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ABSTRACT

Recent results in compressed sensing or compressive sampling suggest that a relatively small set of measurements
taken as the inner product with universal random measurement vectors can well represent a source that is
sparse in some fixed basis. By adapting a deterministic, non-universal and structured sensing device, this paper
presents results on using the annihilating filter to decode the information taken in this new compressed sensing
environment. The information is the minimum amount of nonadaptive knowledge that makes it possible to go
back to the original object. We will show that for a k-sparse signal of dimension n, the proposed decoder needs 2k
measurements and its complexity is of O(k2) whereas for the decoding based on the �1 minimization, the number
of measurements needs to be of O(k log(n)) and the complexity is of O(n3). In the case of noisy measurements,
we first denoise the signal using an iterative algorithm that finds the closest rank k and Toeplitz matrix to the
measurements matrix (in Frobenius norm) before applying the annihilating filter method. Furthermore, for a
k-sparse vector with known equal coefficients, we propose an algebraic decoder which needs only k measurements
for the signal reconstruction. Finally, we provide simulation results that demonstrate the performance of our
algorithm.

Keywords: Compressed sensing, Sparse signals, Annihilating filter, Vandermonde matrix, Yule-Walker equa-
tion, Basis Pursuit, Orthogonal Matching Pursuit

1. INTRODUCTION

The tradition in the signal processing community has been to sample the data at high rates and try to compress
the data acquired soon after it has been captured. This method is wasteful of sensing resources when the
signal is compressible. It is interesting to merge the sampling and compression parts in one phase, which is the
idea of Compressed Sampling or Sensing (CS). This means that one tries to measure the minimum amount of
information necessary to reconstruct the object so further compression would prohibit perfect reconstruction.
The question that naturally arises is what are the best measurements to take? Obviously, these measurements
should be nonadaptive in the sense that they should not depend on the specific object they are dealing with
(except that the object is compressible) and the measurements should convey enough information for a practical
recovery mechanism of the original signal.

Let us set up the problem. Consider a discrete, finite dimensional data vector x ∈ R
n such that x can be well

approximated by k � n linear combination of vectors of a basis Ψ = [ψ1, ψ2, · · · , ψn]. In this case, it is possible
to write x = Ψθ where θ is a column vector of length n with k dominant coefficients. The theory of compressed
sensing as developed in Refs. 1 and 2 shows that x can be recovered from m = O(k log(n)) projections given by
y = Φx, where Φ is an m × n matrix incoherent with the columns of Ψ. Incoherency between Φ and Ψ means
that the rows of Φ do not have a sparse representation in terms of the columns of Ψ, otherwise, the product ΦΨ
will be a sparse matrix and is not appropriate to measure another sparse vector θ.

Commonly used measurement matrices for CS are i.i.d Gaussian or Bernoulli (random ±1) random matrices
which are incoherent with nearly all bases Ψ. Hence, when using a random matrix, CS is called universal in the
sense that the encoder can measure almost any sparse signal with the same measurement matrix no matter in
which basis the signal is sparse. However the knowledge of the random measurement matrix and the sparsity
basis are necessary to recover the original signal x from the measurement vector y.

The recovery phase can be implemented as an optimization program that searches for the vector θ with
the smallest �0 norm that conforms to the measurements in vector y. The �0 optimization problem succeeds
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with high probability with m = k + 1 measurements (Not all the signals can be recovered perfectly; those
that can not be recovered have probability measure zero), see Ref. 3. However, the �0 optimization is NP-
complete as described in Ref. 4. The signal recovery part of CS is achieved by solving an �1 norm minimization
problem on the sparse vector θ: min‖θ‖1 subject to ΦΨθ = y. The practical aspect of CS is that by taking
m = O(k log(n)) measurements with an incoherent basis, with high probability, the �1 norm optimization will
solve the NP-complete �0 equivalent. This optimization problem, also known as Basis Pursuit (BP) is significantly
more approachable and can be solved with traditional linear programming techniques whose computational
complexity is of O(n3), see Ref. 5. At the expense of slightly more measurements and less complexity, iterative
greedy algorithms under the name of Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP) have
also been developed for the recovery as described in Refs. 6 and 7. MP and OMP are greedy algorithms that
iteratively reconstruct the original signal.

In this paper we propose a new sensing and reconstruction strategy in which by using a deterministic, non-
universal and structured sensing device, it is possible to recover a signal which is k-sparse in an orthonormal or
biorthogonal basis with only 2k measurements and O(k2) complexity. Considering the number of measurements
and the complexity of BP, which are O(k log(n)) and O(n3) respectively, our algorithm is thus interesting. In our
new scheme, we exchange universality for fewer measurements and less complexity in the sense that the encoder
should also be aware of the underlying sparsity basis. The measurement matrix Φ has a deterministic structure
and is constructed by using an arbitrary Vandermonde matrix and the sparsity basis Ψ. On the decoder side,
we propose the annihilating filter as an algebraic decoder to recover the original signal x. In the noisy case, we
propose an iterative algorithm to denoise the signal before applying the annihilating filter. Moreover, we develop
a new algebraic decoding algorithm that needs just k measurements in the special case when the sparsity vector
θ has k equal coefficients.

This paper is organized as follows: in Section 2 we see the annihilating filter structure and its properties.
In Section 3, we present our new encoding and decoding algorithms in both noiseless and noisy scenarios. In
Section 4, the decoding structure for the sparse signals with equal coefficients is introduced. Finally, Section 5
reports the simulation results.

2. ANNIHILATING FILTERS

In this section we give an overview of the annihilating filter method as the tool that will be used in the rest of
the paper to decode the CS information. This technique was mostly developed in the area of parametric spectral
estimation where the problem is to estimate the parameters of a linear combination of complex exponentials
from a set of measurements, see Ref. 8. This idea was also employed by Vetterli et al. to devise a sampling
method for signals with finite rate of innovation, see Ref. 11. Consider the signal S[n] which consists of the sum
of k exponentials

S[n] =
k−1∑

i=0

ciu
n
i , (1)

in which ci ∈ R and ui ∈ C. A filter A[n] is called the annihilating filter of the signal S[n] when (A ∗ S)[n] =
0 ∀n ∈ N. It is easy to verify that the filter H(z) = 1 − uz−1 annihilates the exponential signal x[n] = un so
we have the following proposition

Proposition 1. The signal S[n] is annihilated by the filter

A(z) =
k−1∏

i=0

(1 − uiz
−1) =

k∑

�=0

A[�]z−�. (2)
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Proof. Note that

(A ∗ S)[n] =
k∑

�=0

A[�]S[n− �] (3)

=
k∑

�=0

k−1∑

i=0

ciA[�]un−�
i (4)

=
k−1∑

i=0

ci

(
k∑

�=0

A[�]u−�
i

)

︸ ︷︷ ︸
A(ui)

un
i = 0. (5)

The annihilating filter method consists of finding the values of ci and ui in S[n] and is composed of three
parts: First we need to find the annihilating filter that involves solving a linear system of equations; second, we
need to find the roots of the z-transform of the filter which is a nonlinear operation; third, we must solve another
linear system of equations to find the weights.

1. Finding the annihilating filter.
The filter coefficients A[�] should satisfy

k∑

�=0

A[�]S[n− �] = 0 ∀n ∈ Z (6)

In matrix form, the system in equation (6) is equivalent to
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
... · · · ...

S[k] S[k − 1] · · · S[0]
S[k + 1] S[k] · · · S[1]

...
...

. . .
...

S[2k − 1] S[2k − 2] · · · S[k − 1]
...

... · · · ...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎛

⎜⎜⎜⎝

A[0]
A[1]

...
A[k]

⎞

⎟⎟⎟⎠ = 0. (7)

If at least 2k values of S[n] are available, the system of equations (7) will admit a solution when Rank(S)
= k, where S is the matrix of the signal values S[n] in equation (7).

2. Finding the ui.
Once the filter coefficients A[n] are found, the values ui are the roots of the annihilating filter A(z).

3. Finding the ci.
To determine the weights ci, it suffices to take k equations in (1) and solve the system for ci. In matrix
form, equations will form a Vandermonde system

⎡

⎢⎢⎢⎣

1 1 · · · 1
u0 u1 · · · uk−1

...
...

. . .
...

uk−1
0 uk−1

1 · · · uk−1
k−1

⎤

⎥⎥⎥⎦ ·

⎛

⎜⎜⎜⎝

c0
c1
...

ck−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

S[0]
S[1]

...
S[k − 1]

⎞

⎟⎟⎟⎠ , (8)

and has a unique solution when up �= uq,∀p �= q.
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3. THE DETERMINISTIC NON-UNIVERSAL CS FRAMEWORK

One of the properties introduced by employing random projections in the original CS structure is its universality.
This allows the same encoding strategy irrespective of the sparsity basis Ψ in which the input signal is sparse
(assuming of course that Ψ is known at the decoder). The price for this universality is that the recovery
algorithms have high complexity with respect to the signal dimension and that the number of measurements
should be larger than the degrees of freedom of the class of sparse signals for a successful reconstruction even in
the noiseless case.

In the new CS framework developed in this paper, we use a tradeoff between universality on one side and
number of measurements and complexity on the other side. The non-universality in the new structure comes
from the fact that the encoder should have the knowledge of the sparsity basis Ψ to construct the measurement
matrix Φ and take the measurements. We have the following proposition

Proposition 2. Let x ∈ R
n be a discrete time signal. Assume x is k-sparse in an orthonormal or biorthogonal

basis Ψn×n and build the matrix Ψ̃n×n such that Ψ̃ ∗Ψ = In×n. The rows of Ψ̃ are the dual basis vectors of the
space which represents the signal. Take any Vandermonde matrix Γ2k×n of the form

Γ2k×n =

⎛

⎜⎜⎜⎝

zp
1 zp

2 · · · zp
n

zp+1
1 zp+1

2 · · · zp+1
n

...
...

. . .
...

zp+2k−1
1 zp+2k−1

2 · · · zp+2k−1
n

⎞

⎟⎟⎟⎠ ,

(9)

where zi, i = 1, . . . , n are distinct, nonzero complex numbers and p is an arbitrary real number. Construct the
measurement matrix Φ2k×n = Γ ∗ Ψ̃. Take the measurements y = Φ ∗ x. Then the measurement vector y is the
unique representation of the data vector x and it is possible to perfectly reconstruct x with O(k2) operations.
Moreover, the number of measurements can not be relaxed without sacrificing perfect reconstruction.

From Proposition 2, the following corollary is immediate

Corollary 1. Proposition 2 is applicable for the space of continuous-time signals x which are sparse in some
biorthogonal or orthonormal continuous-time basis with a countable number of basis functions. In this case, the
rows of the measurement matrix Φ2k×. will be continuous time signals.

In the two following subsections, we will see the encoding and decoding structure of our CS structure in
detail.

3.1 Sensing Mechanism

On the sensing side of the system, the encoder chooses any Vandermonde matrix Γ of the form given in equa-
tion (9) with at least 2k rows. An appropriate choice for the elements zi in equation (9) is the roots of unity
ej 2πi

n . In this case, the rows of the Vandermonde matrix will be 2k consecutive rows of a full Fourier matrix of
size n × n. Since the signal x is k-sparse in the basis Ψ, it is possible to represent it as x = Ψθ where θ is a
vector of length n with only k nonzero elements. The encoder builds the fixed measurement matrix Φ = Γ ∗ Ψ̃.
The vector of measurements, y, will be given by y = Φ ∗ x = Γ ∗ θ so the Vandermonde matrix Γ is multiplied
directly with the k-sparse vector θ.

If the number of measurements in the encoding process is greater or equal to 2k, where k is the sparsity of
the input signal, there is a one to one correspondence between the measurements and the k-sparse signals in the
sense that two k-sparse signals x1 and x2 which give the same measurement vector y should be identical. This is
the direct consequence of the fact that in a Vandermonde matrix of size 2k × n as in equation (9) with distinct
zi, any 2k columns are linearly independent. Therefore, the two k-sparse data vectors x1 and x2 producing the
same measurement vector y of size 2k must be identical; their difference x = x1 − x2 has at most 2k nonzero
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elements and will map to zero by 2k linearly independent columns of the Vandermonde matrix Γ so the difference
vector x should be an all zero vector and x1 = x2. This argument points out that in the new CS mechanism, no
information about the sparse signals is lost on the encoder side.

We remark that the original k-sparse signal x has 2k degrees of freedom that corresponds to the k positions
and k weights of the non-zero elements of the k-sparse vector θ. Therefore, there is no CS algorithm of any kind
that is able to find its way back for all k-sparse vectors x with less than 2k measurements; It is easy to show
that for less than 2k measurements, there are two k-sparse vectors x1 and x2 that map to the same measurement
vector y. This suggests that our CS structure is optimum in the number of measurements.

3.2 Recovery Mechanism

3.2.1 Noiseless recovery

The reconstruction algorithm uses standard linear algebra techniques based on the annihilating filter structure
described in Section 2. Using the same model as in Proposition 2, the vector of measurements, y = Φ∗x = Γ∗ θ,
can be written as

y[n] =
k∑

i=1

ciz
p+n−1
ni

n = 1 , . . . , 2k, (10)

where ci and ni, i = 1, . . . , k represent the unknown nonzero coefficients and their positions in the vector θ. An
annihilating filter of length k+1 is first identified as a polynomial that zeros out the measurements, y∗h = 0. The
zeros of the annihilator gives the values for the unknowns ni which indicate the index of the basis vectors of Ψ
that construct the sparse signal x. In this process, the annihilating filter equation is a Yule-Walker system which
is solvable in O(k2) operations, see Ref. 9. To find the locations of the nonzero coefficients, the annihilating filter
should be factorized. Recently it has been shown that factorizing a k degree polynomial can be done in O(k2)
operations as described in Ref. 10. Finally the weights of the nonzero coefficients of the signal are obtained by
solving a Vandermonde system in O(k2) operations, see Ref. 9, so the whole reconstruction complexity is O(k2).
Compared to the Basis Pursuit which has complexity O(n3), our algorithm is computationally more efficient and
requires less measurements in the general case when k � n.

3.2.2 Signal recovery with noisy measurements

Noise and model mismatch are two major factors that makes the solution presented in Section 3.2.1 only ideal.
Quantization errors can also be an important source of noise to the measurements and model mismatch, when
the input signal x is not exact sparse in the basis Ψ, is omnipresent in practice. To achieve robustness to these
sources of non-idealities, there is no way but to increase the number of samples to more than 2k.

Researchers in spectral analysis have tried to solve the related problem of finding sinusoids in noise for a
number of years, see Ref. 8. One of the difficulties is that there is not yet an agreed optimal algorithm for this
problem although there have been numerous evaluations of different methods as described in Ref. 12. Our choice
for tackling the noise is based on what was presented in Ref. 13. The basic idea is first trying to denoise the
measurements before applying the annihilating filter method to estimate the unknown parameters. Assume that
the number of measurements is increased from the minimum 2k to M . From the noisy measurement vector y,
we build the matrix A of size (M − L) × (L+ 1) as

A(M−L)×(L+1) =

⎛

⎜⎝
yL+1 yL · · · y1

...
...

. . .
...

yM yM−1 · · · yM−L

⎞

⎟⎠ , (11)

in which L ≥ k and M−L ≥ k. In the noiseless scenario, the matrix A should be a Toeplitz matrix of rank k but
due to noise in the measurements, neither of these properties are satisfied. The signal enhancement procedure is
a convergent iterative algorithm that finds the closest Toeplitz matrix of rank k to matrix A where the distance
between two matrices is measured by the Frobenius norm, see Ref. 14. For any given matrix A, the closest
Toeplitz matrix to A is the one given by averaging the elements of matrix A along its diagonals. On the other
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hand, the closest rank k matrix to A is given by taking the SVD of A and keeping just its k dominant singular
values. To find the closest Toeplitz matrix of rank k to matrix A, the signal enhancement algorithm iteratively
maps the matrix A on the two spaces of (rank k) and (Toeplitz) matrices. Since the mappings are closed, the
iterations converge to a matrix in the intersection of the two spaces which is closest to initial matrix A in the
Frobenius norm, as shown in Ref. 14. The iterations stop when the ratio of the singular values σk+1

σk
is smaller

than a pre-requisite factor. After this denoising step, we use the algorithm in Subsection 3.2.1 to get an estimate
of the unknown parameters of the signal. Our observations show that as the matrix A is closer to a square
matrix, i.e. L � [M

2 ], the enhanced matrix will be closer to the noiseless one.

Although the number of iterations necessary for convergent is typically small (less than 10), the computational
cost of the algorithm is high compared to the noiseless case because in each iteration, it requires performing
the SVD of a square matrix of size approximately M

2 which has complexity of O(M3), see Ref. 9. Since M is
proportional to the sparsity level k with the oversampling factor c, M = c · k � n, this complexity scales with
k and not with the signal dimension n. Despite the computational load, the simulations done in Ref. 13 shows
that the denoising algorithm exhibits a quasi-optimal behavior close to the Cramer-Rao bound down to noise
levels of the order of 5 dB (depending on the number of measurements).

4. ALGEBRAIC RECOVERY OF SPARSE SIGNALS WITH EQUAL COEFFICIENTS

The class of sparse signals considered in the previous sections has 2k degrees of freedom which represents k
basis vectors and their respective weights that constructs the input signal x. It is reasonable that to be able
to reconstruct all the k-sparse signals perfectly, we need at least 2k measurements. With respect to this, it is
natural to think that if there is some knowledge about the position or the values of the coefficients, the minimum
number of measurements needed should be less than 2k.

In this section we show the result of reducing the number of measurements from 2k to k whenever the
weights of different basis vectors constructing the signal are equal and known a priori. The direct annihilating
filter method discussed in Section 2 still needs 2k measurements and can not use the knowledge about the weights
to reduce the number of measurements. The vector θ is now a set of equal weight discrete diracs with unknown
positions as if the information is just on the position of the diracs and not on their weights.

Without loss of generality, assume that the sparsity inducing basis Ψ is equal to the identity matrix. We
have the following proposition

Proposition 3. Let x ∈ R
n be a discrete time signal which consists of k discrete diracs with equal known

weights (assume it to be equal to 1)

x[m] =
k∑

q=1

δ [m−mq] m = 1, · · · , n . (12)

Let the measurement matrix be

Φk×n =

⎛

⎜⎜⎜⎝

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

...
...

xk
1 xk

2 · · · xk
n

⎞

⎟⎟⎟⎠ , (13)

where xi, i = 1, . . . , n are distinct nonzero complex numbers. Make the measurements as y = Φ ∗ x. Then the
positions of the diracs are directly connected to the roots of the polynomial

H(x) = xk − α1x
k−1 + α2x

k−2 − · · · + (−1)kαk, (14)

in which α0 = 1 and αi, i = 1, 2, . . . , k can be computed by the recursive formula

αi+1 =
∑i+1

m=1 (−1)m+1y[m]αi−m+1

i+ 1
. (15)
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Proof. The measurements vector y can be written as

y[m] =
k∑

q=1

xm
mq
, m = 1, · · · , k . (16)

Write H(x) as

H(x) =
k∏

q=1

(x− xmq
), (17)

in which mq, q = 1, . . . , k are the unknown positions of the nonzero elements of the input signal x. Define the
set S(j) as the set of all possible j tuples of {m1,m2, . . . ,mk}. Expanding the product in equation (17), the
coefficients αj in (14) can be written as

αj =
∑

S(j)

xn1xn2 · · ·xnj
, (18)

in which {n1, n2, . . . , nj} takes values from the elements of the set S(j). Let 1 ≤ i ≤ k and compute the product
αi ∗ y[1]. There are two groups of terms that appears in the result; In the first group, all the elements in each
term has power 1 and in the second group, one of the elements in the terms has power equal to 2. By rearranging
the terms

αi ∗ y[1] = (i+ 1)

αi+1︷ ︸︸ ︷∑

S(i+1)

xn1xn2 · · ·xni+1 +x2
m1

∑

S(i−1,m1)

xn1 · · ·xni−1 + . . .+ x2
mk

∑

S(i−1,mk)

xn1 · · ·xni−1 , (19)

in which the notation S(j,mq) denotes all possible j tuples of {m1,m2, . . . ,mk} without mq. To complete the
proof, it is enough to show that

x2
m1

∑

S(i−1,m1)

xn1 · · ·xni−1 + . . .+ x2
mk

∑

S(i−1,mk)

xn1 · · ·xni−1 = αi−1y[2]− αi−2y[3] + . . .+ (−1)i+1y[i+ 1]. (20)

Consider the elements on the right hand side of equation (20) in which xm1 has power 2. By factoring x2
m1

,
what remains is all the elements of αi−1 in which xm1 is not present. In order to complete this set towards
αi−1, add and subtract the terms in αi−1 in which xm1 is one of the elements. Now consider the elements on
the right hand side of equation (20) in which xm2 has power 2 and apply the same steps as it was done for xm1 .
Continuing this process up to the element xmk

, it is possible to factorize the term αi−1y[2] and the residual will
be

x3
m1

∑

S(i−2,m1)

xn1 · · ·xni−2 + . . .+ x3
mk

∑

S(i−2,mk)

xn1 · · ·xni−2 . (21)

By applying the same procedure for the expression in equation (21), one can extract the required terms needed
on the left side of equation (20) and the last residual will be

(−1)i+1
∑

S(1)

xi+1
n1

= (−1)i+1y[i+ 1]. (22)

Which completes the proof.

Consider the case in which the number of discrete diracs is known but the constant weight is unknown.
Obviously, there is one more unknown in the system and the number of measurements should be increased. By
adding the row of all one to the measurement matrix in equation (13), the unknown weight can be computed
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easily as the result of the division of the measurement corresponding to the new row by the number of diracs in
the input. After dividing all the measurements by this weight, the algorithm can be run in its standard way.

On the other hand, assume that the weight is known but the number of diracs is unknown. To find the
number of diracs in the input signal x, it is possible to apply the following algorithm: Take the mesurement,
y[i], and find the corresponding αi by the recursive formula in equation (15), starting with i = 1 and increasing
the value of i in each step by 1. Whenever αk+1 is equal to 0, the number k will be equal to the number of
diracs in the input. This argument has the assumption that not any of αj , j = 0, · · · , k is zero when there are
k diracs in the input and this assumption can be made valid by choosing an appropriate measurement matrix
in equation (13) (for example when all the elements of the first row of the measurement matrix are positive).
It is interesting to note that again, one needs 1 more measurement in this case to compensate for his lack of
knowledge about the number of diracs in the input.

5. SIMULATION RESULTS

In this section we provide simulation results showing the performance of our new sensing and recovery mechanism.
We consider the input signal x of length n = 64 with k = 4 diracs in random positions. The amplitude of the
diracs are drawn from a uniform distribution in [−1, 1]. The measurement matrix Φ is constructed based on
m = c · k consecutive rows of the discrete Fourier matrix where c is the oversampling factor. Figure 1 shows the
probability of finding the positions of the diracs in the input signal x as a function of the amount of noise added
to the measurements for different values of the oversampling factor c, averaged over 1000 trials. Note that in the
noiseless case when the oversampling factor is greater or equal to 2, the annihilating filter method can perfectly
reconstruct the input signal. As shown in Ref. 3 for the noiseless case, the Basis Pursuit algorithm needs a high
oversampling factor (c = 6 for this example) whenever the normalized sparsity defined as s = k

n is small.

In the second scenario, we compare the annihilating filter and the Basis Pursuit recovery algoirthms in
the noisy case. Consider the the same signal x of the first scenario and an oversampling factor c = 6. For
the annihilating filter method, the measurement matrix is based on the discrete Fourier matrix and a random
gaussian matrix is used to measure the input signal for the Basis Pursuit algorithm. We use the Basis Pursuit
Denoising (BPDN) method to recover the input signal with its recommended penalizing parameter λ, see Ref.
5. In each trial, the mean square error between the input and the reconstructed signal is computed and is
normalized by the input signal energy. Figure 2 shows the normalized mean square error (MSE) obtained for
the two algorithms against the amount of noise added to the measurements, averaged over 500 trials. It is clear
from figure 2 that the new sensing and recovery algorithms perform better than the BPDN algorithm in having
less MSE in the reconstruction.

In table 1, we compare the complexity of our proposed method with that of BPDN. For each value of the
signal length n and sparsity level k, we run the two decoding algorithms and find the total time needed for the
decoding processes. We put the speed factor as the ratio of the time needed for the BPDN to that of annihilating
filter method in the table. We use CVX Matlab package to implement the BPDN algorithm. To have good time
estimates, we average the time measurements over 100 trials. Our new method is much less complex than the
BPDN, especially for large signals with small sparsity levels.
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Figure 1. Probability of exact position reconstruction for the annihilating filter method versus SNR for different values of
the oversampling factor c.
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Figure 2. Mean square error of the BPDN and the annihilating filter methods versus SNR. The signal length is n = 64,
the sparsity level is k = 4 and the oversampling factor is c = 6.

Table 1. The speed factor of the annihilating filter method versus BPDN for different values of sparsity level k and signal
length n. The oversampling factor is set to c = 6 and SNR is 20 dB. The black boxes in the table are the cases where the
number of measurements are more than the signal dimension n. The entries in the table show the factor by which our
method is faster than BPDN.

k = 2 k = 4 k = 6 k = 8 k = 12 k = 24
n = 64 77 41 31 24 � �
n = 128 92 57 44 39 30 �
n = 256 124 90 72 68 53 35
n = 512 175 151 130 123 102 70
n = 1024 290 270 235 220 204 140
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