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Abstract. This work deals with the development and application of re-
duction strategies for real-time and many query problems arising in fluid
dynamics, such as shape optimization, shape registration (reconstruc-
tion), and shape parametrization. The proposed strategy is based on the
coupling between reduced basis methods for the reduction of computa-
tional complexity and suitable shape parametrizations – such as free-form
deformations or radial basis functions – for low-dimensional geometrical
description. Our focus is on problems arising in haemodynamics: efficient
shape parametrization of cardiovascular geometries (e.g. bypass grafts,
carotid artery bifurcation, stenosed artery sections) for the rapid blood
flow simulation – and related output evaluation – in domains of variable
shape (e.g. vessels in presence of growing stenosis) provide an example of
a class of problems which can be recast in the real-time or in the many-
query context.
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1 Introduction and motivation

In last decades more and more powerful computers have allowed to solve numer-
ical problems of very large dimensions and describing very complex phenomena.
Nevertheless, a computational reduction is still crucial whenever interested to
high performances in rapid – even real-time – simulations and/or repeated out-
put evaluations – seen as many queries evaluations– for different values of some
inputs of interest.
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122136 and European Research Council under Project Mathcard ERC-2008-AdG-
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1.1 A general strategy for reduction in shape dependent flows

Flow control and optimization problems can be formulated as the minimiza-
tion of a given cost functional (or output) controlling some input parameters
which can be physical quantities (e.g. source terms or boundary values) or, al-
ternatively, geometrical quantities; we refer to the latter case as flow control by
shape variation, and the optimization of the corresponding flow geometries is
thus one possibility to reach that goal; we refer to this case – the most difficult
one among flow control problems – such as shape optimization or shape reg-
istration/reconstruction problems [4]. Concerning applications arising in fluid
mechanics, cost functionals are expressed as functions of flow variables (such as
velocity, pressure, temperature), while constraints are usually given in form of
PDE systems (Stokes, Navier-Stokes equations, with or without coupling with a
structural equation to account for fluid-structure interaction effects) describing
the flow, besides topological constraints on the shape of the domain, if necessary.
Since (i) optimization procedures require repetitive evaluations of outputs, (ii)
PDEs can be hard to solve and (iii) discretization is expensive when geome-
try keeps changing, computational costs are usually very high; we thus want to
address suitable strategies to reduce numerical efforts in many-query problems.

Substantial computational saving becomes possible thanks to a reduced order
model which relies on two reduction steps: (i) parameterization of the admissible
shapes and (ii) substitution of the full-order finite element (FE) solution of flow
problems with a reduced solution obtained by the reduced basis (RB) method
[17]. In fact, once an equivalent parametrized formulation of the flow problem –
now embedding the shape as a parametric quantity – can be derived, reduced ba-
sis method for parametrized PDEs, enables to evaluate the output very rapidly.
In the end, at the outer level a suitable iterative procedure for the optimization
is performed. A brief presentation of the whole framework can be found in [8],
while a more detailed analysis has been recently addressed in [5,6].

1.2 Abstract setting

From an abstract point of view, a shape optimization/identification can be seen
as an optimal control problem for which the control variable is the shape of the
domain Ω itself. This entails the minimization of a cost functional J (·) over a
set of admissible shapes Oad, by finding the optimal shape of the domain where
the PDE is defined:

find Ω̂ = arg min
Ω∈Oad

J (Y (Ω)) (1)

where J (Y (Ω)) depends on the solution Y = Y (Ω) of a PDE state problem –
defined on Ω – which can be written in an abstract form as

Y ∈ Y(Ω) : A(Y,W ;Ω) = F(W ;Ω), ∀W ∈ Y(Ω). (2)

Here A(·, ·;Ω) is a continuous, uniformly inf-sup stable bilinear form and F(·;Ω)
is a bounded linear form, both defined on the original domain Ω; Y(Ω) denotes a
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suitable functional space defined over Ω. Let us assume that the shape Ω = Ω(µ)
depends on a set of input parameters µ = (µ1, . . . , µp) ∈ D ⊂ Rp; in this way,
problem (1)-(2) can be reduced to the following parametric optimization inverse
problem:

find µ̂ = arg min
µ∈Dad

J (Y (µ)) (3)

where Dad ⊆ D and Y (µ) solves

Y (µ) ∈ Y(Ω(µ)) : A(Y (µ),W ;µ) = F(W ;µ), ∀W ∈ Y(Ω(µ)). (4)

For a more general setting and overview, see e.g. [5].

2 Reduced basis method for computational reduction

Our approach to shape dependent flow problems takes advantage of reduced basis
(RB) methods for rapid and reliable prediction of engineering outputs associated
with parametric PDEs [17,12,14]; see e.g. [15,19,16] for applications to the Stokes
problem and [13,20,3] for the Navier-Stokes case. The method is built upon
a classical finite element (FE) “truth” approximation space YN of (typically
very large) dimension N and is based on the use of “snapshot” FE solutions of
the PDEs, corresponding to certain parameter values, as global approximation
basis functions previously computed and stored. The RB framework requires
a reference (µ-independent) domain Ω̃ in order to compare, and combine, FE
solutions that would be otherwise computed on different domains and grids;
moreover, this procedure enables to avoid shape deformation and remeshing
that normally occur at each step of an iterative optimization procedure [18]. In
Sect. 3 two possible techniques for the construction of such a mapping will be
briefly recalled.

We thus consider Ω̃ as reference domain related to the parameter-dependent
“original” domain of interest Ω(µ) through a parametric mapping T (·;µ), s.t.
Ω(µ) = T (Ω̃;µ). By mapping the problem (3) back to the reference domain Ω̃,
we obtain the following problem in its abstract form:

find µ̂ = arg min
µ∈Dad

s(µ) = J̃ (Y (µ)) s.t.

Y (µ) ∈ Y(Ω̃) : Ã(Y (µ),W ;µ) = F̃(W ;µ), ∀W ∈ Y(Ω̃).
(5)

Focusing on shape optimization and/or registration problems, and follow-
ing the so-called discretize than optimize approach, the standard Galerkin FE
approximation of (5) reads as follows:

find µ̂ = arg min
µ∈Dad

sN (µ) = J̃ (Y N (µ)) s.t.

Y N (µ) ∈ YN : Ã(Y N (µ),W ;µ) = F̃(W ;µ), ∀W ∈ YN .

The reduced basis method provides an efficient way to compute an approxima-
tion YN (µ) of Y N (µ) (and related output) by using a Galerkin projection on



4 T. Lassila, A. Manzoni, G. Rozza

a reduced subspace made up of well-chosen FE solutions, corresponding to a
specific choice SN = {µ1, . . . ,µN} of parameter values. Denoting

YNN = span{Y N (µn), n = 1, . . . , N}, (6)

the RB space, the RB formulation of (5) is as follows:

find µ̂ = arg min
µ∈Dad

sN (µ) = J̃ (YN (µ)) s.t.

YN (µ) ∈ YNN : Ã(YN (µ),W ;µ) = F̃(W ;µ), ∀W ∈ YNN .

Thanks to the (considerably) reduced dimension O(N) � O(N ) of the sys-
tems obtained from RB approximation, we can provide both reliable results and
rapid response in the real-time and multi-query contexts. In particular:

– Reliability is ensured by rigorous a posteriori estimations for the error in the
RB approximation w.r.t. truth FE discretization (see e.g. [17,16]);

– Rapid response is achieved by an Offline–Online computational strategy and
a rapidly convergent RB space assembling, based on a greedy algorithm. To
achieve this goal, RB methods rely on the assumption of affine parametric
dependence1 in A(·, ·;µ) and F(·;µ).

Hence, in an expensive Offline stage we prepare a very small RB “database”,
while in the Online stage, for each new µ ∈ D, we rapidly evaluate both the
field and the output (with error bounds) whose computational complexity is
independent of FE dimension N .

3 Efficient shape parametrization techniques for
geometrical complexity reduction

In general, shape optimization problems feature more difficulties than optimal
control problems, such as shape deformation, shape derivatives and the evalua-
tion of shape-dependent quantities: a crucial aspect of optimal shape design is
thus the geometrical treatment of the shapes during the optimization process.
Common strategies for shape deformation involve the use of (i) the coordinates
of the boundary points as design variables (local boundary variation) or (ii) some
families of basis shapes combined by means of a set of control point (polynomial
boundary parametrizations).

These techniques are not well suited within the RB framework, since a global
transformation T (·;µ) is needed, rather than a boundary representation [18]. A
more versatile parametrization can be introduced by exploiting the free-form
deformation (FFD) techniques, in which the deformations of an initial design,
rather than the geometry itself, are parametrized [7]. In this case, the shape

1 If this assumption does not hold, it could be recovered in through an intermediate
empirical interpolation process.
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parametrization is constructed on a regular lattice of control points, by combin-
ing the deformations acting on a subset of active control points through a basis
of (tensor products of) Berstein polynomials. Input parameters are given by the
deformations of the active control points, which have to be properly chosen,
following some problem-dependent criteria [10].

Despite its flexibility, the FFD techniques do not satisfy any interpolation
property and control points must reside on a regular lattice. In order to over-
come these possible limitations, other different techniques based on interpolation
properties may be recovered. In particular, we have been focusing on the radial
basis functions (RBF) techniques [9], which are traditionally used for nonlinear
multidimensional interpolation on scattered data (for example in image regis-
tration). With respect to FFD techniques, RBF techniques allow a better local
boundary control and a free choice of the position of the control points (also on
the boundary of the shape domain).

4 Application in haemodynamics: real-time blood flow
simulations in parametrized cardiovascular geometries

The framework based on the coupling between FFD or RBF techniques (or other
low-dimensional shape parametrizations) and RB methods has turned out to be
useful also for a real-time simulation of blood flows in arterial vessels which
might show a deep variation in geometrical configuration, as for example carotid
artery bifurcations. Our goal is twofold:

– spanning a variety of carotid configurations through low-dimensional shape
parametrizations [1], and shape registration of parametrized carotid shapes
from patient data measured in the form of flow velocities;

– real-time simulation of blood flows in reconstructed geometries and com-
puting indices related to arterial occlusion risk and highly dependent on
geometrical configurations, possibly for predictive surgery applications.

In the first approach we might minimize some discrepancy functional between the
simulated velocity and the observed velocity in an atlas-based variational data
assimilation method (see e.g. [11]); in the latter we minimize a cost function such
as the viscous energy dissipation

J (Y (µ)) =
ν

2

∫
Ω

|∇u(µ)|2 dΩ.

to obtain carotid shapes exhibiting the least disturbance to the blood flow, being
Y (µ) = (u(µ), p(µ)) the velocity and the pressure of the fluid, respectively.

4.1 Validation of the reduced basis methodology

A first numerical test has been performed exploiting a coupled FFD+RB frame-
work on a simple geometrical configuration (see Fig. 1), given by a stenosed
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carotid artery parametrized with respect to the displacement of two control
points (p = 2) located close to the bifurcation (see e.g. [9] for further details
about representation of carotid bifurcations). Flow simulations through a steady
Stokes model show a remarkable dependence of the flow even on small variation
of the shape configuration. In particular, our interest has been focused on the
evaluation of an output related both with the flow and the shape, given by the
viscous energy dissipation.

Fig. 1. Schematic diagram of the FFD setting; bold control points can be freely moved
in vertical direction and used as parameters representing small deformations.

Some details concerning the reduced basis spaces are listed in Tab. 1; we re-
mark the strong reduction in the system dimensions and a large computational
speedup, concerning performances for each new geometrical configuration, of
about two orders of magnitude. We provide a certification of the accuracy of the
methodology: in Fig. 2 the true errors between the FE and the RB approxima-
tion are reported, the related error bounds (see [16] for error bound expression
and derivation), as well as the error between the FE and the RB output. We
observe fast, nearly exponential convergence in N . Furthermore, the a posteriori
error bounds are both reliable and reasonably effective.

Number of FE dof Nv +Np 24046

Number of RB functions N 16
Number of design variables P 2

Linear system dimension reduction 500:1

FE evaluation tonline
FE (s) 2.8039

RB evaluation tonline
RB (s) 0.0231

Table 1. RB + FFD for the carotid artery bifurcation: numerical details.

4.2 A comparison between FFD and RBF parametrizations

Next, we report here some preliminary results on the comparison between a FFD
and a RBF setting defined on the carotid configuration already introduced. Also
in this case we are interested in the evaluation of the viscous energy dissipation;
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Fig. 2. Left: • error estimation (natural norm) and • true error between RB and FE
approximation; right: true error between FE and RB output (vorticity).

we just compare the two parametrizations techniques by considering a Navier-
Stokes model for the fluid flow. Both the settings deal with p = 6 parameters,
given by the vertical displacements of some selected control points; in the FFD
case we introduce a 6 × 8 lattice of control points, while in the RBF case we
introduce in total 12 control points close to the bifurcation and at the extrema
(see Fig. 3), using the thin-plate spline (TPS) and the Gaussian shape functions
[2]. In this last case, we deal with the displacement of the six control points
located at the center of the configuration.

We compare the shapes obtained by minimizing the viscous energy dissipa-
tion: in Tab. 2 are reported the results for the two cases, while the configurations
corresponding to the minimum values of the viscous energy dissipation are repre-
sented in Fig. 4. We can remark that the three shapes are quite similar, as well
as the output reduction. The number of iterations taken by the optimization
procedure is comparable among the three options. Regarding the main qualities
of these two shape parametrization tools, the RBF technique proves to be more
versatile and accurate for this kind of applications – it enables to choose freely
the location of control points rather than selecting the most relevant control
points on the regular FFD lattice, as well as to impose interpolation constraints
– even if its construction and the computation of the related parametrized ten-
sors is much more difficult. Not only, by considering the same amount, location
and available displacements of control points, the Gaussian RBF is found to be
more suitable for describing local deformations; the TPS option allows to get a
more global and regular deformation, where an enhanced shape smoothness is
ensured by a minimization of the bending deformation energy property, fullfilled
by this kind of RBF.
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Fig. 3. FFD setting (top) and RBF setting (bottom); for each case, parameters are
given by the displacements of the selected (blue) control points.

FFD RBF (thin-plate) RBF (Gaussian)

output reduction 39, 1% 45, 9% 36, 7%

iterations 84 117 91
parameters 6 (48) 6 (12) 6 (12)

Table 2. Results for the minimization of the viscous energy dissipation obtained by
using the FFD and the RBF settings introduced above.

5 Conclusion and perspectives

The capability of the reduced basis method to solve shape registration and opti-
mization problems involving incompressible flows in real-time looks promising if
coupled with an efficient and versatile geometrical parametrization. The integra-
tion of the RBF parametrization technique within the reduced basis framework,
as well as its application to blood flow simulation on geometries reconstructed
from patient data, looks promising in its flexibility and ability to express a vari-
ety of shape deformations. Further elements that may be explored deal with the
uncertainty quantification [5] and/or robust optimization and control problems
[6] for patient-specific scenarios.

References

1. N. W. Bressloff. Parametric geometry exploration of the human carotid artery
bifurcation. J. Biomech., 40:2483–2491, 2007.

2. M.D. Buhmann. Radial Basis Functions. Cambridge University Press, UK, 2003.



Reduction strategies for shape optimization and inverse problems 9

Fig. 4. Optimal configuration obtained by minimizing the viscous energy dissipation
for the FFD case (top), the RBF case with the thin-plate spline option (middle) and
the RBF case with the Gaussian option (bottom).

3. S. Deparis and G. Rozza. Reduced basis method for multi-parameter-dependent
steady Navier-Stokes equations: Applications to natural convection in a cavity. J.
Comp. Phys., 228(12):4359–4378, 2009.
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