1), Ni, Ny, Er[n1 — 29: end for
n+], Bw[ni — n.], 7, N.) 30: until old == (outer, map)
6 else if n.. € outer.N; then 31: end function
7: return ((N;, Ni, Ny, E,, By, ), Ny)
8 else if isSummary(n) then
9: return ((N; U {n.}, Ni, Ny, E,, By, ), N.) A.8 Calling Methods
10: else
11: return ((N; U {ni}, N;, Ny, Ey, Ey, ), N1)
12: end if

13: end function

A.7 Composing effects
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Algorithm 12 Calling methods

1: function CALL(in, v,0,m, (al,...,an), £)

2:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

A A

targets = findTargets(in.mw(0), m)
smrs =10
ctx = Ctz(o,ai, ..., an)
if withinRecursion() then
if |targets| > T then
return T
else
smrs = {analyzeyiz(t, ctx) | t € targets}
end if
else
if h(in, o, targets) then
Delay the analysis of this call.
return stableE f fectO f (in)
else
smrs = {analyze(t, ctz) | t € targets}
if s € smrs . s is Conditional then
Interrupt analysis and inline CFGs of smrs
end if
end if
end if
res =10
for s € smrsdo
map, = CreateMap(v, o, (a1, ...an))
(cff, mapz) = merge(in, s, maps. )
oRet = {o]1i € s.m(s.ret) Ao € mapz(i)}
eff=efflmr — ef f.r[v — oRet]]
res=resUeff
end for
return | |res

31: end function
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