Mechano-electrical contribution of ventricular contractions to the complexity of atrial fibrillation electrograms

A. Buttu1, S. Volorio1, JM. Vesin1, A. Forclaz2, P. Pascale2, SM. Narayan3, E. Pruvot2

1Applied Signal Processing Group, Swiss Federal Institute of Technology EPFL,
2Department of Cardiology, University Hospital Center Vaudois CHUV, Lausanne
3University of California, San Diego

Background

• Intracardiac organization indices (OI), such as atrial fibrillation (AF) cycle length, have been used to track the efficiency of stepwise radiofrequency catheter ablation (step-CA) of persistent AF (pers-AF)1.
• A better understanding of the components and complexity of AF electrograms (EGMs) is fundamental to track the organization of AF during step-CA.
• It remains unknown whether ventricular contractions influence the complexity of AF EGMs by means of mechano-electrical feedback.

Purpose

• Quantification of the potential mechano-electrical contribution of ventricular contractions (VC) on AF complexity.

Methods

Extraction of ventricular contribution to ICV

• The ventricular contribution (VC) to ICV was extracted as shown in figure 3. Lead V1 was used to identify the ventricular activations (panel A) from which a continuous signal of R-wave impulses was computed (panel B).

Cancellation of the VC from the ICV signal

• A continuous ICV signal devoid of the VC contribution was computed using an adaptive interference canceller.

Results

• Step-CA terminated 5/6 pers-AF into SR/AT.
• Figure 4 illustrates the VC contribution at a frequency of 2 Hz (green) to the RAA ICV signal (blue). The ICV signal devoid of VC contribution is shown in red. Note the preservation of all other ICV frequency components (= 0.5 Hz and = 1.5 Hz).

Overall Study Population

• The mean contribution of the mechano-electrical feedback on the complexity of AF signals as assessed by VC estimation was 37±15%.

Conclusions

• Our results suggest that by means of mechano-electrical feedback, VC contributes up to 37% of EGMs interval variability in pers-AF.
• These preliminary findings are a promising step towards the refinement of organization indices for the titration of ablation during step-CA of pers-AF "en route" to AF termination.

1. Halliguerre, Changes in atrial fibrillation cycle length and inducibility during catheter ablation and their relation to outcome - Circulation 2004