Robust joint reconstruction of misaligned images using semi-parametric dictionaries

Gilles $\mathbf{Puy}^{1,2}$ Pierre Vandergheynst¹

¹Institute of Electrical Engineering, EPFL, CH-1015 Lausanne ²Institute of the Physics of Biological Systems, EPFL, CH-1015 Lausanne, Switzerland

ICML, Edinburgh, June 2012

- I -Motivation

Motivation

- A scene x_0 is observed from different point of views, providing l noisy measurement vectors $y_1, \ldots, y_l \in \mathbb{R}^m$.
- \bullet The observation system is modeled by a linear operator ${\cal A}$.
- This scene undergoes geometric transformations τ_1, \ldots, τ_l that depend on the position of the observer.
- The scene is partly occluded by some objects x_1, \ldots, x_l .

[1] Peng et al., CVPR, pp. 763-770, 2010

- II -Problem formulation

Problem formulation

- We discretize the images on a square grid of $\sqrt{n} \times \sqrt{n}$ pixels, $n \ge m$: $x_0, \ldots, x_l \in \mathbb{R}^n$.
- The linear operator \mathcal{A} is represented by $\mathsf{A} \in \mathbb{R}^{m \times n}$.
- The transformations τ_1, \ldots, τ_l belong to a transformation group represented by p parameters $\theta_j \in \mathbb{R}^p, \forall j \in \{1, \ldots, l\}$.
- The transformed image $x_0 \circ \tau_j$ on the discrete grid is obtained by applying $S(\theta_j)$ to x_0 (e.g., bilinear or bicubic spline interpolation).
- \bullet The observation model reads as

$$\begin{bmatrix} \boldsymbol{y}_1 \\ \vdots \\ \boldsymbol{y}_l \end{bmatrix} = \begin{bmatrix} \mathsf{AS}(\theta_1) & \mathsf{A} & \dots & \mathsf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{AS}(\theta_l) & \mathsf{0} & \dots & \mathsf{A} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_0 \\ \vdots \\ \boldsymbol{x}_l \end{bmatrix} + \begin{bmatrix} \boldsymbol{n}_1 \\ \vdots \\ \boldsymbol{n}_l \end{bmatrix}.$$

Problem formulation

- The inverse ill-posed problem is regularized by assuming that the scene x_0 and the occluding objects $x_1, \ldots x_l$ are sparse in a wavelet basis $\mathsf{W} \in \mathbb{R}^{n \times n}$.
- The decomposition of x_j in W is denoted $\alpha_j \in \mathbb{R}^{n \times n}$, $1 \leq j \leq l$.
- We want to solve the following non-convex problem:

$$\min_{\boldsymbol{\alpha},\boldsymbol{\theta}} \|\boldsymbol{\alpha}\|_{1} + \boldsymbol{\kappa} \|\mathsf{A}(\boldsymbol{\theta}) \,\boldsymbol{\alpha} - \boldsymbol{y}\|_{2}^{2} \text{ s.t. } \boldsymbol{\theta} \in \mathcal{T},$$
?

with
$$\boldsymbol{\alpha} = [\boldsymbol{\alpha}_0, \dots, \boldsymbol{\alpha}_l]^{\mathsf{T}}$$
 and $\mathsf{A}(\theta) = \begin{bmatrix} \mathsf{AS}(\theta_1)\mathsf{W} & \mathsf{AW} & \dots & \mathsf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{AS}(\theta_l)\mathsf{W} & \mathsf{0} & \dots & \mathsf{AW} \end{bmatrix}$

Problem formulation

- The inverse ill-posed problem is regularized by assuming that the scene x_0 and the occluding objects $x_1, \ldots x_l$ are sparse in a wavelet basis $\mathsf{W} \in \mathbb{R}^{n \times n}$.
- The decomposition of x_j in W is denoted $\alpha_j \in \mathbb{R}^{n \times n}$, $1 \leq j \leq l$.
- We want to solve the following non-convex problem:

$$\min_{\boldsymbol{\alpha}, \boldsymbol{z}, \boldsymbol{\theta}} \|\boldsymbol{\alpha}\|_{1} + \boldsymbol{\kappa} \|\mathsf{A}(\boldsymbol{\theta}) \,\boldsymbol{\alpha} - \boldsymbol{z}\|_{2}^{2} \text{ s.t.} \begin{cases} \|\boldsymbol{y}_{1} - \boldsymbol{z}_{1}\|_{2} \leqslant \epsilon_{1} \\ \vdots & \text{and } \boldsymbol{\theta} \in \mathcal{T}, \\ \|\boldsymbol{y}_{l} - \boldsymbol{z}_{l}\|_{2} \leqslant \epsilon_{l} \end{cases}$$
with $\boldsymbol{\alpha} = [\boldsymbol{\alpha}_{0}, \dots, \boldsymbol{\alpha}_{l}]^{\mathsf{T}}$, $\mathsf{A}(\boldsymbol{\theta}) = \begin{bmatrix} \mathsf{AS}(\boldsymbol{\theta}_{1})\mathsf{W} \ \mathsf{AW} \ \dots \ \mathsf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{AS}(\boldsymbol{\theta}_{l})\mathsf{W} \ \mathsf{0} \ \dots \ \mathsf{AW} \end{bmatrix},$
and $\boldsymbol{z} = [\boldsymbol{z}_{0}, \dots, \boldsymbol{z}_{l}]^{\mathsf{T}}.$

- III -Method

Method

- Objective function: $\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta) = \|\boldsymbol{\alpha}\|_1 + \kappa \|\mathsf{A}(\theta) \,\boldsymbol{\alpha} \boldsymbol{z}\|_2^2 + i_{\mathcal{B}(\boldsymbol{y}, \epsilon)}(\boldsymbol{z}) + i_{\mathcal{T}}(\theta).$ $\boldsymbol{\gamma} \qquad \boldsymbol{\gamma} \qquad \boldsymbol{\gamma}$ Indicator functions of the sets $\mathcal{B}(\boldsymbol{y}, \epsilon) = \{\boldsymbol{z} = \{\boldsymbol{z}_j\}_{1 \leq j \leq l} : \|\boldsymbol{y}_j - \boldsymbol{z}_j\|_2 \leq \epsilon_j\}$ and \mathcal{T} .
- Solve this non-convex problem using a proximal method (Attouch et al.):
 - Initializations: set k = 0, $\boldsymbol{\alpha}^0 = \mathbf{0} \in \mathbb{R}^{(l+1)n}$, $\boldsymbol{z}^0 = \boldsymbol{y}$, $\theta^0 \in \mathcal{T}$, choose $0 < \lambda_{\min} \leq \lambda_{\boldsymbol{z}}, \lambda_{\theta}, \{\lambda_{\boldsymbol{\alpha}}^k\}_{k \in \mathbb{N}} \leq \lambda_{\max} \text{ and } b > 0$.
 - Repeat: 1) $(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}) \in \underset{\boldsymbol{\alpha}, \boldsymbol{z}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta^{k}) + \lambda_{\boldsymbol{z}} \|\boldsymbol{z} - \boldsymbol{z}^{k}\|_{2}^{2} + \lambda_{\boldsymbol{\alpha}}^{k} \|\boldsymbol{\alpha} - \boldsymbol{\alpha}^{k}\|_{2}^{2}.$ 2) Find $\theta^{k+1} \in \mathcal{T}$ such that: $\kappa \|\mathsf{A}(\theta^{k+1}) \, \boldsymbol{\alpha}^{k+1} - \boldsymbol{z}^{k+1}\|_{2}^{2} + \lambda_{\theta} \|\theta^{k+1} - \theta^{k}\|_{2}^{2} \leq \kappa \|\mathsf{A}(\theta^{k}) \, \boldsymbol{\alpha}^{k+1} - \boldsymbol{z}^{k+1}\|_{2}^{2},$ $\|\nabla_{\theta} \mathcal{L}(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}, \theta^{k+1})\|_{2}^{2} \leq b \|\theta^{k+1} - \theta^{k}\|_{2}^{2}.$ 3) $k \leftarrow k+1$.
- \bullet Under some mild conditions, the algorithm converges to a critical point of $\ \mathcal{L}.$

[2] Attouch et al., Mathematics of Operations Research, vol. 35(2), pp. 438-457, 2010.[3] Attouch et al., J. Mathematical programming, 2011.

Method

- Objective function: $\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta) = \|\boldsymbol{\alpha}\|_1 + \kappa \|\mathsf{A}(\theta) \,\boldsymbol{\alpha} \boldsymbol{z}\|_2^2 + i_{\mathcal{B}(\boldsymbol{y}, \epsilon)}(\boldsymbol{z}) + i_{\mathcal{T}}(\theta).$ $\boldsymbol{\gamma} \qquad \boldsymbol{\gamma} \qquad \boldsymbol{\gamma}$ Indicator functions of the sets $\mathcal{B}(\boldsymbol{y}, \epsilon) = \{\boldsymbol{z} = \{\boldsymbol{z}_j\}_{1 \leq j \leq l} : \|\boldsymbol{y}_j - \boldsymbol{z}_j\|_2 \leq \epsilon_j\}$ and \mathcal{T} .
- Solve this non convex-problem using a proximal method (Attouch et al.):
 - Initializations: set k = 0, $\boldsymbol{\alpha}^0 = \mathbf{0} \in \mathbb{R}^{(l+1)n}$, $\boldsymbol{z}^0 = \boldsymbol{y}$, $\theta^0 \in \mathcal{T}$, choose $0 < \lambda_{\min} \leq \lambda_{\boldsymbol{z}}, \lambda_{\theta}, \{\lambda_{\boldsymbol{\alpha}}^k\}_{k \in \mathbb{N}} \leq \lambda_{\max} \text{ and } b > 0$.
 - Repeat: 1) $(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}) \in \underset{\boldsymbol{\alpha}, \boldsymbol{z}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta^{k}) + \lambda_{z} \|\boldsymbol{z} - \boldsymbol{z}^{k}\|_{2}^{2} + \lambda_{\boldsymbol{\alpha}}^{k} \|\boldsymbol{\alpha} - \boldsymbol{\alpha}^{k}\|_{1}$. 2) Find $\theta^{k+1} \in \mathcal{T}$ such that: $\kappa \|\mathsf{A}(\theta^{k+1}) \, \boldsymbol{\alpha}^{k+1} - \boldsymbol{z}^{k+1}\|_{2}^{2} + \lambda_{\theta} \|\theta^{k+1} - \theta^{k}\|_{2}^{2} \leq \kappa \|\mathsf{A}(\theta^{k}) \, \boldsymbol{\alpha}^{k+1} - \boldsymbol{z}^{k+1}\|_{2}^{2}$, $\|\nabla_{\theta} \mathcal{L}(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}, \theta^{k+1})\|_{2}^{2} \leq b \|\theta^{k+1} - \theta^{k}\|_{2}^{2}$. 3) $k \leftarrow k+1$.

until convergence.

[4] Attouch et al., Mathematics of Operations Research, vol. 35(2), pp. 438-457, 2010.[5] Attouch et al., J. Mathematical programming, 2011.

Method

• By construction \mathcal{L} is not increasing. Indeed, $k \ge 0$,

 $\mathcal{L}(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}, \boldsymbol{\theta}^{k+1}) + \lambda_{\boldsymbol{z}} \| \boldsymbol{z}^{k+1} - \boldsymbol{z}^{k} \|_{2}^{2} + \lambda_{\boldsymbol{\theta}} \| \boldsymbol{\theta}^{k+1} - \boldsymbol{\theta}^{k} \|_{2}^{2} + \lambda_{\boldsymbol{\alpha}}^{k} \| \boldsymbol{\alpha}^{k+1} - \boldsymbol{\alpha}^{k} \|_{1} \leqslant \mathcal{L}(\boldsymbol{\alpha}^{k}, \boldsymbol{z}^{k}, \boldsymbol{\theta}^{k}).$

• We also have:

$$\sum_{k=0}^{+\infty} \|oldsymbol{z}^{k+1} - oldsymbol{z}^k\|_2^2 + \|oldsymbol{ heta}^{k+1} - oldsymbol{ heta}^k\|_2^2 + \|oldsymbol{lpha}^{k+1} - oldsymbol{lpha}^k\|_1 < +\infty.$$

• Convergence to a critical point of \mathcal{L} ?

- IV -Simulation results

- m = 0.1n measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Solving the Basis Pursuit independently for each image

- m = 0.1n measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Reconstruction with the proposed method

• m = 0.1n measurements per image obtained with the spread spectrum technique [6].

Original images

• The transformations are assumed to be homographies modeled by 8 unknown parameters.

- m = 0.1n measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Original images

Foreground images

- m = 0.1n measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Superposed unregistered images.

Superposed registered images.

- m = 0.1n measurements per image obtained with the spread spectrum technique [6].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Estimated background image with 5 measurements vectors

Estimated background image with 10 measurements vectors

[6] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012.

• Repeat the experiments for different number of measurements and noise levels on the following 5 images:

Castle-R20 dataset available at cvlab.epfl.ch (Strecha et al., CVPR, 2008).

Image quality vs. Nb. measurements

Image quality vs. Noise level

• Repeat the experiments for different number of measurements and noise levels on the following 5 images:

From 30% of measurements

Superposed unregistered images.

Superposed registered images.

- V -Conclusion & Perspectives

Conclusion & Perspectives

- We proposed a method for compressed multi-view imaging that:
 - unifies the reconstruction and the registration in the same setting.
 - is robust to occlusions and noise measurements.
 - separates automatically the background image from the foreground images (occlusions)
- Application to free breathing coronary MRI or magnetic resonance spectroscopic imaging.

