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Motivation

[1] Peng et al., CVPR, pp. 763-770, 2010
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• A scene     is observed from different point of views, providing   noisy measurement 
vectors                      .

l
y1, . . . ,yl 2 Rm

x0

A• The observation system is modeled by a linear operator    .

x1, . . . , xl• The scene is partly occluded by some objects              .

⌧1, . . . , ⌧l• This scene undergoes geometric transformations             that depend on the position 
of the observer.
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Problem formulation
• We discretize the images on a square grid of              pixels,          :                      .
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n⇥

p
n n > m x0, . . . ,xl 2 Rn

A 2 Rm⇥nA• The linear operator    is represented by              .
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• The observation model reads as 

x0 � ⌧j S(✓j) x0• The transformed image          on the discrete grid is obtained by applying        to       
(e.g., bilinear or bicubic spline interpolation).

⌧1, . . . , ⌧l
✓j 2 Rp, 8j 2 {1, . . . , l}

• The transformations              belong to a transformation group represented by  
parameters                               .

p



Problem formulation

?

• The inverse ill-posed problem is regularized by assuming that the scene     and the 
occluding objects             are sparse in a wavelet basis               .x1, . . .xl

x0

W 2 Rn⇥n

• The decomposition of      in     is denoted               ,               .W ↵j 2 Rn⇥n
xj 1 6 j 6 l
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min
↵,✓

k↵k1 +  kA(✓)↵� yk22 s.t. ✓ 2 T ,

↵ = [↵0, . . . ,↵l]
Twith and

• We want to solve the following non-convex problem:



and                       .
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Problem formulation
• The inverse ill-posed problem is regularized by assuming that the scene     and the 

occluding objects             are sparse in a wavelet basis               . 

• The decomposition of      in     is denoted               ,               .

• We want to solve the following non-convex problem:

x1, . . .xl

x0

W

W 2 Rn⇥n

↵j 2 Rn⇥n
xj 1 6 j 6 l

with ,

Large
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• Under some mild conditions, the algorithm converges to a critical point of    .L

Method
• Objective function:                                                                                 . L(↵, z, ✓) = k↵k1 +  kA(✓)↵� zk22 + iB(y,✏)(z) + iT (✓)

Indicator functions of the sets B(y, ✏) = {z = {zj}16j6l : kyj � zjk2 6 ✏j} and    .T

• Solve this non-convex problem using a proximal method (Attouch et al.):

[2] Attouch et al., Mathematics of Operations Research, vol. 35(2), pp. 438-457, 2010.
[3] Attouch et al., J. Mathematical programming, 2011. 

• Initializations: set         ,                          ,            ,            , choose
              and         .

• Repeat:
1)

2) Find             such that:

3)              .

(↵k+1, zk+1) 2 argmin
↵,z

L(↵, z, ✓k) + �zkz � zkk22 + �k
↵k↵�↵kk22.

z0 = y
b > 0

 kA(✓k+1)↵k+1 � zk+1k22 + �✓k✓k+1 � ✓kk22 6  kA(✓k)↵k+1 � zk+1k22,

kr✓L(↵k+1, zk+1, ✓k+1)k22 6 bk✓k+1 � ✓kk22.
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• Initializations: set         ,                          ,            ,            , choose
              and         .

• Repeat:
1)

2) Find             such that:

3)              .
until convergence.  

Method
• Objective function:                                                                                 . L(↵, z, ✓) = k↵k1 +  kA(✓)↵� zk22 + iB(y,✏)(z) + iT (✓)

Indicator functions of the sets B(y, ✏) = {z = {zj}16j6l : kyj � zjk2 6 ✏j} and    .T

• Solve this non convex-problem using a proximal method (Attouch et al.):

[4] Attouch et al., Mathematics of Operations Research, vol. 35(2), pp. 438-457, 2010.
[5] Attouch et al., J. Mathematical programming, 2011. 

z0 = y
b > 0

 kA(✓k+1)↵k+1 � zk+1k22 + �✓k✓k+1 � ✓kk22 6  kA(✓k)↵k+1 � zk+1k22,

kr✓L(↵k+1, zk+1, ✓k+1)k22 6 bk✓k+1 � ✓kk22.
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• By construction    is not increasing. Indeed,         , 

• We also have:

• Convergence to a critical point of    ?

Method
k > 0L

L(↵k+1, zk+1, ✓k+1) + �zkzk+1 � zkk22 + �✓k✓k+1 � ✓kk22 + �k
↵k↵k+1 �↵kk1 6 L(↵k, zk, ✓k).

+1X

k=0

kzk+1 � zkk22 + k✓k+1 � ✓kk22 + k↵k+1 �↵kk1 < +1.

L
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Simulations results
•               measurements per image obtained with the spread spectrum technique [6]. 

• The transformations are assumed to be homographies modeled by 8 unknown 
parameters.

m = 0.1n

Original images

Solving the Basis Pursuit independently for each image

[6] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012.



Simulations results
•               measurements per image obtained with the spread spectrum technique [6]. 

• The transformations are assumed to be homographies modeled by 8 unknown 
parameters.

m = 0.1n

Original images

Reconstruction with the proposed method

[6] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012.



Simulations results
•               measurements per image obtained with the spread spectrum technique [6]. 

• The transformations are assumed to be homographies modeled by 8 unknown 
parameters.

m = 0.1n

Original images

Background image

[6] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012.



•               measurements per image obtained with the spread spectrum technique [6]. 

• The transformations are assumed to be homographies modeled by 8 unknown 
parameters.

Simulations results
m = 0.1n

Original images

Foreground images

[6] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012.



•               measurements per image obtained with the spread spectrum technique [6]. 

• The transformations are assumed to be homographies modeled by 8 unknown 
parameters.

Simulations results
m = 0.1n

Superposed registered images.Superposed unregistered images.

[6] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012.



•              measurements per image obtained with the spread spectrum technique [6]. 

• The transformations are assumed to be homographies modeled by 8 unknown 
parameters.

Simulations results
m = 0.1n

Estimated background image with
5 measurements vectors

Estimated background image with
10 measurements vectors

[6] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012.



Simulations results
• Repeat the experiments for different number of measurements and noise levels on the 

following 5 images:

Castle-R20 dataset available at cvlab.epfl.ch (Strecha et al., CVPR, 2008).
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Simulations results
• Repeat the experiments for different number of measurements and noise levels on the 

following 5 images:

Superposed registered images.Superposed unregistered images.

From 30% of measurements
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Conclusion & Perspectives
• We proposed a method for compressed multi-view imaging that:
- unifies the reconstruction and the registration in the same setting. 
- is robust to occlusions and noise measurements.
- separates automatically the background image from the foreground images 

(occlusions)

• Application to free breathing coronary MRI or magnetic resonance spectroscopic 
imaging.


