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Abstract

We consider networks of FIFO aggregate schedulers. Quite surprisingly, the natural condition (node utilization
inferior to one) in general is not sufficient in these networks to ensure stability (boundedness of delay and backlog at
each node). Deriving good sufficient conditions for stability and delay bounds for these networks is of fundamental
importance if we want to offer quality of service guarantees in such networks as DiffServ networks, high speed
switches and network-on-chips. The main existing sufficient conditions for stability in these networks are the “DiffServ
bound” [1] and the Route Interference Number (RIN) result [2]. We use an algebraic approach. First, we develop a
model of the network as a dynamical system, and we show how the problem can be reduced to properties of the
state transition function. Second, we obtain new sufficient conditions for stability valid without any of the restrictions
of the “RIN result”. We show that in practical cases, when flows are leaky bucket constrained, the new sufficient
conditions perform better than existing results. We also prove that the “RIN result” can be derived as a special case
from our approach. We finally derive an expression for a bound to delay at all nodes.
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I. INTRODUCTION

One of the most widely deployed solutions to the problem of the scalability of scheduling policies is aggregate
scheduling: that is, the scheduling decision at a node does not take into account which flow packets belong to, so
that all packets are served as if they belonged to the same input flow. Scalability comes from the fact that no per-flow
information needs to be stored. This scheduling policy is deployed in DiffServ networks and finds application also
in high speed switches and network-on-chip systems.
We focus here on one of the most widely used scheduling algorithms, First-In-First-Out (FIFO), and we consider
networks in which flows are constrained by arrival curves. One of the problems in this network model is stability,
defined as boundedness over time of maximum packet delay and to queue size at each node [3]. Some examples of
instability have been derived by Andrews in [4] and [5]. In particular, for leaky bucket constrained flows, ref. [5]
brings examples of networks that are unstable at arbitrarily small network loads.
Some positive results exist on stability for these networks: Bramson [6], [7] [8] and Gamarnik [9] prove that all
FIFO networks are stable if fresh input flows are constrained between σ + ρt and −σ + ρt. Therefore, it seems that
instability can arise when temporarily decreasing arrival rates.
Another positive result is in [10], where it is proved the stability of ring networks. Like feed forward networks, ring
networks are always stable, provided that node stability is guaranteed. One of the main existing results is in [2],
[11]: It assumes that flows are constrained by staircase arrival curves, and it is based on the homogeneous network
model: packets all of the same size, nodes all with the same service rate, all packet arrival and departure times
synchronous at all nodes. The derivation of the result is based on the concept of super chain, which models how
packet interactions affect end-to-end packet delay. It also makes use of the concept of route interference number
(RIN) of a flow, defined as the total number of flows that the considered flow meets along its path, counted with
multiplicity if a flow interferes more then once. It introduces a sufficient condition for stability, in terms of lower
bounds to the period of staircase arrival curves: For each flow, this period must be not larger than (RIN + 1)−1,
where RIN is the route interference number for that flow. It also derives simple formulas for backlog and delay
bounds at all nodes. The main positive aspect of this result is that it does not depend on any topology; but it relies



on assumptions that make it not useful in many practical cases. In what follows, we will call this result the “RIN
result”.
In [12] Otel derives a generalization of the “RIN result” to heterogeneous networks. This result is based on a
sufficient condition on stability in form of a minimum packet inter-arrival time for each flow. This way of shaping
input traffic in a network is not compatible with constraints given in the form of arrival curves, which are the most
commonly used in the majority of network models. That is, this sufficient condition cannot be cast into an arrival
curve constraint. This makes the result not very useful in practical cases. Moreover, in the sufficient condition in
[12] the minimum packet inter-arrival time for each flow scales linearly with the maximum packet size (or burst
size) among all flows in the network. As an example, in a network where all flows satisfy the sufficient condition in
[12] with a maximum packet size of 60 bytes, increasing the maximum packet size to 1500 bytes would decrease
the maximum network utilization by a factor of 25.
For networks with leaky bucket constrained flows, the main existing result is the one derived in [1]. It establishes
a sufficient condition for stability in terms of a bound to the maximum node utilization in a network, in function
of the maximum flow hop count h in that network: If the network utilization is inferior to (h − 1)−1, then delay
bounds can be derived at all nodes. This is again a result which is not relative to any topology, but as in practical
cases h can take quite large values (more than 20 for IP networks [13]), this condition leads to very low values of
node utilization in realistic scenarios, and is therefore of little practical utility. In the rest of the paper, we will refer
to this result as the “DiffServ bound”.
The main limits of many existing results stem from the fact that their derivation is based on strong simplifying
assumptions on the network model. In this paper we avoid those simplifying assumptions: We consider networks
of generic topology, with packets of different sizes and links of different rates, with flows constrained by generic
arrival curves, and we model the network as a dynamical system, clocked by events (packet arrivals and departures).
We use the concept of super chain, introduced in [2]: The state variables are the maximum number of bytes present
in a super chain relative to a given flow. The first main contribution of this paper is the derivation of an iterative
mapping, based on an operator F (given in detail in Section III) that represents the state transition function of the
network, modeled as a dynamical system; we also prove how the problem of stability can be reduced to properties
of this operator. The second main contribution consists in the derivation of sufficient conditions for stability, in terms
of upper bounds to flow rates. We show that in the case where flows are leaky bucket constrained, the new sufficient
conditions perform radically better than the previously existing results. Our results improve over the “RIN result” by
generalizing it to networks with leaky bucket constrained flows, with nodes of different service rates, and packets
of different sizes. We show that in the homogeneous network setting, the new bounds are at least as good as those
in the “RIN result”. We finally derive an expression for a bound to delay at all nodes.
The paper is organized as follows: in Section II we introduce the network model and the main concepts used in
the present paper, and we define the states’ space. In Section III we present an operator that represents the state
transition function of our network, and we characterize the evolution over time of the state variables, showing how
stability properties of the network are associated to the properties of the operator F .
In Section IV we derive the new sufficient stability condition. Finally, in Section VI the new results are assessed on
a set of networks, and their performance compared to existing results.

II. MODEL AND ASSUMPTIONS

A. Network Model

We assume the traffic in the network is organized in flows: each flow f is constrained by a leaky bucket arrival
curve, of the form σf + ρf t, and in general it has packets of different size. We assume for each flow there exists
a finite set of possible packet sizes. We consider a network whose nodes are store-and-forward, FIFO schedulers,
that perform aggregate scheduling. Each node offers to the aggregate of flows a service curve of the rate-latency
type βr,T (t) = r(t− T )+, with service rate r and latency T , generally different for each node. We assume service
curves are strict (i.e. during a busy period of duration u, the output of the system is at least βr,T (u))[14]. This is
a very general node model, encompassing many scheduling disciplines (e.g. priority schedulers, or FIFO constant
rate schedulers).
With ∆n we denote the propagation delay of the link at the output of node n.



TABLE I
NOTATION USED IN THE PAPER.

Symbol Definition
Nn, Nn Set of all flows passing through node n, of cardinality Nn

N Set of all flows in the network
path(f) Ordered sequence of nodes, constituted by all the nodes traversed by flow f
I(n) Set of all the nodes in the ordered sequence of nodes n;

σf + ρf t Arrival curve for flow f at the input to the network, with burstiness σf and sustainable
rate ρf

Un
f Set of those nodes belonging to path(f) that precede node n on the path of flow f

Dn
f , Dn

f Set of all the flows that arrive at node n from the same node as flow f , of cardinality
Dn

f

an
f Amount of flow f ’s bytes present in the queue at node n at time 0.

rn Service rate of node n
Tn Latency of node n
∆n Propagation delay

prec(n, f) Node that precedes node n on the path of flow f
Lf Maximum packet size for flow f

We define a relevant network event as the dequeuing of a packet at a node. Starting from t = 0, we consider the
(ordered) succession of time instants tp, p ∈ N associated to relevant network events in the considered network. tp
denotes the time instant of the p-th network event. As we have a finite set of packet sizes for each flow, we have a
finite number of network events in any finite time interval.
We assume that at time 0 at each node n and for each flow f passing from that node there are an

f ≥ 0 bytes from
flow f in the queue.

B. Definition of the State Variables

In order to model the network as a dynamical system, a crucial aspect is the choice of the state variables of the
analyzed system. Our choice is based on the concept of super chain, first defined in [2]. Before describing in detail
our definition of state variables, we recall here some definitions from [2][14]:

Definition 2.1: Given two packets c and d, and a node n, we say that c 4n d if c and d are in the same busy
period at n, and c leaves n before d.

Definition 2.2: Consider a sequence of packets c = (c0, ..., cK) and a sequence of nodes n = (n1, ..., nK) (all
different). We say that (c, n) is a super chain if
• nodes n1, ..., nK are all on the path of packet c0;
• cj−1 4nj

cj , j = 1, ...,K;
• the path of packet cj from nj to nj+1 is a subpath of the path of c0.

We call the path of packet c0 from n1 to nK the path of the super chain.
We now introduce some more definitions: We define a super chain (c, n) in which the first packet c0 belongs to flow
f as a super chain relative to flow f .

Definition 2.3: We say that a packet c is inserted in a super chain (c, n) if either c = cj , j = 0, ...,K, or there
exists an index l = 1, ..., K, for which it holds cl−1 4nl

c 4nl
cl.

The choice of state variables made in this paper is the following: For any flow f in the network, and for any time
instant tp, we consider the variable mf [p], that represents the maximum number of bytes ∈ f that can be inserted
in any super chain relative to flow f , up to time tp.
We indicate with m[p] the array of all the variables mf [p] relative to all flows in the network, for the time instant
tp.

C. Strongly Connected Components

We consider the connectivity graph of the network: it constitutes a digraph, that can be partitioned in a set of
strongly connected components. We have the following result [15], that allows to study the stability of each strongly
connected subnet independently from all the others:



Lemma 2.1: A network is stable if and only if all its strongly connected components are stable.
Proof:If a network is stable, then of course all its strongly connected components will be stable. The converse
statement is derived from applying Propositions (1) of [16] in networks with leaky bucket constrained flows. ut

Therefore, in the remainder of the paper we consider networks composed of a single strongly connected subnet,
as the extension to the general case follows immediately from Lemma 2.1.

III. STABILITY IS RELATED TO THE PROPERTIES OF THE NETWORK’S STATE TRANSITION FUNCTION

In this section we derive a model of the network as a dynamical system, and we derive the expression of the state
transition function of the network, which describes the evolution over time of the state variables.

Theorem 3.1: For any integer p > 0, we have:
{

m[p] ≤ F (m[p− 1])
m[0] ≤ L

(1)

where F is the operator defined by F (x) = x′, with

x′f ≤ ρf


 ∑

n∈I(path(f))

{
maxf ′∈Dn

f
Lf ′ +

∑
f ′∈Nn an

f ′

rn
+ +Tn + ∆n}+

∑

f ′

xf ′
∑

n′∈G(f,f ′)

S(n′)


+

∑

n∈I(path(f))

an
f+σf

where:
• S(n) = 1

rn1
+

∑K
j=2

(
1

rnj

− 1
rnj−1

)+

• G(f, f ′) is the set of maximal common subpaths between flows f and f ′.
• L is the array of the maximum packet sizes for each flow in the network.

The proof of this result is in Appendix A. Theorem 3.1 describes the evolution over time of m[p]. Intuitively, if the
value of all the state variables is bounded over time, then also for any flow f in the network the maximum number
of bytes that can be served at any node during a busy period (and therefore the duration of the busy period itself)
will be bounded over time, and this implies the stability of the network.
The following result shows how we can derive from the properties of the state transition function in Theorem 3.1
the stability properties of the network:

Theorem 3.2: Let’s consider leaky bucket constrained flows. Call m∗ a solution of the fixed point problem m =
F (m), where F is the operator defined in Theorem 3.1. Then if m∗ is finite, the network is stable.
The proof of this result is in Appendix B. The derivation of delay bounds is based on the following result:

Theorem 3.3: If m∗ is a finite solution of the fixed point problem in Theorem 3.2, then for each node n in the
network an upper bound to packet delay is given by

min
f∈Nn





∑

f ′∈Nn\Dn
f

m∗
f ′

rn
+

∑

f ′∈Dn
f

m∗
f ′

(
1
rn
− 1

rprec(n,f)

)+


 +

∑
f ′∈Nn an

f ′ + maxf ′∈Nn Lf ′

rn
+ Tn + ∆n (2)

Proof:It derives immediately from Lemma A.1. ut
IV. SUFFICIENT STABILITY CONDITIONS GENERALIZE THE RIN RESULT TO REAL NETWORK

We introduce here one of the main results of the present paper, which consists in a sufficient condition for the
stability of an aggregate scheduling network in which flows are leaky bucket constrained. This represents a case of
particular interest in applications: as an example, the network model in the DiffServ framework is based on leaky
bucket constrained flows.

Theorem 4.1 (Generalized Source Rate Condition): With the given assumptions on network, if flows are leaky
bucket constrained, if for any flow f (whose path we indicate with (n1, ..., nK)) its rate ρf satisfies the condition:



ρf <


Nn1

rn1

+
K∑

j=2

Nnj −D
nj

f

rnj

+ D
nj

f

(
1

rnj

− 1
rnj−1

)+


−1

(3)

then the network is stable.
Proof:When flows are leaky bucket constrained, the operator F defined in Theorem 3.1 is linear. In this case the
condition on the fixed point problem in Theorem 3.2 to have a finite solution is to have the spectral radius of the
matrix of the system be inferior than one. A sufficient condition for this to be true is to have the matrix row sums
smaller than one. By imposing this last condition we get (3). ut

One of the main features of Theorem 4.1 is that it generalizes the “RIN result”, which can be entirely derived as
a special case of Theorem 4.1:

Corollary 4.1: If we consider the homogeneous network model, assuming arrival curves for fresh flows are of the
staircase type, and for any flow f in the network the packet inter-arrival time τf satisfies the condition τf ≥ RINf +1,
where RINf is the route interference number of flow f [2], then the network is stable.
Proof:We note that each flow constrained by a staircase arrival curve with period τf is also constrained by a
leaky bucket arrival curve, with rate ρf = 1

τf
. Then Corollary 4.1 descends from applying Theorem 4.1 with the

homogeneous network settings. ut
We can therefore note that the sufficient stability conditions in Theorem 4.1 extend the “RIN result” to leaky

bucket constrained flows and removes the constraints on network homogeneity. The quantity at the denominator
of the bound in (3) can be interpreted as a generalization of the concept of route interference number (RIN) of
a flow. The new sufficient conditions in (3) hold not for a whole network, but for each of its strongly connected
components separately. When a flow f traverses more then one strongly connected subnet, the condition on its rate
ρf is the tightest among all those derived from (3) for each strongly connected subnet that it traverses. Another
difference with respect to the “RIN result” is that while that result is derived by implicitly assuming the network to
be empty at t = 0, the sufficient conditions derived here are valid independently of the buffer content at all nodes
at t = 0. Finally, we note that the new sufficient conditions in (3) hold also for staircase arrival curves, as each flow
constrained by a staircase arrival curve with period τ is also leaky bucket constrained, with rate ρ = 1

τ .

V. DISCUSSION OF TIGHTNESS

For a generic network, determining the tightness of the sufficient conditions for stability in Theorem 4.1 is an
open issue. However, we can get an idea of how those sufficient conditions perform by applying them to some
network examples for which we know their stability behavior.
One example is given by feed-forward networks, known to be always stable, provided that node utilization is inferior
to one. For these networks, each node represents a strongly connected component of the network. Therefore, sufficient
conditions in Theorem 4.1, applied to each node in isolation, give a maximum node utilization of 1.
Another example of a network that is known to be always stable is the ring [10], provided that node utilization is
strictly smaller than one. In these networks, sufficient conditions in Theorem 4.1 perform differently according to
the number of flows in the ring and to their path, and in general they impose tighter conditions on flow rates than
those derived by the natural condition at each node. Another check of the tightness of the sufficient conditions in
(3) can be done by applying them over the network described in [5] as an example of instability. We see that, with
the assumptions in that example, the maximum node utilization is at least a factor of K3 larger than the one we
obtain when imposing on flow rates the sufficient conditions in (3), where K ≥ 2 is a parameter relative to the size
of the network and to the path length of a flow.

VI. NUMERICAL ASSESSMENT OF THE RESULT

An important feature of these results is their dependence on network topology. Therefore, in order to assess
numerically the quality of the sufficient conditions in Theorem 4.1, we applied them over a set of n networks. The
physical topology of the networks was generated using the BRITE network generator [17], with a node degree not
smaller than 2. Path flows were determined using the Dijkstra algorithm, and selected in order to have a final hop
count distribution close to the experimental ones [13]. The distribution of link rates approximates the one from



Fig. 1. Distribution of node utilization in 100 networks, with all flow rates equal to 99.5% of the bounds in Theorem 4.1. The average
node utilization is of 0.1460, with a standard deviation of 0.1340. The vertical line represents the maximum node utilization value that can
be derived by applying the DiffServ bound [1], equal to 0.0455 for the considered networks. The new sufficient conditions for stability bring
an average network utilization which is more than three times larger than the maximum node utilization that we can have by applying the
DiffServ bound.

experimental data available in [18]. The resulting networks had a number of links between 80 and 100, a total
number of flows between 180 and 200 an average hop count of 10.33, and a maximum hop count of 23. In Fig. 1
we have the empirical distribution of node utilization in the considered networks, where flow rates have been set to
99.5% of the value determined by bounds in (3).
We see that we have an average node utilization of 0.1460, with a standard deviation of 0.1340. The only other
available result for this kind of network and flow arrival rates is the “DiffServ bound”, that depends on the maximum
hop count in the network (note that the “RIN result” does not apply in these network settings). Experimentally [13]
it has been verified that the maximum hop count in a network can be larger than 23: so the “DiffServ bound” would
bring to a maximum node utilization in the network of 0.0455. Therefore, the new sufficient conditions for stability
bring an average node utilization which is more than three times larger than the (maximum) node utilization that
we can have by applying the “DiffServ bound”.

VII. CONCLUSION

In this paper we consider the problem of deriving good sufficient conditions for stability in networks of FIFO
aggregate schedulers, when their connectivity graph has a generic topology. The main existing sufficient conditions
for stability in these networks are either based on strong limiting assumptions on the network, and on ad-hoc proofs,
difficult to generalize, or imply very low values of node utilization. In this paper we develop an algebraic approach
to the problem, and we propose a model of the network as a dynamical system that does not rely on any limiting
assumption on network and packet dynamics, and we show how the stability of the network is related to the properties
of the state transition function. Hence we derive new sufficient conditions for stability, valid also for leaky bucket
constrained flows and that hold without any of the restrictions on network and flows of the “RIN result”. We show
that in practical cases, in networks with a realistic hop count distribution the new sufficient conditions perform
radically better than the main existing result that applies to these networks (the “DiffServ bound”), thus allowing
for an average node utilization that is more than three times larger than the maximum value obtainable with the
“DiffServ bound”. We also prove that the “RIN result” can be derived as a special case from our approach. We
finally derive an expression for delay bounds at all nodes.
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APPENDIX

A. Proof of Theorem 3.1

Definition A.1: The super chain time is the time at which the last packet in the super chain is served at the last
node of the super chain.
Also, with reference to Definition 2.2, at each node nj on the path of the super chain we call the packets cj−1 and
cj respectively open packet and close packet for that node.

Lemma A.1: The delay of a packet of flow f that arrives at a node n with service rate rn and latency Tn on a
link with rate r′ is upper bounded by the quantity

Θ
rn

+ Γ
(

1
rn
− 1

r′

)+

+
C + maxf ′∈Dn

f
Lf ′

rn
+ Tn + ∆n (4)

where Θ and Γ and C represent sum of packet sizes for packets served in the same busy period as the considered
packet and before this packet. Θ and Γ refer to packets arrived at the node respectively, on the same link as the
considered packet and from other nodes or sources, while C refers to packets present at the node at t = 0.

Proof:The delay of the considered packet is the same it would experience in the case in which no packet arrives
at the node before the beginning of the considered busy period and after the arrival of the considered packet: so
we consider this case. Then the bound in (4) derives from computing the maximum horizontal distance between
an aggregate arrival curve for all input flows of the form Θ + maxf ′∈Dn

f
Lf ′ + min(Γ, r′t), and the service curve

rn(t− Tn − C/rn), and including the constant delay ∆n. ut
Proof of Theorem 3.1: we proceed by induction on the index p of relevant network events.

Base case: p=1. In order to upper bound the quantities mf [1], for any flow f , the worst case to consider is the one
in which the first two relevant network events in the network are relative respectively to the first and the second
packet served in the same busy period at a given node n.
Therefore we put in this case, and we consider the busy period that starts at node n at t = 0, in which the first



and the second packets served belong respectively to flows f and f ′. We have in this case a super chain relative
to f formed by two packets and a single node, n. t1 is the time at which the second packet in the busy period is
served. As it must be in the same busy period as the one served at t0, then it must have arrived at the node by
time t0 (t0 is the time after which the node starts serving the second packet, which should then be already at the
node). As a consequence, taking into account those packets present at the node at t = 0 too, we have for flow f
that mf [1] ≤ αf (t0) + an

f . As t0 ≤ (mf [0] + mf ′ [0] + Lf )/rn + ∆n + Tn, inequality in (2) holds.
Induction step. We try to find an upper bound to the variable mf [p]. Let’s consider a given super chain (c, n)
relative to flow f and with time tq, q ≤ p, and let’s define the duration of this super chain the time interval since
the emission time of c0 (the first packet of this super chain) up to time tq−1. The maximum number of flow f ’s
bytes that can be inserted in this super chain is upper bounded by the maximum number of bytes from that flow
that can be emitted during its duration (and not up to time tq, as in order to be served by time tq or before at the
last node of the super chain, a packet must arrive at that node by time tq−1), plus all the flow f ’s packets present
at t = 0 in the network.
In what follows, we derive an upper bound to the duration of the considered super chain. For each node nk, k =
1, ...,K in the sequence of nodes path(f), we indicate with ∆tint,k the delay experienced at node nk by the open
packet at that node (for nodes ∈ I(path(f))\I(n) we consider the open packet to coincide with the close packet).
If Θk and Γk represent sum of packet sizes for packets served in the same busy period as the open packet and
before it, and coming from node nk−1 (or from the same source as flow f ), and from other nodes (or from fresh
flows different than f ), using Lemma A.1 we have for k ≥ 1

∆tint,k ≤ Θk

rnk

+ Γk

(
1

rnk

− 1
rprec(nk,f)

)+

+
C ′

k + maxf ′∈Dnk
f

Lf ′

rnk

+ Tnk
+ ∆nk

= Bk + Tnk
+ ∆nk

(5)

where C ′
k is relative to packets present at the node at t = 0.

If ∆tk is the time interval between the departure of the open packet and of the close packet, using the definition of
strict service curve, we write

∆tint,k + ∆tk ≤ Bk + Tnk
+ ∆nk

+
γk + θk + Ck

rnk

(6)

where γk and θk are the sum of packet sizes for packets arrived at node nk respectively, from node nk−1 (or from the
same source as flow f ), and from other nodes (or from fresh flows different than f ), and inserted in the considered
super chain, and Ck is relative to packets present at the node at t = 0. Therefore an upper bound to any super chain
(c, n) relative to flow f and with time time tq, q ≤ p is obtained by summing up the bounds in (6) over all the
nodes in the path of flow f . At each node nk, each of the terms γk, θk, Γk, Θk, Ck, C ′

k can be written as a sum
of the contributions from all the input flows at the node. For instance, for Θk we can write Θk =

∑
f ′∈Nnk Θk

f ′ . For
any flow f ′ (not necessarily distinct from f ), ∀n′ = (nl, ..., nl+K′) ∈ G(f, f ′), the contribution to the upper bound
to the super chain duration is of the form

Θl
f ′ + θl

f ′

rn′l

+
l+K′∑

k=l

[
Γk

f ′

(
1

rn′k

− 1
rn′k−1

)+

+
γk

f ′ + a
n′k
f ′

rn′k

]
(7)

By definition of the variables mf [p], we have that ((...(Θl
f ′ + θl

f ′ +Γl
f ′ +γl

f ′+)∨Γl+1
f ′ +γl+1

f ′ )∨Γl+2
f ′ +γl+2

f ′ )∨ ...∨
Γl+K′

f ′ + γl+K′

f ′ ≤ mf ′ [p]. Therefore, the quantity in (7) is upper bounded by mf ′ [p]S(n′)+
∑

n′∈I(n′) an′
f ′/rn′ . Then

for the considered super chain (as well as for any super chain relative to flow f with time ≤ tp), putting together



the contribution from all flows, we finally get the following upper bound to the super chain duration:

∑

f ′

mf ′ [p]
∑

n′∈G(f,f ′)

S(n′) +
∑

n∈I(path(f))

(
maxf ′∈Dn

f
Lf ′ +

∑
f ′∈Nn an

f ′

rn
+ Tn + ∆n

)

Then using the expression of flow f ’s arrival curve, and taking into account those packets from flow f present in
the buffers in the network at t = 0, we finally derive the upper bound in (2). ut
B. Proof of Theorem 3.2

Proof:As flows are leaky bucket constrained, the operator F is linear, and takes the form Ax + b with A a
nonnegative matrix. For any flow f , the burstiness σf ≥ Lf , therefore b ≥ L. Therefore, any m∗ that satisfies
m∗ = F (m∗) is m∗ ≥ L. Now, as the mapping function F is monotone increasing, we have for any integer
p > 0, m[p] ≤ F (m[p − 1]) ≤ F p(m[0]) ≤ F p(L) ≤ F p(m∗) = m∗. Then if m∗ is finite, busy period duration at
each node is bounded over time, and therefore also queue size and maximum packet delay. ut


