
Path processing using Solid State Storage

Manos Athanassoulis‡∗ Bishwaranjan Bhattacharjee� Mustafa Canim� Kenneth A. Ross�§

‡École Polytechnique Fédérale de Lausanne �IBM Watson Research Labs §Columbia University
manos.athanassoulis@epfl.ch {mustafa, bhatta, rossak}@us.ibm.com kar@cs.columbia.edu

ABSTRACT
Recent advances in solid state technology have led to the introduc-
tion of Solid State Drives (SSDs). Todays SSDs store data persis-
tently using NAND flash memory. While SSDs are more expensive
than hard disks when measured in dollars per gigabyte, they are
significantly cheaper when measured in dollars per random I/O per
second. Additional storage technologies are under development,
Phase Change Memory (PCM) being the next one to enter the mar-
ketplace. PCM is nonvolatile, it can be byte-addressable, and in fu-
ture Multi Level Cell (MLC) devices, PCM is expected to be denser
than DRAM. PCM has lower read and write latency compared to
NAND flash memory, and it can endure orders of magnitude more
write cycles before wearing out.

Recent research has shown that solid state devices can be partic-
ularly beneficial for latency-bound applications involving depen-
dent reads. Latency-bound applications like path processing in the
context of graph processing or Resource Description Framework
(RDF) data processing are typical examples of these applications.
We demonstrate via a custom graph benchmark that even an early
prototype Phase Change Memory device can offer significant im-
provements over mature flash devices (1.5x - 2.5x speedup in re-
sponse times). We take this observation further by building Pythia,
a prototype RDF repository tailor-made for Solid State Storage to
investigate the predicted benefits for these type of workloads that
can be achieved in a properly designed RDF repository. We com-
pare the performance of our repository against the state of the art
RDF-3X repository in a limited set of tests and discuss the results.
We finally compare the performance of our repository running on
a PCM-based device against a state of the art flash device, showing
that there is indeed significant gain to be achieved by using PCM
for RDF processing.

1. INTRODUCTION
Solid State Storage (a.k.a. Storage Class Memory [24]) is here

to stay. Today, a well known Solid State Storage technology is
NAND flash. Another technology on the horizon is Phase Change
∗The majority of this work was completed while the author was an
intern at IBM T. J. Watson Research Center, Hawthorne, NY.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
The Third International Workshop on Accelerating Data Management Sys-
tems using Modern Processor and Storage Architectures (ADMS’12).
Copyright 2012.

Memory (PCM). Both can be used in chip form, for example, as
a small storage element in a portable device. The read and write
latencies of PCM cells are very low, already in the same ballpark
as DRAM [21, 22]. For large scale storage, many chips can be
packaged into a single device that provides the same functionality
as disk drives, supporting the same basic APIs. SSDs can provide
much faster random I/O than magnetic disks because there is no
mechanical latency between requests. We focus here on database
applications that demand enterprise level storage in this form factor.

NAND flash technology is relatively mature and represents the
state-of-the art in the marketplace. Companies have been build-
ing storage devices out of flash chips for two decades, and one can
find a huge variety of flash-based devices from consumer to enter-
prise storage. PCM is a relative newcomer, and until now there
has been little opportunity to evaluate the performance character-
istics of large scale PCM devices. The purpose of this paper is to
provide insights on where solid state devices can offer a big advan-
tage over traditional storage and to highlight possible differences
between two representative technologies, flash and PCM.

Flash devices have superior random read performance compared
to magnetic hard-drives but suffer from several limitations. First,
there is a significant asymmetry in read and write performance.
Second, only a limited number of updates can be applied on a flash
device before it becomes unusable; this number is decreasing with
newer generations of flash [3]. Third, writing on flash not only is
much slower than reading and destructive of the device, but it has
proven to interfere with the redirection software layers, known as
Flash Translation Layers (FTL) [17].

PCM addresses some of these challenges. The endurance of
PCM cells is significantly higher than NAND flash [4], although
still not close to that of DRAM. Unlike NAND flash, PCM does
not require the bulk erasure of large memory units before it can be
rewritten. Moreover, while cost is still uncertain, for our purposes,
we assume normal cell size competitiveness and standard volume
economics will apply to this technology as it ramps into high vol-
ume.

The most pronounced benefit of solid state storage over hard
disks is the difference in response time for random accesses. Hence,
we identify dependent reads as an access pattern that has the po-
tential for significant performance gains. Latency-bound applica-
tions like path processing [25] in the context of graph processing,
or RDF-data processing are typical examples of applications with
such access patterns. The Resource Descrption Framework (RDF)
[6] data model is widely adopted for several on-line, scientific or
knowledge-based datasets because of its simplicity in modelling
and the variety of information it can represent.

We find that PCM-based storage is an important step towards
better latency guarantees with no bandwidth penalties and we iden-

tify a trade-off between maximizing bandwidth and minimizing la-
tency. In order to measure the headroom of performance benefit
(decrease of response time) in long path queries we implement a
simple benchmark and we compare the response times when using
flash and PCM. We observe that PCM can yield 1.5x to 2.5x smaller
response times for any bandwidth utilization without any graph-
aware optimizations1 some of which we leave for future work. We
take this observation one step further and we design a new data
layout suitable for RDF data and optimized for a solid state storage
layer. The proposed layout increases the locality of related informa-
tion and decreases the cost of graph traversals by storing more link-
age information (i.e., metadata about how to navigate faster when
a graph is traversed).

In this paper we show the benefits of path processing applications
over data that is resident in solid state storage. First, we present a
custom graph benchmark that is used to highlight the differences
between two solid state technologies through two representative
devices: a state-of-the-art flash device and an enterprise-level PCM
prototype provided to us by Micron. Second, we develop a proto-
type RDF repository to show the benefits that RDF processing can
have if it adopts PCM storage.

We have the following main contributions:
• We devise a custom benchmark to highlight the qualitative

and quantitative differences between two representative solid
state devices (flash and PCM).

• We find that PCM can natively support higher workload par-
allelization with near-zero latency penalty — an observation
that can be used to shift the algorithm design.

• We find that applications with dependent reads are natural
candidates for exploiting PCM-based devices. Our graph-
based benchmark allows us to measure the benefit that path
traversal queries can have from such devices.

• We develop a prototype RDF repository to illustrate a spe-
cific application that can benefit from PCM storage. Our pro-
totype corroborates the opportunity analysis performed using
the graph-based benchmark.

Our PCM device is a prototype, with a device driver having lim-
ited sophistication. It is possible that the commercial version of this
PCM device could perform better when brought to market.

The rest of the paper is organized as follows. Section 2 sum-
marizes prior work. Section 3 presents the custom graph bench-
mark and identifies potential performance improvements when us-
ing PCM in path processing. Section 4 presents the RDF reposi-
tory and shows that it can achieve the anticipated improvements.
Section 5 discusses further opportunities and limitations that PCM
presents, and we conclude in Section 6.

2. RELATED WORK
In this section we present related work in terms of technology

and data representation. Flash is the main representative of solid
state storage technologies used today. In this paper we focus on
understanding the differences between flash and PCM and the ben-
efits that PCM can offer.

2.1 Phase Change Memory
PCM stores information using resistance in different states of

phase change materials: amorphous and crystalline. The resistance
1Such optimizations, in addition to the new data layout presented
in this paper, include complementary pages comprised of auxiliary
data structures such as: (i) cached attributes, (ii) aggregate links,
(iii) node popularity, (iv) node priority and (v) reverse links.

in the amorphous state is about five orders of magnitude higher
than the crystalline state, and it differentiates between 0 (high re-
sistance) and 1 (low resistance) [21] [31]. Storing information on
PCM is performed through two operations: set and reset. During
the set operation, current is applied on the device for a sufficiently
long period to crystallize the material. During the reset operation
higher current is applied for shorter duration in order to melt the
material and then cool it abruptly, leaving the material in the amor-
phous state. Unlike flash, PCM does not need the time consum-
ing erase operation to write the new value. PCM devices can em-
ploy a simpler driver than the complex FTL that flash devices use
to address the wear leveling and performance issues [11]. In the
recent literature there is already a discussion about how to place
PCM in the existing memory hierarchy. While proposed ideas [21]
include placing PCM side-by-side DRAM as an alternative non-
volatile main memory, or even using PCM as the main memory of
the system, current prototype approaches consider PCM as a sec-
ondary storage device providing PCIe connectivity. There are three
main reasons why this happens: (i) the endurance of each PCM cell
is typically 106–108, which is higher than flash (104–105 with a de-
creasing trend [3]) but still not enough for a main memory device,
(ii) the only available interface to date is PCIe, and (iii) the PCM
technology is new, so the processors and the memory hierarchy do
not yet have the appropriate interfaces for it.

The Moneta system is a hardware-implemented PCIe storage de-
vice with PCM emulation by DRAM [18, 19]. Performance studies
on this emulation platform have highlighted the need for improved
software I/O latency in the operating system and file system. The
Onyx system [11] replaces the DRAM chips of Moneta with first-
generation PCM chips,2 yielding a total capacity of 10 GB. Onyx
is capable of performing a 4KB random read in 38µs and a 4KB
write request3 in 179µs. For a hash-table based workload, Onyx
performed 21% better than an ioDrive, while the ioDrive performed
48% better than Onyx for a B-Tree based workload [11].

The software latency (as a result of operating system and file
system overheads) is measured to be about 17µs [11]. On the other
hand, the hardware latency for fetching a 4K page from a hard disk
is on the order of milliseconds and for a high-end flash device is
about 50µs. Early PCM prototypes need as little as 20µs to read
a 4K page increasing the software contribution in relative latency
from 25% (17µs out of 67µs) for a flash device like FusionIO, to
46% (17µs out of 37µs) for a PCM prototype. Minimizing the
impact of software latency is a relatively new research problem ac-
knowledged by the community [11]. In [19], Caulfield et al. point
out this problem and propose a storage hardware and software ar-
chitecture to mitigate the overheads to take better advantage of low
latency devices such as PCM. The architecture provides a private,
virtualized interface for each process and moves file system protec-
tion checks into hardware. As a result, applications can access file
data without operating system intervention, eliminating OS and file
system costs entirely for most accesses. The experiments show that
the new interface improves latency and bandwidth for 4K writes by
60% and 7.2x respectively, OLTP database transaction throughput
by up to 2.0x, and Berkeley-DB throughput by up to 5.7x [19].

Jung et al. [28] ran the fio profiler over the same Micron PCM

2The PCM chips used by Onyx are the same as those used in our
profiled device, but the devices themselves are different.
3The write numbers for Onyx use early completion, in which com-
pletion is signalled when the internal buffers have enough informa-
tion to complete the write, but before the data is physically in the
PCM. Early completion is also used by SSD devices, supported by
large capacitors to ensure that the writes actually happen in case of
a power failure.

prototype available to us and a popular flash device (OCZ Revo-
drive), showing qualitative differences between the PCM device
and the flash device. The PCM device, unlike the flash device,
shows no difference between latency for random and sequential ac-
cesses for different values of IO depth (number of concurrent out-
standing requests) or page sizes.

Lee et al. [29] introduce a new In-Page Logging (IPL) design
that uses PCRAM as a storage device for log records. They claim
that the low latency and byte addressability of PCRAM can al-
low one to avoid the limitations of flash-only IPL. Papandreou et
al. [31] present various programming schemes for multilevel stor-
age in PCM. The proposed schemes are based on iterative write-
and-verify algorithms that exploit the unique programming char-
acteristics of PCM in order to achieve significant improvements in
resistance-level packing density, robustness to cell variability, pro-
gramming latency, energy per-bit and cell storage capacity. They
present experimental results from PCM test-arrays to validate the
proposed programming schemes. In addition, the reliability issues
of multilevel PCM in terms of resistance drift and read noise are
discussed.

2.2 RDF data model and RDF processing
The Resource Description Framework (RDF) [6] is today the

standard format to store, encode and search machine readable in-
formation in the semantic web [34], as well as scientific [12], busi-
ness and governmental data [1, 2]. This trend is strengthened by
efforts like Linked Open Data [14] which to date consists of more
than 25 billion RDF triples collecting data from more than 200 data
sources.

2.2.1 RDF datasets and benchmarks
The wide adoption of RDF format has led to the design of nu-

merous benchmarks and datasets [23] each one focusing on the dif-
ferent usage scenarios of RDF data. Benchmarks include:

• LUBM [26]: a benchmark consisting of university data.

• BSBM [16]: a benchmark built around an e-commerce data
use case that models the search and navigation pattern of a
consumer looking for a product.

• SP2Bench [33]: a benchmark based on the DBLP database
of article publications, modeling several search patterns.

• Yago [9]: data from Wikipedia, Wordnet and GeoNames.

• UniProt [12]: a comprehensive, high-quality and freely ac-
cessible database comprised of protein sequences.

• DBpedia [15]: a dataset consisting of data extracted from
Wikipedia and structured in order to make them easily ac-
cessible.

Several of the aforementioned benchmarks and workloads in-
clude path processing queries that could be inefficiently evaluated
if the graph-like form of data is not taken into account. Viewing
RDF data as relational data may make it more difficult to apply
optimizations for graph-like data access patterns such as search.
While each triple can conceptually be represented as a row, it has
more information than a single row since it signifies a relation be-
tween two nodes of a graph. Two neighboring nodes may end up
in the same search very often (a simple locality case) or nodes con-
nected with two neighboring nodes may end up in the same search
often. Moreover, a specific path between two nodes can be the core
of the query. In this case, and especially if there are few or no
branches in the path, evaluating a path of length k as k − 1 joins
can substantially increase the cost of answering one such query.

2.2.2 Storing RDF data
RDF data is comprised by statements, each represented as a triple

of the form <Subject, Predicate, Object>. Each triple forms a
statement which represents information about the Subject. In par-
ticular, Subject is connected to the Object using a specific Predicate

modelling either a connection4 between the Subject and the Object

or the value of a property of the Subject.5 In fact, in RDF triples,
sometimes, the Predicate is called Property and the Object is
called V alue. We will maintain the terminology <Subject, Predi-
cate, Object>.

RDF data form naturally sparse graphs but the underlying stor-
age model in existing systems is not always tailored for graph pro-
cessing [27]. There are two trends as far as how to physically store
RDF data: (i) using as underlying storage a relational database sys-
tem (either a row-store [5, 30] or a column store [10]) or (ii) design
a native store [8, 35], a storage system designed particularly for
RDF data which can be tailored to the needs of a specific workload.
Support for RDF storage and processing assuming an underlying
relational data management system is proposed from the industrial
perspective [13] as well.

The RDF data layout we present in this paper is different in three
ways. First, the approach proposed in this paper does not assume
a traditional relational data layout but only the notion of variable
sized tuples (having in effect a variable number of columns). Sec-
ond, while our approach resembles prior art [13] as far as storing
several triples with the same Subject (or Object) physically close
by, it is not bound by the limitations of relational storage, and it
avoids repetition of information (e.g., for the Objects that are con-
nected to a specific Subject with the same Property the identifier
of the Property is stored only once). Third, we depart from the
relational execution model, which is vital because graph traversals
using relational storage lead to repetitive self-joins. We can support
optimized graph-traversal algorithms without paying the overheads
that come with relational query evaluation.

3. PATH PROCESSING
Current PCM prototypes behave as a “better” flash [28], in the

sense that they have faster and more stable reads. We argue that the
best way to make the most of this behavior is in the domain of ap-
plications with dependent reads. Hence, we create a simple bench-
mark that performs path traversals over randomly created graphs
to showcase the potential benefits using PCM as secondary storage
for such applications. (More information about performance char-
acteristics of the devices we used can be found in Appendix B.)

Table 1: Description of the benchmark
Dataset Randomly generated graph
Degree Randomly between 3 and 30
nodes 1.3M (approximately)

Size on disk 5GB

Custom graph-based benchmark. We create a benchmark that
we call the Custom graph-based benchmark. We model path traver-
sal queries by graph traversal over a custom built graph. The graph
(see description in Table 1) is stored in fixed-size pages (each page
has one node) and the total size of the graph is 5GB. Each node
has an an arbitrary number of edges (between 3 and 30). The path

4For example, the triple <Alice, isFriendWith, Bob> shows that a
friendship connection between Alice and Bob exists.
5For example, the triple <Alice, birthday, 01/04/1980> shows that
the property birthday of Alice has value 01/04/1980.

Table 2: Hardware specification of the PCM device
Brand Micron
PCM type Single Level Cell (SLC)
Integration 90nm
Size 12GB
Interface PCI-Express 1.1x8
Read Bandwidth 800MB/s (random 4K)
Write Bandwidth 40MB/s (random 4K)
H/W Read Latency 20µs (4K)
H/W+S/W Read Latency 36µs (4K)
H/W Write Latency 250µs (4K)
H/W+S/W Write Latency 386µs (4K)
Endurance 106 write cycles per cell

traversal queries are implemented as link following traversals of
a random edge in each step. Each query starts from a randomly
selected node of the graph and it follows at random one of the de-
scendant nodes. When multiple queries are executed concurrently,
because of the absence of buffering, locality will not yield any per-
formance benefits. Each query keeps reading a descendant node as
long as the maximum length is not reached.

Table 3: Parameters used for the custom graph benchmark.
Path length 2, 4, 10, 100 nodes per query

Concurrent threads 1, 2, 4, 8, 16, 32, 64, 96, 128, 192
Page Size 4K, 8K, 16K, 32K

Page processing time 0µs, 50µs, 100µs

Experimental setup. We use a 74GB FusionIO ioDrive (SLC) [7]
and a 12GB Micron PCM prototype (SLC). The PCM device offers
800MB/s maximum read bandwidth, 20µs hardware read latency6

(for 4K reads) and 250µs hardware write latency (for 4K writes),
while the endurance is estimated to be 106 write cycles. While
PCM chips can be byte-addressable the PCI-based PCM prototype
avilable to us uses 4KB pages for reads and writes7. The flash de-
vice offers 700MB/s read bandwidth (for 16K accesses) and hard-
ware read latency as low as 50µs in the best case. The details about
the two devices can be found in Tables 2 and 4. The system used for
the experiments was a 24-core 2.67GHz Intel Xeon X5650 server
with the 74GB ioDrive and the 12GB PCM device. The operating
system is Ubuntu Linux with the 2.6.32-28-generic x86 64 kernel
and the total size of available RAM is 32GB.
Experimental evaluation. We present a set of experiments based
on the custom graph benchmark. We compare flash and PCM tech-
nology as secondary storage for path queries. We vary the page size
(and consequently node size), the length of the path, the number of
concurrent requests and the page processing time, all of them sum-
marized in Table 3. The variation of the values for each parameter
plays a different role: different path lengths help us reveal if there
is a cumulative effect when a query over a longer path is evalu-
ated; different numbers of concurrent threads show the impact of
multiple I/O requests on flash and PCM; different page sizes (a.k.a.
access granularity) signify which is the best mode of operation for
each device; and varying page processing time helps us understand
what is the benefit when the workload is “less” I/O-bound. We

6Software read latency is about 16–17µs, which is negligible com-
pared to magnetic disk I/O latency, but is close to 50% of the total
latency for technologies like PCM.
7It is noteworthy that, unless the s/w stack is optimized, smaller
page accesses will make the impact of s/w latency a bigger issue as
the percentage of s/w latency over the total page read latency will
increase [11].

Table 4: Hardware specification of the flash device
Brand FusionIO
NAND type Single Level Cell (SLC)
Integration 30-39nm
Size 74GB
Interface PCI-Express x4
Read Bandwidth 700MB/s (random 16K)
Write Bandwidth 550MB/s (random 16K)
Mixed Bandwidth 370MB/s (70R/30W random 4K mix)
IOPS 88,000 (70R/30W random 4K mix)
H/W Read Latency 50µs Read (512b)
H/W+S/W Read Latency 72µs (4K)
H/W+S/W Write Latency 241µs (4K)
Endurance 24yrs (@ 5TB write-erase/day)

observe that varying the path length leads to the same speedup be-
cause the reduced latency remains the same throughout the execu-
tion of the query regardless of the length of the query. Moreover,
higher page processing time reduces gradually the benefit of PCM,
which is expected since the longer IO time for the flash device is
amortized over the page processing time. In particular, when page
processing is increased from 0µs to 100µs the maximum speedup
that PCM offers is reduced by 20%.

Figure 1: Latency for 4K, 8K, 16K, 32K page size when varying
concurrent queries. Note the logarithmic scale on both axes.

Figure 1 presents the average latency and Figure 2 the average
bandwidth during the execution of the custom graph benchmark,
when we vary the page size and the number of concurrent threads.
The page processing time for the presented experiments is set to
0µs and the path length to 100 nodes.

Figure 1 shows the average read latency per I/O request (y-axis)
as a function of the number of concurrent threads issuing queries
(x-axis) for different page sizes (different graphs). The red lines
correspond to PCM and the blue lines to flash. In all four cases
(page size equal to 4K, 8K, 16K, 32K) PCM shows lower I/O
latency but the best case is when the page size is smallest, i.e.,
4K. Extrapolating this pattern we anticipate that when PCM de-
vices have smaller access granularity (512-byte pages are part of
the roadmap) the benefit will become even larger.

In Figure 2 we see the bandwidth achieved when running the
custom graph benchmark. Similarly to the previous graphs, the
x-axis of the different graphs represents the number of threads is-
suing concurrent requests, the y-axis is bandwidth and different
graphs correspond to different page sizes. The capacity for both
devices is roughly 800 MB/s. The PCM device reaches very close

Figure 2: Bandwidth for 4K, 8K, 16K, 32K page size when
varying concurrent queries

Figure 3: Custom path processing benchmark: Speedup of
PCM over flash

to the maximum sustained throughput (close to 800MB/s) with 4K
pages when 16 queries are issued concurrently. When the page
size is increased the maximum can be achieved when 4-8 queries
are issued concurrently. When increasing the page size and the
number of concurrent queries any additional (small) benefit has a
high cost in increased latency. On the other hand, flash has quali-
tatively different behavior. For each page size the maximal band-
width is achieved with 32 concurrent queries and a bigger page size
is needed for a better result. Using the iostat and sar Linux tools
we were able to verify that when 32 queries are issued concurrently,
the full potential of the flash device can be achieved by increasing
the I/O queue size to 64 (which is the maximum possible) without
having delays due to queuing. Thus, having 32 concurrent queries
is considered to be the sweet spot where flash has the optimal band-
width utilization. Going back to the latency figures we can now ex-
plain the small bump for 16 threads. In fact, the observed behavior
is not a bump at 16 threads but an optimal behavior at 32 threads.
This phenomenon is highlighted in Figure 3.

In Figure 3 we present the speedup of the query response time
for different values of path length and number of concurrently is-
sued queries. The speedup varies between 1.5x and 2.5x having
the maximum number of 16 threads. We observe as well that the
length of the query does not play any important role. The sudden
drop in speedup for 32 threads is attributed to the previously de-
scribed sweet spot for flash for this number of concurrent queries.

Figure 4: Latency per page request size for PCM and flash,
varying page size and number of concurrent threads issuing
requests

Figure 5: Bandwidth for PCM and flash, varying page size and
number of concurrent threads issuing requests

When we increased page processing time from 0µs to 100µs the
maximum speedup was reduced from 2.5x to 2.0x. Figure 4 shows
a different way to read the data from Figure 1. On the x-axis we
vary the page size (4K, 8K, 16K, 32K) and on the y-axis we present
the latency per I/O when we run the custom graph benchmark. The
solid bars correspond to experiments using 4 threads and the check-
ered bars to experiments using 16 threads, the red color represents
PCM and the blue color flash. There are several messages to be
taken from this graph. First, when page size is equal to 4K (the
best setting for both devices) using PCM leads to the highest bene-
fit in latency (more than 2x speedup). Secondly, we observe that the
average latency per I/O when using PCM with 16 threads is almost
the same (7% higher) compared to average latency per I/O when
using flash with 4 threads. In other words we can have 4 times
more queries accessing 4 times more data with the similar latency
per group of I/O (which correponds to 4 reads for flash and 16 reads
for PCM). This observation can be used to create search algorithms
for PCM which can take advantage of near-zero penalty concurrent
reads, which we outline in Section 5. Similarly, for 8 concurrent
threads reading 4K pages from PCM the latency is 57µs and for 2
concurrent threads reading 4K pages from flash the latency is 65µs
allowing PCM to fetch 4 times more data in less time. Finally, we
see that the benefits from PCM decrease as we increase page size,
which help us make the case that we should expect even higher
benefits when PCM devices offer finer access granularity.

Figure 5 presents the bandwidth as a function of page size. Even
for 4K page size, PCM can achieve 22% higher bandwidth with 4
threads than the flash device with 16 threads. If we compare the
16-thread cases, we can almost saturate PCM with 4K page size.
On the other hand, we are unable to saturate the flash device even
with 32K page size. The last two figures demonstrate that a PCM
device can show important latency and bandwidth benefits, relative
to flash, for workloads with dependent reads.

4. RDF PROCESSING ON PCM
In this section we describe our prototype RDF repository, called

Pythia. We identify the need to design an RDF-processing system
which takes into account the graph-structure of the data and has the
infrastructure needed to support any query over RDF data. Pythia
is based on the notion of an RDF-tuple.

4.1 The RDF-tuple
An RDF-tuple is a hierarchical tree-like representation of a set

of triples given an ordering of subject, predicate, and object. In
Pythia, we will store RDF-tuples for two complementatry hier-
archies: the subject/predicate/object (SPO) hierarchy and the ob-
ject/predicate/subject (OPS) hierarchy. Each triple will thus be rep-
resented in two places, the SPO-store and the OPS-store.

In the SPO store, the root of the tree contains the information of
the common subject of all triples. The children of the subject-node
are the property-nodes, one for each property that is connected with
the given subject. For each property-node, its children are in turn
the identifiers of object-nodes that are connected with the subject
of the root node through the property of its parent property-node.
The RDF-tuple design allows us to locate within a single page8 the
most significant information for any given subject. Furthermore, it
reduces redundancy by omitting repeated instances of the subject
and predicate resources. Conceptually, the transformation of RDF
triples to an RDF-tuple in the SPO-store is depicted in Figure 6.
The OPS-store is analogous.

Figure 6: RDF-tuple in the SPO-store

We chose to materialize the SPO and OPS hierarchy orders in
Pythia, but not other orders such as PSO. This choice is moti-
vated by our observation that the large majority of use cases in
the benchmarks of Section 2.2 need subject-to-object or object-to-
subject traversal. Usually the query had a subject (or object) in
hand and needed to find connections of given types to other objects
(subjects). Rarely did the query specify a predicate and ask for all
object/subject pairs. We thus avoid the extra storage requirements
of representing additional versions of the data, at the cost of oc-
casionally needing a more expensive plan for a predicate-oriented
query.
8See Section 4.2 for a discussion of tuples that don’t fit in a page.

We envision RDF-tuples to be stored as a tuple with variable
length in a database page containing many such tuples. Figure 7
shows how an RDF-tuple is laid out within a page. We employ a

Figure 7: RDF-tuple layout

standard slotted page scheme with variable size tuples, but the inter-
nal tuple organization is different from prior work. An RDF-tuple
is organized in two parts: the metadata part (first three lines of Fig-
ure 7) and the resource part (the remaining lines). In the metadata
part the above tree structure is stored with internal tuple pointers
(offset) to the representation of the nodes and the resources. The
offsets to the resources point to the appropriate locations in the re-
source part of the tuple. In more detail, the metadata part consists
of the following variables:

• the length of the tuple,

• the offset of the subject’s resource,

• the number of predicates,

• for each predicate the offset of the predicates resource and
an offset to the objects (for the combination of subject and
predicate),

• for each predicate’s objects: the number of objects, the ob-
ject’s resource offset, a flag saying whether the resource is
stored locally and the page id and tuple id for every object as
a subject.

In this representation there are several possible optimizations.
For example, the resource of the predicate can typically be stored
in a dictionary because in every dataset we analyzed the number of
different predicates is very small (in the order of hundreds). More-
over, in the case that the object is a literal value (e.g., a string con-
stant) the value can be stored in a separate table with a unique iden-
tifier.

4.2 The Internals of Pythia
The SPO-store and the OPS-store are each enhanced by a hash

index; on the Subject for the SPO store and on the Object for the
OPS store. There is a separate repository for “very large objects”
(VLOBs), i.e., RDF-tuples which require more storage than what is
available in a single page. VLOBs are important when the dataset
includes objects that are connected with many subjects and create a
huge RDF-tuple for the OPS store. (Imagine the object “human”; a
variety of other subjects will be linked with this using the predicate
“is-subclass-of”, leading to a huge OPS RDF-tuple.) Additionally,
we employ two dictionaries mainly for compression of the RDF-
tuples: the Literals dictionary and the Predicate dictionary. The
former is used when a triple consists of a literal value as an object
and the latter is used to avoid storing the resource of the predicates
multiple times in the two stores. In the majority of RDF datasets the
variability of predicates is relatively low leading to a small Predicte
dictionary, always small enough to fit in memory. On the other
hand, different datasets may lead to a huge Literal dictionary and
may need a more complex solution.

Figure 8: Pythia Architecture

Figure 8 presents the architecture of the prototype RDF reposi-
tory Pythia we designed and experimented with. The greyed parts
(SPO-store, OPS-store and VLOB-store) reside in secondary stor-
age. The remaining parts are stored in persistent secondary storage,
but are maintained in RAM during the time the system is running.

4.3 Experimental Workload
We use the popular dataset Yago2 [9] to investigate the bene-

fits of the proposed approach in an environment with dependent
reads. Yago2 is a semantic knowledge base derived mainly from
Wikipedia, WordNet and GeoNames. Using the RDF-tuple de-
sign for the SPO- and OPS-stores, we store the initial 2.3GB of
raw data (corresponding to 10M entries and 460M facts) into a
1.5GB uncompressed database (the SPO-store and OPS-store to-
gether account for 1.3GB, and VLOBs account for 192MB). The
large objects can be aggressively shrunk down by employing page-
level compression, an optimization which we leave for future work.
When the system operates the in-memory structures require 121MB
of RAM for the hash indexes and 569MB of RAM for the dictio-
naries, almost all of it for the Literals dictionary. Another future
optimization for the literals is to take into account the type and
store them in a type-friendly compressible way. In the SPO store
more than 99% of the RDF-tuples fit within a 4K page.

We hard-code and experiment with six queries over the Yago2
dataset:

1. Find all citizens of a country that have a specific gender.
2. Find all events of a specific type that a given country partici-

pated in.
3. Find all movies of a specific type that a given actor partici-

pated in.
4. Find all places of a specific type that are located in a given

country (or in a place ultimately located in this country).
5. Find all ancestors of a given person.
6. Find all ancestors with a specific gender of a given person.

The equivalent SPARQL code for these queries can be found in
Appendix A.

The first three queries search for information of the given subject
or object; in other words they are searching for local knowledge.
The last three queries require a traversal the graph in an iterative
mode to compute the correct answer. The last three queries typi-
cally require dependent reads.

Figure 9: Bandwidth for Pythia for 1, 2, 4, 8, 16, 32 concurrent
clients submitting queries

Figure 10: Latency for Pythia for 1, 2, 4, 8, 16, 32 concurrent
clients submitting queries

4.4 Experimental Evaluation
We used the same 24-core Intel Xeon X5650 described previ-

ously. Similarly to the previous experiments, we experimented
using as backend storage a state-of-the-art 80GB FusionIO flash
device (SLC) and a 12GB Micron PCM device prototype. The
workload for the first two experiments was a mix of the six afore-
mentioned queries with randomized parameters. We executed the
workload using either flash or PCM as main storage in anticipation
of a benefit similar to what our custom graph benchmark showed
in Section 4.

Figure 9 shows the throughput achieved by Pythia when Flash
(red bars) or PCM (blue bars) is used for secondary storage for a
varying number of threads submitting queries concurrently. The
black line shows the relative speedup when PCM is employed. In
this experiment we corroborate the performance benefit achieved
in the simple benchmark with a more realistic system and dataset.
Both devices scale close to linearly until 4 threads (7KQ/s for PCM
and 4.5KQ/s for flash leading to 1.56x speedup), while for higher
number the PCM device is more stable showing speedup from 1.8x
to 2.6x.

Figure 10 shows the response time achieved by Pythia when
Flash (red bars) or PCM (blue bars) is used for secondary storage
for a varying number of threads submitting queries concurrently.
The black line shows the relative speedup when PCM is employed.
In terms of response time PCM is uniformly faster than flash from
1.5x to 2.0x.

4.5 Comparison with RDF-3X
In this section we compare Pythia with RDF-3X [30] showing

that our approach is competitive against the research prototype con-

Figure 11: Query latency using Pythia for Q1, Q2 and Q3

sidered to be the current state-of-the-art. We instrument the source
code of RDF-3X with time measurement code and we time the pure
execution time of the query engine of RDF-3X without taking into
account the parsing or optimization phases. We compare the re-
sponse time of three queries when we execute them using Pythia
and RDF-3X. We store the Yago2 data on PCM and we use the fol-
lowing three queries to understand whether Pythia is competitive
with an established RDF repository.

Q1. Find all male citizens of Greece.

Q2. Find all OECD member economies that Switzerland deals
with.

Q3. Find all mafia films that Al Pacino acted in.

Figure 11 shows that Pythia (blue bars) performs equally well or
faster than RDF-3X (red bars) for all three queries. For Q1 Pythia
is 4.45x faster, which can be attributed to the fact that the gender
information for every person is stored in the same page as the rest
of the person’s information, thus incurring no further IOs to read it.
In Q2 the benefit of Pythia is about 4.69x for the same reason: the
information about whether a country is an OECD member is stored
in the same page with the country. The third query incurs a higher
number of IOs in both cases because we have to touch both the
SPO- and OPS-stores, hence Pythia and RDF-3X perform almost
the same (RDF-3X is 3% faster).

5. PCM OPPORTUNITIES
Any device that can handle concurrent requests in parallel can

be kept busy if there are enough independent I/O streams. Under
such conditions, the device will saturate its bandwidth capabilities.
When there are too few independent I/O streams to saturate the
device with a single I/O request per stream, one might allow each
I/O stream to submit multiple concurrent requests.

When the access pattern requires dependent reads, identifying
concurrent I/O units for a single stream can be challenging. Roh
et al. [32] consider a B-tree search when multiple individual keys
are being searched at the same time. If multiple child nodes of a
single internal node need to be searched, I/Os for the child nodes
can be submitted concurrently. This is a dependent-read pattern
in which multiple subsequent reads may be dependent on a single
initial read. Roh et al. demonstrate performance improvements for
this workload on several flash devices. They implemented an I/O
interface that allows the submission of several I/O requests with a
single system call, to reduce software and hardware overheads.

Both PCM devices and flash devices can handle a limited number
of concurrent requests with a minor latency penalty. For our PCM
device running with 8 concurrent threads, we can achieve roughly

double the bandwidth and half the latency of the flash device, with-
out significantly increasing the latency beyond what is observed for
single-threaded access. Thus our PCM device has the potential to
outperform flash when I/O streams can submit concurrent I/O re-
quests.

5.1 Algorithm redesign
A graph-processing example of such a workload is best first search.

In best first search, the priority of nodes for subsequent exploration
is determined by an application-dependent heuristic, and nodes at
the current exploration fringe are visited in priority order. (Breadth
first search and depth first search are special cases in which the
priority function is suitably chosen.) On a device that efficiently
supports n concurrent I/O requests, we can submit the top n items
from the priority queue as an I/O batch, effectively parallelizing the
search. The children of the newly fetched nodes are inserted into
the priority queue for the next round of the search algorithm.

6. CONCLUSIONS
Commercial scale PCM technology is relatively new, but we see

that it is already competitive against mature flash devices. A PCM
device with a very basic device driver can outperform a mature
flash rival in terms of the read latency and read bandwidth of a
single device. Applications like graph processing can take advan-
tage of PCM naturally because they employ dependent reads. Our
experimentation with a custom graph benchmark shows that using
an early prototype PCM device can yield significant performance
benefits over flash when running path traversal queries (1.5x-2.5x).

We have described our experiences and observations of a real
PCM prototype. At least for the near future, PCM-based devices
are going to be “better” flash devices, rather than a new incom-
parably fast and more efficient storage technology. The limits of
interconnecting interfaces, and the overhead of the software stack
used to access the devices, are significant determinants of overall
system performance. As new generations of PCM become avail-
able, and as new software technologies are developed to minimize
overheads, PCM device performance and access granularity con-
straints are likely to improve.

7. ACKNOWLEDGMENTS
The authors would like to thank Micheal Tsao of IBM T.J. Wat-

son Research for his help in setting up the machine used in the ex-
periments, and Micron Inc. for providing access to an early PCM
prototype.

8. REFERENCES
[1] Data.gov. http://www.data.gov/.
[2] Data.gov.uk. http://www.data.gov.uk/.
[3] NAND Flash Trends for SSD/Enterprise.

http://www.bswd.com/FMS10/FMS10-Abraham.pdf.
[4] Ovonic Unified Memory, page 29.

http://ovonyx.com/technology/technology.pdf.
[5] RDF Data Model in Oracle.

http://download.oracle.com/otndocs/tech/semantic web/pdf/w3d rdf data model.pdf.
[6] Resource Description Framework (RDF).

http://www.w3.org/RDF/.
[7] The FusionIO drive. Technical specifications available at:

http://www.fusionio.com/data-sheets/.
[8] Virtuoso RDF.

http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF.

[9] YAGO2: A Spatially and Temporally Enhanced Knowledge
Base from Wikipedia.
http://www.mpi-inf.mpg.de/yago-naga/yago/.

[10] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach.
Scalable semantic web data management using vertical
partitioning. In VLDB, 2007.

[11] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and
S. Swanson. Onyx: A Protoype Phase Change Memory
Storage Array. In HotStorage, 2011.

[12] R. Apweiler et al. Uniprot: the universal protein
knowledgebase. Nucleic Acids Research,
32(Database-Issue), 2004.

[13] B. Bhattacharjee, K. Srinivas, and O. Udrea. Method and
system to store RDF data in a relational store. Published
Patent Application, Sept. 2011. US 2011/0225167 A1.

[14] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst., 5(3), 2009.

[15] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, and S. Hellmann. DBpedia - A crystallization
point for the Web of Data. J. Web Sem., 7(3), 2009.

[16] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark.
Int. J. Semantic Web Inf. Syst., 5(2), 2009.

[17] L. Bouganim, B. T. Jónsson, and P. Bonnet. uFLIP:
Understanding Flash IO Patterns. In CIDR, 2009.

[18] A. M. Caulfield et al. Understanding the Impact of Emerging
Non-Volatile Memories on High-Performance, IO-Intensive
Computing. In HiPC, 2010.

[19] A. M. Caulfield, T. I. Mollov, L. Eisner, A. De, J. Coburn,
and S. Swanson. Providing Safe, User Space Access to Fast,
Solid State Disks. In ASPLOS, 2012.

[20] S. Chen. FlashLogging: Exploiting Flash Devices for
Synchronous Logging Performance. In SIGMOD, 2009.

[21] S. Chen, P. B. Gibbons, and S. Nath. Rethinking Database
Algorithms for Phase Change Memory. In CIDR, 2011.

[22] E. Doller. Phase change memory and its impacts on memory
hierarchy. CMU PDL presentation 2009:
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf.

[23] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea.
Apples and oranges: a comparison of rdf benchmarks and
real rdf datasets. In SIGMOD, 2011.

[24] R. F. Freitas. Storage class memory: technology, systems and
applications. In SIGMOD, 2009.

[25] A. Gubichev and T. Neumann. Path Query Processing on
Very Large RDF Graphs. In WebDB, 2011.

[26] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem., 3(2-3), 2005.

[27] O. Hassanzadeh, T. Kementsietsidis, and Y. Velegrakis.
Publishing relational data in the semantic web. ESWC, 2011.
http://db.disi.unitn.eu/pages/Rel2RDFTutorial2011/.

[28] J.-Y. Jung, K. Ireland, J. Ouyang, B. Childers, S. Cho,
R. Melhem, D. Mosses, et al. Characterizing a Real PCM
Storage Device (poster). NVMW, 2011.

[29] S.-W. Lee, B. Moon, C. Park, J. Y. Hwang, and K. Kim.
Accelerating In-Page Logging with Non-Volatile Memory.
IEEE Data Eng. Bull., 33(4):41–47, 2010.

[30] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine
for RDF. PVLDB, 2008.

[31] N. Papandreou et al. Programming algorithms for multilevel
phase-change memory. In ISCAS, 2011.

[32] H. Roh et al. B+-Tree Index Optimization by Exploiting
Internal Parallelism of Flash-based Solid State Drives.

PVLDB, 5(4), 2012.
[33] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.

SP2Bench: A SPARQL Performance Benchmark. CoRR,
abs/0806.4627, 2008.

[34] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web
revisited. IEEE Intelligent Systems, 21(3), 2006.

[35] K. Wilkinson. Jena property table implementation. In SSWS,
2006.

APPENDIX
A. SPARQL CODE FOR TEST QUERIES

In this section we present the equivalent SPARQL version of the
queries implemented during the evaluation of Pythia in Section 4.
These queries are used to compare against the research prototype
RDF-3X [30] using the pathfilter operator introduced in the litera-
ture [25].

1. Find all citizens of a country that have a specific gender.
SPARQL: select ?s where { ?s <isCitizeonOf> country. ?s
<hasGender> gender }

2. Find all type events that a country participated in.
SPARQL: select ?s where { country <participatedIn> ?s. ?s
<type> eventType }

3. Find all type movies that an actor participated in.
SPARQL: select ?s where { ?s <type> movieType. actor
<actedIn> ?s }

4. Find all places of a specific type that are located in a country
(or in a place ultimately located in this country).
SPARQL: select ?s where { ?s <type> placeType. ?s ?path
country. pathfilter(containsOnly(??path, <isLocatedIn>)) }

5. Find all ancestors of a person.
SPARQL: select ?s where { ?s ??path person.
pathfilter(containsOnly(??path, <hasChild>)) }

6. Find all ancestors having gender gender of a person.
SPARQL: select ?s where { ?s ??path person. ?s <hasGender>
gender. pathfilter(containsOnly(??path, <hasChild>)) }

Q1. Find all male citizens of Greece.
select ?s where { ?s <hasGender><male>. ?s <isCitizenOf>
<Greece> }

Q2. Find all OECD member economies that Switzerland deals with.
SPARQL: select ?s where
{ ?s <type> wikicategory OECD member economies.
<Switzerland> <dealsWith> ?s }

Q3. Find all mafia films that Al Pacino acted in.
SPARQL: select ?s where { ?s <type> wikicategory Mafia films.
<Al Pacino> <actedIn> ?s }

B. FLASH VS PCM
In this section we perform a head-to-head comparison between

the flash and the PCM devices that we used throughout our experi-
mentation.
Experimental methodology. The experimental setup is the same
as described in Section 3. We show that PCM technology has al-
ready an important advantage for read-only workloads. We present
several experiments comparing the read latency of the aforemen-
tioned devices. In particular, we measure the latency for direct ac-
cess to the devices bypassing any caching (operating system or file
system) using the O DIRECT and O SYNC flags in a custom C
implementation.

(a) (b)

Figure 12: Read latency for (a) flash (zoomed in the most relevant part) and (b) PCM

(a) (b)

Figure 13: Write latency for (a) flash (zoomed in the most relevant part) and (b) PCM

Read latency. The first experiment measures the read latency per
4K I/O request using flash and PCM. We perform ten thousand ran-
dom reads directly to the device. In the flash case, there are a few
outliers with orders of magnitude higher latency, a behavior en-
countered in related literature as well [17, 20]. Figure 12(a) is in
fact a zoomed in version of the overall data points (excluding out-
liers) in order to show the most interesting part of the graph; there
is some variation between 65µs and 90µs. The average read la-
tency for 4K I/Os using flash is 72µs. The standard deviation of
the read latency in flash is 60% of the average read latency. The
PCM device, however, behaves differently both qualitatively and
quantitatively. Firstly, there are no outliers with orders of magni-
tude higher read latency. The values are distributed between 34µs
and 95µs with the vast majority (99%) focused in the area 34–40µs
(Figure 12(b)), averaging 36µs. Secondly, the standard deviation in
terms of a percentage of the average is much smaller compared with
flash, only 3%. The first two experiments show clearly that the very
first PCM devices will already be competitive for latency-bound
read-intensive workloads both because of the average performance

and the increased stability and predictability of performance.

Write latency. For write intensive workloads the available PCM
prototype performs worse than the popular flash representative de-
vice, but it is still more stable. In particular, the PCM device has
average write latency 386µs with 11% standard deviation while the
flash device has average write latency 241µs with 21% standard
deviation, which is depicted in Figures 13(a) and (b). On the other
hand, the basic PCM firmware can support only 40MB/s writes.
This prototype limitation in write performance is attributed to the
fact that it was designed with read performance in mind. Newer
PCM chips, however, are expected to increase write speed signif-
icantly over time, consistent with the raw capability of the tech-
nology, bridging the gap in write performance at the device level.
Note that the flash device uses a complex driver (the result of 3 or
more years of optimizations and market feedback) while the PCM
prototype uses a naive driver that provides basic functionality.

Our read and write latency numbers are consistent with numbers
from Onyx [11], except that our write latency is higher because our
device does not use early completion.

