Robust joint reconstruction of

 misaligned images
using semi-parametric dictionaries

Gilles Puy ${ }^{1,2}$
Pierre Vandergheynst ${ }^{1}$

${ }^{1}$ Institute of Electrical Engineering, EPFL, CH-1015 Lausanne
${ }^{2}$ Institute of the Physics of Biological Systems, EPFL, CH-1015 Lausanne, Switzerland

ICML, Edinburgh, June 2012

- I -
 Motivation

Motivation

- A scene x_{0} is observed from different point of views, providing l noisy measurement vectors $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{l} \in \mathbb{R}^{m}$.
- The observation system is modeled by a linear operator \mathcal{A}.
- This scene undergoes geometric transformations $\tau_{1}, \ldots, \tau_{l}$ that depend on the position of the observer.
- The scene is partly occluded by some objects x_{1}, \ldots, x_{l}.

- II Problem formulation

Problem formulation

- We discretize the images on a square grid of $\sqrt{n} \times \sqrt{n}$ pixels, $n \geqslant m: \boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{l} \in \mathbb{R}^{n}$.
- The linear operator \mathcal{A} is represented by $\mathrm{A} \in \mathbb{R}^{m \times n}$.
- The transformations $\tau_{1}, \ldots, \tau_{l}$ belong to a transformation group represented by p parameters $\theta_{j} \in \mathbb{R}^{p}, \forall j \in\{1, \ldots, l\}$.
- The transformed image $x_{0} \circ \tau_{j}$ on the discrete grid is obtained by applying $\mathrm{S}\left(\theta_{j}\right)$ to \boldsymbol{x}_{0} (e.g., bilinear or bicubic spline interpolation).
- The observation model reads as

$$
\underbrace{\left[\begin{array}{c}
\boldsymbol{y}_{1} \\
\vdots \\
\boldsymbol{y}_{l}
\end{array}\right]}_{\boldsymbol{y}}=\left[\begin{array}{cccc}
\mathrm{AS}\left(\theta_{1}\right) & \mathrm{A} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{AS}\left(\theta_{l}\right) & 0 & \ldots & \mathrm{~A}
\end{array}\right] \underbrace{\left[\begin{array}{c}
\boldsymbol{x}_{0} \\
\vdots \\
\boldsymbol{x}_{l}
\end{array}\right]}_{\boldsymbol{x}}+\left[\begin{array}{c}
\boldsymbol{n}_{1} \\
\vdots \\
\boldsymbol{n}_{l}
\end{array}\right] .
$$

Problem formulation

- The inverse ill-posed problem is regularized by assuming that the scene \boldsymbol{x}_{0} and the occluding objects $\boldsymbol{x}_{1}, \ldots \boldsymbol{x}_{l}$ are sparse in a wavelet basis $\mathrm{W} \in \mathbb{R}^{n \times n}$.
- The decomposition of \boldsymbol{x}_{j} in W is denoted $\boldsymbol{\alpha}_{j} \in \mathbb{R}^{n \times n}, 1 \leqslant j \leqslant l$.
- We want to solve the following non-convex problem:

$$
\min _{\boldsymbol{\alpha}, \theta}\|\boldsymbol{\alpha}\|_{1}+\kappa\|\mathrm{A}(\theta) \boldsymbol{\alpha}-\boldsymbol{y}\|_{2}^{2} \text { s.t. } \theta \in \mathcal{T}
$$

with $\boldsymbol{\alpha}=\left[\boldsymbol{\alpha}_{0}, \ldots, \boldsymbol{\alpha}_{l}\right]^{\top}$ and $\mathrm{A}(\theta)=\left[\begin{array}{cccc}\mathrm{AS}\left(\theta_{1}\right) \mathrm{W} & \mathrm{AW} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathrm{AS}\left(\theta_{l}\right) \mathrm{W} & 0 & \ldots & \mathrm{AW}\end{array}\right]$.

Problem formulation

- The inverse ill-posed problem is regularized by assuming that the scene \boldsymbol{x}_{0} and the occluding objects $\boldsymbol{x}_{1}, \ldots \boldsymbol{x}_{l}$ are sparse in a wavelet basis $\mathrm{W} \in \mathbb{R}^{n \times n}$.
- The decomposition of \boldsymbol{x}_{j} in W is denoted $\boldsymbol{\alpha}_{j} \in \mathbb{R}^{n \times n}, 1 \leqslant j \leqslant l$.
- We want to solve the following non-convex problem:

$$
\begin{aligned}
& \min _{\boldsymbol{\alpha}, \boldsymbol{z}, \theta}\|\boldsymbol{\alpha}\|_{1}+\kappa\|\mathrm{A}(\theta) \boldsymbol{\alpha}-\boldsymbol{z}\|_{2}^{2} \quad \text { s.t. }\left\{\begin{array}{cc}
\left\|\boldsymbol{y}_{1}-\boldsymbol{z}_{1}\right\|_{2} \leqslant \epsilon_{1} \\
\vdots & \text { and } \theta \in \mathcal{T}, \\
\left\|\boldsymbol{y}_{l}-\boldsymbol{z}_{l}\right\|_{2} \leqslant \epsilon_{l}
\end{array}\right. \\
& \text { with } \boldsymbol{\alpha}=\left[\boldsymbol{\alpha}_{0}, \ldots, \boldsymbol{\alpha}_{l}\right]^{\top}, \quad \mathrm{A}(\theta)=\left[\begin{array}{cccc}
\mathrm{AS}\left(\theta_{1}\right) \mathrm{W} & \mathrm{AW} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{AS}\left(\theta_{l}\right) \mathrm{W} & 0 & \ldots & \mathrm{AW}
\end{array}\right],
\end{aligned}
$$

$$
\text { and } \boldsymbol{z}=\left[\boldsymbol{z}_{0}, \ldots, \boldsymbol{z}_{l}\right]^{\top}
$$

- III -
 Method

(PPl

Method

- Objective function: $\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta)=\|\boldsymbol{\alpha}\|_{1}+\kappa\|\mathrm{A}(\theta) \boldsymbol{\alpha}-\boldsymbol{z}\|_{2}^{2}+\underset{\mathcal{\beta}(\boldsymbol{y}, \epsilon)}{ }(\boldsymbol{z})+i_{\mathcal{T}}(\theta)$.

$$
\text { Indicator functions of the sets } \mathcal{B}(\boldsymbol{y}, \epsilon)=\left\{\boldsymbol{z}=\left\{\boldsymbol{z}_{j}\right\}_{1 \leqslant j \leqslant l}:\left\|\boldsymbol{y}_{j}-\boldsymbol{z}_{j}\right\|_{2} \leqslant \epsilon_{j}\right\} \text { and } \mathcal{T} \text {. }
$$

- Solve this non-convex problem using a proximal method (Attouch et al.):
- Initializations: set $k=0, \boldsymbol{\alpha}^{0}=\mathbf{0} \in \mathbb{R}^{(l+1) n}, \boldsymbol{z}^{0}=\boldsymbol{y}, \theta^{0} \in \mathcal{T}$, choose $0<\lambda_{\text {min }} \leqslant \lambda_{\boldsymbol{z}}, \lambda_{\theta},\left\{\lambda_{\boldsymbol{\alpha}}^{k}\right\}_{k \in \mathbb{N}} \leqslant \lambda_{\text {max }}$ and $b>0$.
- Repeat:

1) $\left(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}\right) \in \underset{\boldsymbol{\alpha}, \boldsymbol{z}}{\operatorname{argmin}} \mathcal{L}\left(\boldsymbol{\alpha}, \boldsymbol{z}, \theta^{k}\right)+\lambda_{z}\left\|\boldsymbol{z}-\boldsymbol{z}^{k}\right\|_{2}^{2}+\lambda_{\boldsymbol{\alpha}}^{k}\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{k}\right\|_{2}^{2}$.
2) Find $\theta^{k+1} \in \mathcal{T}$ such that:

$$
\kappa\left\|\mathrm{A}\left(\theta^{k+1}\right) \boldsymbol{\alpha}^{k+1}-\boldsymbol{z}^{k+1}\right\|_{2}^{2}+\lambda_{\theta}\left\|\theta^{k+1}-\theta^{k}\right\|_{2}^{2} \leqslant \kappa\left\|\mathrm{~A}\left(\theta^{k}\right) \boldsymbol{\alpha}^{k+1}-\boldsymbol{z}^{k+1}\right\|_{2}^{2}
$$

$$
\left\|\nabla_{\theta} \mathcal{L}\left(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}, \theta^{k+1}\right)\right\|_{2}^{2} \leqslant b\left\|\theta^{k+1}-\theta^{k}\right\|_{2}^{2}
$$

3) $k \leftarrow k+1$

- Under some mild conditions, the algorithm converges to a critical point of \mathcal{L}.

Method

- Objective function: $\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta)=\|\boldsymbol{\alpha}\|_{1}+\kappa\|\mathrm{A}(\theta) \boldsymbol{\alpha}-\boldsymbol{z}\|_{2}^{2}+\underset{\mathcal{\beta}(\boldsymbol{y}, \epsilon)}{ }(\boldsymbol{z})+i_{\mathcal{T}}(\theta)$.

$$
\text { Indicator functions of the sets } \mathcal{B}(\boldsymbol{y}, \epsilon)=\left\{\boldsymbol{z}=\left\{\boldsymbol{z}_{j}\right\}_{1 \leqslant j \leqslant l}:\left\|\boldsymbol{y}_{j}-\boldsymbol{z}_{j}\right\|_{2} \leqslant \epsilon_{j}\right\} \text { and } \mathcal{T} \text {. }
$$

- Solve this non convex-problem using a proximal method (Attouch et al.):
- Initializations: set $k=0, \boldsymbol{\alpha}^{0}=\mathbf{0} \in \mathbb{R}^{(l+1) n}, \boldsymbol{z}^{0}=\boldsymbol{y}, \theta^{0} \in \mathcal{T}$, choose $0<\lambda_{\text {min }} \leqslant \lambda_{\boldsymbol{z}}, \lambda_{\theta},\left\{\lambda_{\boldsymbol{\alpha}}^{k}\right\}_{k \in \mathbb{N}} \leqslant \lambda_{\text {max }}$ and $b>0$.
- Repeat:

1) $\left(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}\right) \in \underset{\boldsymbol{\alpha}, \boldsymbol{z}}{\operatorname{argmin}} \mathcal{L}\left(\boldsymbol{\alpha}, \boldsymbol{z}, \theta^{k}\right)+\lambda_{\boldsymbol{z}}\left\|\boldsymbol{z}-\boldsymbol{z}^{k}\right\|_{2}^{2}+\lambda_{\boldsymbol{\alpha}}^{k}\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{k}\right\|_{1}$.
2) Find $\theta^{k+1} \in \mathcal{T}$ such that:

$$
\begin{gathered}
\kappa\left\|\mathrm{A}\left(\theta^{k+1}\right) \boldsymbol{\alpha}^{k+1}-\boldsymbol{z}^{k+1}\right\|_{2}^{2}+\lambda_{\theta}\left\|\theta^{k+1}-\theta^{k}\right\|_{2}^{2} \leqslant \kappa\left\|\mathrm{~A}\left(\theta^{k}\right) \boldsymbol{\alpha}^{k+1}-\boldsymbol{z}^{k+1}\right\|_{2}^{2} \\
\left\|\nabla_{\theta} \mathcal{L}\left(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}, \theta^{k+1}\right)\right\|_{2}^{2} \leqslant b\left\|\theta^{k+1}-\theta^{k}\right\|_{2}^{2}
\end{gathered}
$$

3) $k \leftarrow k+1$
until convergence.

Method

- By construction \mathcal{L} is not increasing. Indeed, $k \geqslant 0$,

$$
\mathcal{L}\left(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}, \theta^{k+1}\right)+\lambda_{\boldsymbol{z}}\left\|\boldsymbol{z}^{k+1}-\boldsymbol{z}^{k}\right\|_{2}^{2}+\lambda_{\theta}\left\|\theta^{k+1}-\theta^{k}\right\|_{2}^{2}+\lambda_{\boldsymbol{\alpha}}^{k}\left\|\boldsymbol{\alpha}^{k+1}-\boldsymbol{\alpha}^{k}\right\|_{1} \leqslant \mathcal{L}\left(\boldsymbol{\alpha}^{k}, \boldsymbol{z}^{k}, \theta^{k}\right)
$$

- We also have:

$$
\sum_{k=0}^{+\infty}\left\|\boldsymbol{z}^{k+1}-\boldsymbol{z}^{k}\right\|_{2}^{2}+\left\|\theta^{k+1}-\theta^{k}\right\|_{2}^{2}+\left\|\boldsymbol{\alpha}^{k+1}-\boldsymbol{\alpha}^{k}\right\|_{1}<+\infty .
$$

- Convergence to a critical point of \mathcal{L} ?

- IV Simulation results

Simulations results

- $m=0.1 n$ measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Original images

Solving the Basis Pursuit independently for each image

Simulations results

- $m=0.1 n$ measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Original images

Reconstruction with the proposed method

Simulations results

- $m=0.1 n$ measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Original images

[6] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012.

Simulations results

- $m=0.1 n$ measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Original images

Foreground images

Simulations results

- $m=0.1 n$ measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Superposed unregistered images.

Superposed registered images.

Simulations results

- $m=0.1 n$ measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Estimated background image with
5 measurements vectors

Estimated background image with
10 measurements vectors

Simulations results

- Repeat the experiments for different number of measurements and noise levels on the following 5 images:

Castle-R20 dataset available at cvlab.epfl.ch (Strecha et al., CVPR, 2008).

Image quality vs. Nb. measurements

Image quality vs. Noise level

Simulations results

- Repeat the experiments for different number of measurements and noise levels on the following 5 images:

From 30% of measurements

Superposed unregistered images.

Superposed registered images.

- V -
 Conclusion \& Perspectives

Conclusion \& Perspectives

- We proposed a method for compressed multi-view imaging that:
- unifies the reconstruction and the registration in the same setting.
- is robust to occlusions and noise measurements.
- separates automatically the background image from the foreground images (occlusions)
- Application to free breathing coronary MRI or magnetic resonance spectroscopic imaging.

