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How can we simulate edge plasma turbulence?

How can we gradually approach its complexity by using basic
plasma physics devices!? What are we learning on their dynamics!?

In the tokamak SOL, what is the mechanism setting turbulence
amplitude! The transport level? The pressure scale length?

(L

4
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The GBS code, a tool to simulate SOL turbulence
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GBS analysis of configurations of increasing complexity
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GBS simulation of a linear
device: LAPD
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GBS simulation of a linear
device: LAPD
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Kelvin-Helmholtz instability is the
turbulence drive
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The Simple Magnetized
Plasma (SMT) TORPEX
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GBS simulations of TORPEX

Two poloidal and

one toroidal cuts for ¢

Global evolution of both equilibrium and fluctuations



Experimental features of TORPEX turbulence

Example: N=2
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Anatomy of a k| = 0 perturbation

A =L,/N

Ay : longest possible vertical wavelength of a perturbation
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For N~1-6,ideal k| = 0 interchange modes dominant




At high N>7, Resistive Interchange Mode turbulence
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TORPEX turbulent regimes

k=0 (A, = Ly/N)

|deal interchange regime
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What is the mechanism setting the turbulence amplitude!?
Radial transport? L in the SOL?




Turbulent transport with gradient removal (GR) saturation
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Turbulence saturation due to
Kelvin-Helmholtz instability (KH)
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Is KH really setting transport?

KH
saturates
turbulence
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Why is KH stable at low q but not higher q?
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Why is KH stable at low g but not higher q?
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Transport and profile scaling for KH stable cases

Balance of perpendicular dl’, 7 NoCs
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What are we learning from GBS simulations?

The use of a progressive approach to investigate
turbulence in complex configurations

Basic plasma physics device turbulence properties:
— Linear device (LAPD): Kelvin-Helmholtz is the main drive

— Simple Magnetized Torus (TORPEX): competition
between ideal interchange and resistive interchange

SOL turbulence:

— Saturation mechanism given by gradient removal or
Kelvin-Helmholtz instability

— Scaling of radial transport and pressure scale length

How to perform comparisons between experiments
and simulations (not shown)



Code validation methodology and application on TORPEX

* Comparison performed
using a number of
observables
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What needs to be done...

Better boundary

conditions Physics of
. heutrals

Better source
modeling



