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Abstract

A three-dimensional (3-D) granular model which simulates fluid flow within solidifying alloys with a globular microstructure, such as
that found in grain refined Al alloys, is presented. The model geometry within a representative volume element (RVE) consists of a set of
prismatic triangular elements representing the intergranular liquid channels. The pressure field within the liquid channels is calculated
using a finite elements (FEs) method assuming a Poiseuille flow within each channel and flow conservation at triple lines. The fluid flow
is induced by solidification shrinkage and openings at grain boundaries due to deformation of the coherent solid. The granular model
predictions are validated against bulk data calculated with averaging techniques. The results show that a fluid flow simulation of globular
semi-solid materials is able to reproduce both a map of the 3-D intergranular pressure and the localization of feeding within the mushy
zone. A new hot cracking sensitivity coefficient is then proposed. Based on a mass balance performed over a solidifying isothermal vol-
ume element, this coefficient accounts for tensile deformation of the semi-solid domain and for the induced intergranular liquid feeding.
The fluid flow model is then used to calculate the pressure drop in the mushy zone during the direct chill casting of aluminum alloy billets.
The predicted pressure demonstrates that deep in the mushy zone where the permeability is low the local pressure can be significantly
lower than the pressure predicted by averaging techniques.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

During solidification the feeding of liquid to counteract
solidification shrinkage is hindered by the morphology and
dense packing of the grain structure. When such regions
within a casting are also submitted to tensile thermal defor-
mation a solidification defect known as hot tearing [1–4] or
solidification cracking may develop. In industrial metallic
alloys direct observation of the semi-solid microstructure
is challenging due to the high temperatures and metal opac-
ity. While in situ observations of model organic systems [5]
and small metallic specimens [6] subject to tensile loading
are now available, accurate modeling of the localization

of liquid feeding has become a prerequisite for predicting
hot tear formation.

Accurate simulations of liquid convection during the
solidification of industrially cast components is challenging
since the typical length scale of the liquid network, i.e. the
grain size, is usually much smaller than the process dimen-
sion. In order to overcome this issue early researchers used
an averaging or a multiphase mixture approach on the
macro-scale to investigate fluid flow within the mushy zone
[7–11]. In this type of simulation a representative volume
element (RVE) methodology is used with the RVE
assumed to consist of only one “average phase” based on
a combination of solid and liquid properties. The RVE is
large with respect to the grain size yet small with respect
to the process scale. The governing equations are derived
from averaging techniques in which the concepts of the
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volume fractions of solid and liquid as well as exchange
terms at the solid–liquid interface are introduced. More
specifically, for fluid flow occurring in the mushy zone
Darcy’s law, which describes the flow of fluid through a
porous medium, is often used to link the physical structure
with fluid flow. This equation relates the average (or super-
ficial) intergranular velocity to the pressure gradient, with a
parameter that is proportional to the permeability of the
mushy zone and inversely proportional to the dynamic vis-
cosity [12,13].

Although the averaging approach has been successful in
providing an insight into porosity formation, hot tearing
and macrosegregation, it does not provide any information
at the level of the microstructure. Thus important physical
phenomena, such as feeding variations at the level of the
grains, cannot be obtained to improve hot tearing predic-
tions. Over the past few years a new technique based on
granular modeling has shown much promise for investigat-
ing the initiation and propagation of cracks within liquid
films [14–23]. In this technique the liquid and solid phases
are modeled independently but with a large enough domain
size to be considered a RVE.

Early solidification models based on a granular model-
ing approach considered a regular arrangement of grains
for the simulation of liquid feeding within mushy zones
[17]. However, such models have a key shortcoming associ-
ated with the intrinsic specific solid–liquid interfacial area
As‘, i.e. the area of the solid–liquid interfacial area normal-
ized to the volume of the solid. In a regular arrangement of
grains all the solid grains solidify at the same rate and
therefore all connect at the same time when the overall vol-
umetric solid fraction (gs) within the RVE reaches unity.
Thus the area As‘ continuously increases until gs = 1. In
reality, however, the random arrangement of the grains
and thus their different sizes result in the formation of clus-
ters (bridging or coalescence of neighboring grains) of
increasing size, prior to gs reaching unity. The process of
coalescence in a random array of grains typically occurs
once gs > 0.9 [24] and causes As‘ to reach a maximum at
gs < 1. As first proposed in two dimensions by Mathier
et al. [14], a regular arrangement of grains can be replaced
by a random distribution of nucleation centers combined
with a Voronoi tessellation. Using this approach a two-
dimensional (2-D) granular model of fluid flow during
equiaxed–globular solidification was then developed by
Vernède et al. [18,21] in order to examine liquid feeding
during the solidification and semi-solid deformation of an
Al–1 wt.% Cu alloy. In a subsequent work [19] it was
shown that a finer grain structure has a decreased hot tear-
ing sensitivity due to a more evenly distributed flow within
more liquid channels, and thus a better feeding of areas
under tensile stress.

Although the idea of a random network of grains pro-
vides significant improvements in our ability to model fluid
flow using a granular approach, the 2-D geometry remains
a severe limitation, since granular microstructures are
inherently three-dimensional (3-D). Issues include (i) the

As‘ predicted by a 2-D simulation is smaller than reality
[16] and, hence, the semi-solid permeability cannot be accu-
rately quantified, and (ii) although simultaneous continuity
of both the solid and liquid phases can exist in three dimen-
sions, a topological feature of 2-D geometry is that only
one of the two phases can percolate through the RVE.

In the present work a new 3-D fluid flow model for gran-
ular semi-solid materials with a geometry based on a Voro-
noi diagram has been developed. Its purpose is to
investigate the localization of liquid feeding in the mushy
zone during the solidification of grain refined aluminum
alloys and to overcome the limitations of 2-D geometries
discussed before. Firstly, the methodology for generating
the liquid film network during solidification within the
framework of a granular approach is briefly outlined. Sec-
ondly, the fluid flow model is described. Thirdly, the model
is validated and then used to explore fluid flow during the
globular solidification of an aluminum–copper alloy.

2. Development of a 3-D fluid flow model of the mushy zone

2.1. Generation of the semi-solid liquid film geometry and
mesh

The liquid film geometry for the semi-solid fluid flow
simulations is created using the 3-D granular solidification
model known as GMS-3D [16,23]. In this model it is
assumed that the grains are distributed randomly within
an RVE of nearly uniform temperature. Providing that
the grains nucleate simultaneously, the final grain structure
will be nearly globular, with grain boundaries correspond-
ing to a Voronoi tessellation of the random nucleation cen-
ters [25]. The RVE used in the present model, shown in
Fig. 1a, is a cube 3 � 3 � 3 mm containing 27,000 grains,
i.e. a grain size of about 100 lm. Solidification is approxi-
mated within each grain using a microsegregation model
with infinite diffusion in the liquid and some back-diffusion
in the solid. As the temperature of the RVE is assumed to
be uniform, the solute composition of the liquid C‘ is also
uniform in a binary alloy and given by the liquidus temper-
ature C‘ðT Þ of the alloy (any curvature undercooling is
neglected). Although the composition of the solid at the
solid–liquid interface C�s is also uniform and given by
kC‘, where k is the partition coefficient, the solute profile
in each grain (or portion of grain) is not uniform as it also
depends on the Fourier number, i.e. on the grain size.

Each polyhedral grain derived from the Voronoi tessella-
tion is divided into a set of pyramids having the nucleation
center as the summit and the Voronoi facet as the base. The
base of the pyramid is subdivided into triangles so as to only
have tetrahedral elements that can be used either in solid
deformation [23] or fluid flow calculations (see Fig. 2b). Sol-
ute exchange between the tetrahedral pyramids is neglected,
and as a result the microsegregation model reduces to a one-
dimensional solidification simulation in spherical coordi-
nates with the solid–liquid interface advancing from the
nucleation center to the Voronoi facet. As it is the height
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L of each pyramid that is entered into the corresponding
back-diffusion Fourier number, the pyramids solidify at dif-
ferent solidification velocites v� and coalesce with their
neighbors at different times, thus inducing grain percolation
and a decrease in As‘ at gs < 1. The solid–liquid interface
within each tetrahedron is parallel to the base (future grain
boundary), thus subdividing it into a tetrahedral solid and a
triangular prismatic liquid channel. At the beginning of
solidification the liquid channels are very wide, but as gs

increases the width of the liquid channels is reduced. The
coalescence of two neighboring grains is assumed to occur
once the liquid film thickness is of the order of the diffuse
solid–liquid interface thickness (1–5 nm) [14,26]. In such
small channels the permeability of the liquid is very low
and the pressure drop required to nucleate a void is very
large. Therefore, very thin liquid channels are considered
to act in a way similar to solid–solid bonds. To accommo-
date this physical behavior, grain coalescence is assumed
to occur once the thickness of a liquid channel shrinks to
5 nm in width. This phenomenon leads to the formation

of grain clusters (a group of solid grains which are in
mechanical contact). In Fig. 1a the grains belonging to
the same cluster are shaded the same gray level. Further
details of this model, together with a discussion of its limi-
tations and domain of validity, are given in Phillion et al.
[16] and Sistaninia et al. [23].

The fluid flow simulation domain, or mesh, accounts for
all channels between grains that have not yet coalesced, i.e.
all channels with a thickness larger than 5 nm. Flow is
assumed to occur in these interconnected intergranular
regions only, and not through the grains, as could be the
case in dendritic specimens. The mesh consists of triangular
prismatic elements (wedges with five facets), as shown in
Fig. 2a, with connectivity provided by GMS-3D. As can
be seen in Fig. 2b, flow conservation holds at each triple
line, i.e. where three different liquid wedges meet. The fluid
flow mesh shown in Fig. 1b contains 1.03 � 106 elements.

2.2. Liquid feeding model

Under the solidification conditions presented above
Navier–Stokes equations for fluid flow can be simplified
to Poiseuille flow between two parallel plates if one consid-
ers the specific geometry of the interconnected liquid chan-
nels that remain between the solidifying polyhedral grains
and assumes that flow is both parallel to the triangular
facet within each element (i.e. the fluid velocity~v‘ has only
two components, ~v‘x0 and ~v‘y0 , in a local frame (x0, y0, z0)
attached to the facet with the local z0-axis perpendicular
to the facet surface), and is irrotational (i.e. the vorticity
~xl ¼ r�~v‘ is nil)

~v‘ ¼
1

2l
rp½z02 � h2� ð1Þ

where the liquid channel width is 2h, l is the dynamic vis-
cosity, p the liquid pressure and the reference position for
the z0-axis is placed at mid-distance between the two paral-
lel solid–liquid interfaces of two neighbor grains.

Mass conservation within the liquid film must take into
account both solidification shrinkage and deformation of
the solid. Considering Fig. 2, if the velocity of the solid–
liquid interface is v�, the normal velocity of the fluid at
the interface required to compensate for solidification
shrinkage is given by bv�, where b ¼ ðqs=q‘ � 1Þ is the
shrinkage factor and q‘ql, and qs are the densities of the
liquid and solid, respectively. Concurrently, deformation
of the solid grains can induce variation in the liquid chan-
nel width if the normal velocity of the two solid grains, vþsz0

and v�sz0 are different. With these considerations in mind,
one can then establish a mass balance over the prismatic
volume element V ‘ having the axis z0 as generating line
and two solid–liquid interfacial areas Se

s‘ (see Fig. 2). Inte-
grating this equation over V ‘ and assuming the liquid to be
incompressible (i.e. $�~v‘ ¼ 0) results inZ

V ‘

r �~v‘dV ¼
Z

Se
s‘

~v‘ �~ndS þ
Z

Se
‘

~v‘ �~ndS ð2Þ

Fig. 1. The semi-solid simulation domain: (a) a partially solidified RVE at
gs = 0.93, containing 27,000 (30 � 30 � 30) grains; (b) the liquid film
network between the polyhedral grains.
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where Se
‘ is the lateral surface of the prism and the diver-

gence theorem has been used. At the solid–liquid interface
this integral is simply given by:Z

Se
s‘

~v‘ �~ndS ¼ Se
s‘v‘n ¼ Se

s‘ð2bv�‘n þ DvsnÞ ð3Þ

where Dvsn measures the difference (vþsz0 � v�sz0). The integral
of the fluid flow velocity along the lateral surface of V ‘ is
obtained by replacing~v‘ by Eq. (1). One then has:

1

2l

Z
Se
‘

rp �~nðz02 � h2Þdz0dS ¼ �2h3

3l

H
@Se

‘
rp �~ndS

¼ �2h3

3l

Z
@Se

‘

r2pdS ¼ �2h3

3l
r2pSe

s‘ ð4Þ

Please note that after the integration over z0 from �h to
+h one is left with an integral over the perimeter of Se

s‘.
Using Green’s theorem this integral is equivalent to an
integral over the surface Se

s‘ of the Laplacian of the pressure
field $2p, which over a triangular element is constant for a
Poiseuille flow. To summarize, as this derivation is valid for
any solid–liquid interfacial area Se

s‘ one finally has the
equation:

2h3

3l
r2p ¼ 2bv� þ Dvsn ð5Þ

The left-hand side of Eq. (5) is the net volume of liquid that
must flow into the control volume to account for the effects
of solidification shrinkage and deformation on fluid flow
shown on the right-hand side. The term 2bv� is unique
for every channel, as it depends on the Fourier number,
and is calculated based on the output of the granular solid-
ification model. However, the term Dvsn depends on the
strain rate exerted on the mushy zone. In the present work

the strain of the solid skeleton is not calculated using a
mechanical model [25], but instead it is assumed that the
grains are rigid and hence all of the deformation is local-
ized in the liquid channels. In this case Dvsn of each trian-
gular element can be approximated as:

Dvsn ¼ 2h
_esv

ð1� gsÞ
ð6Þ

where _esv ¼ _exx þ _eyy þ _ezz is the volumetric part of the
strain rate exerted on the mushy zone.

2.3. Numerical implementation

A finite element code, written in C++, has been used to
calculate the liquid pressure in the semi-solid medium
based on Eq. (5). Since the flow within an element has been
assumed to be parallel to the facets only, the 3-D prism
shaped geometry within which it occurs can be discretized
into three node 2-D triangular elements, using the Galerkin
method. Please note that in Fig. 2 the polygonal shape of
the grain boundary between grains j and k has not been
subdivided into triangles in order to make the drawing
more readable. In this method the pressure within each tri-
angular element is approximated as:

pe ¼
P3
i¼1

Nip�i ð7Þ

where Ni (i = 1, 2, 3) are the shape functions of the triangu-
lar element that approximate the pressure field within ele-
ment (e) in the (x0, y0, z0) coordinate system. The p�i
values (i = 1,2,3) define the nodal values of the pressure.
Applying the Galerkin finite element method to the govern-
ing Eq. (5) the following matrix equation is obtained:

Fig. 2. A schematic of the liquid control volume: (a) its location in relation to the facets of two neighboring grains; (b) the triangular network of liquid
elements.
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½K�e
p�1
p�2
p�3

8><
>:

9>=
>; ¼ be þ f/ge ð8Þ

where

½K�eij ¼
2h3

3l

Z
Se

@Ni

@x0
@N j

@x0
þ @Ni

@y0
@N j

@y0

� �
dS ð9Þ

fbge
i ¼ �

Z
Se
ð2bv� þ DvsnÞNidS ð10Þ

f/ge
ij ¼

2h3

3l

Z
@Se

@N j

@x0
nx0 þ

@Nj

@y 0
ny0

� �
pjN idC ð11Þ

Matrix [K]e is the stiffness matrix, be is the body load asso-
ciated with solidification shrinkage and solid deformation,
{/}e is the boundary conditions, and Se and oSe are the area
and perimeter of the triangular element, respectively, while
n = (nx0,ny0) is the outward pointing unit vector perpendic-
ular to oSe in the (x0, y0, z0) coordinate system (see Fig. 2).
The matrix Eq. (8) is then assembled from Eqs. (9)–(11)
for each element. Once the individual element matrices have
been developed they must be assembled into the global
stiffness matrix. Please note that the boundary contribu-
tions {/}e (Eq. (11)) correspond to the intergranular flow
leaving (or entering) the perimeter of each element. The
boundary condition {/}e will remain only on external
boundaries of the whole RVE where a Neumann (imposed
flux) or Cauchy (mixed) condition is imposed. After devel-
oping the global stiffness matrix it is solved with a conjugate
gradient linear iterative method using a free open access
program C++ template library known as IML++ [27].

3. Results and discussion

The 3-D fluid flow simulations using the geometry
derived from the granular solidification model [16] have
been performed on the domain shown in Fig. 1a, unless
otherwise stated, under an imposed cooling rate of
�1 K s�1. The solidifying material is a binary Al–1 wt.%
Cu alloy with the following physical parameters:
ql = 2440 kg m�3, l = 1.5 � 10�3 Pa s and b = 0.074. This
alloy was chosen for its wide freezing range and susceptibil-
ity to hot tear formation [4]. The initial results are pre-
sented below, followed by model validation. The model is
then used to propose a new hot tearing sensitivity coeffi-
cient. The sensitivity coefficient, which similarly to the
RDG criterion [4] is based upon a mass balance performed
over the liquid and solid phases, accounts for the tensile
deformation of the RVE and for the induced intergranular
liquid feeding. Finally, the pressure drop within the mushy
zone during the direct chill casting of an aluminum alloy
extrusion billet is examined.

3.1. Model validation

The model has been validated using three comparison
methods. First, the assumption of Poiseuille flow is verified.

Second, the permeability of the mushy zone is calculated
and compared with the bulk permeability predicted by
the Carman–Kozeny relationship [12]. Third, the amount
of liquid needed to account for the volumetric change dur-
ing solidification and semi-solid deformation is calculated
and compared with the results obtained from a bulk
analysis.

3.1.1. Solidification geometry

Fig. 3a shows the distribution of the liquid channel
widths predicted by the granular solidification model for
three values of gs (gs = 0.80, 0.93, and 0.98). As solidifica-
tion proceeds the smaller liquid channels close, while the
larger ones remain open due to the effects of back diffusion
and the Fourier number in the microsegregation model. As
can be seen, the majority of the open channels have a width
of �3 lm for gs = 0.93, decreasing to �1 lm for gs = 0.98.
Also, the number of closed channel increases with gs so that
there is an �40% increase in the number of closed channels
between gs = 0.93 and 0.98. Since the Reynolds number for
fluid flow through small narrow channels is very small
(’10�5) fluid motion can be considered laminar. Fig. 3b

Fig. 3. (a) Distribution of the liquid channel width for three values of gs,
including those which are already closed (width = 0). (b) The same
distribution but for open channels only and normalized to the square root
of Ss‘, the surface of each corresponding Voronoi facet.
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shows the distribution of the ratio of the liquid channel
thickness to the square root of the surface Ss‘ of the corre-
sponding facet of the Voronoi tessellation. As can be seen,
the majority of the liquid channels have a width to length
ratio of less than 6% when gs > 0.90 and, hence, the chan-
nels can be considered infinite parallel plates. Thus the
assumption of Poiseuille flow (laminar flow between two
infinite parallel plates) is valid for the case 0.9 < gs < 1.

3.1.2. Permeability

For semi-solid materials with an equiaxed microstruc-
ture, such as grain refined industrial castings susceptible
to hot tearing, the bulk permeability K has often been
expressed by the Carman–Kozeny relation [12]:

K ¼ ð1� gsÞ
3

5A2
s‘

ð12Þ

The factor 5 is an empirical fitting factor which seems to
provide good agreement with experimental data over a
wide range of solid fractions gs for the case of an isotropic
porous medium composed of unconsolidated material
[12,13,28,29]. In order to assess the ability of the new 3-
D fluid flow model to predict the bulk permeability a series
of isothermal flow simulations were performed at various
gs values in the interval [0,1] with the following boundary
conditions: a constant pressure p0, i.e. a Dirichlet boundary
condition, on the top side and a fixed flux q, i.e. a Neu-
mann boundary condition, on the bottom side. Please note
that q has units of velocity, since it is a flow (m3 s�1) per
unit area (m2). Furthermore, for a valid comparison with
Carman–Kozeny permeability it is necessary to neglect

solidification shrinkage and to close the lateral boundaries.
Darcy’s law is then used to calculate the permeability using
the pressure p1 found at the bottom boundary:

K ¼ ql
P 1�P 0

L

� � ð13Þ

where L is the height of the domain and p1 is the average
pressure on the bottom side of the RVE.

Fig. 4 shows the pressure contours for four values of gs

(gs = 0.50, 0.80, 0.92 and 0.98) with q = 50 lm s�1 and
p0 = 0. In this figure the calculated liquid flow in each facet
is represented with a plate of finite thickness proportional
to the local flow and normalized by the overall flow (i.e. rel-
ative flow intensity). The legend is shown to the right of
each image and although the pressure is defined only in
the liquid channels, the color is also represented within
the grains for visibility. For the two images at lower gs

(Fig. 4a and b) the fluid flow is fairly well distributed in
the liquid channels. However, the flow appears to localize
along a few preferential paths at gs = 0.92 (Fig. 4c) and
even more at gs = 0.98 (Fig. 4d). Also, note that the max-
imum local pressure drop (p0–p1) increases with gs; at
gs = 0.98 it is approximately four orders of magnitude lar-
ger than its value for gs = 0.50.

Fig. 5 shows a comparison for the bulk semi-solid per-
meability using the new 3-D fluid-flow model (Fig. 5a), a
previously developed 2-D granular fluid-flow model
[18,21] (Fig. 5b) and the predictions of the Carman–Koze-
ny relation (Fig. 5c). Note that the results for gs < 0.3 have
not been presented since at low gs the liquid channels are
wide and therefore the Poiseuille laminar flow assumption

Fig. 4. Fluid flow through a mushy zone volume element (3 � 3 � 3 mm) consisting of 27,000 grains for (a) gs = 0.5, (b) gs = 0.80, (c) gs = 0.93 and (d)
gs = 0.98. The width of each channel is proportional to the local flow normalized to the total flow within the volume element.

M. Sistaninia et al. / Acta Materialia 60 (2012) 3902–3911 3907



Author's personal copy

is no longer valid and the contribution of the flow at vor-
tices, i.e. points where four grains meet, becomes also
important. As can be seen, the permeability calculated with
the 3-D fluid flow model follows the Carman–Kozeny rela-
tion closely until the very end of solidification with the
accuracy improving with increasing gs. In contrast, the per-
meability of the 2-D fluid flow model is higher than the
Carman–Kozeny predictions, a difference that can be
explained by the smaller value of As‘ for a 2-D assembly
of grains compared with the 3-D case considered here
[16]. Please note that this discrepancy does not appear in
Vernède et al. [18] as the product K S2

v, where Sv = As‘/gs,
and not K was reported as a function of gs. While averag-
ing methods, such as the Darcy equation, dictate that a
lower permeability represents a higher average pressure
drop, the local pressure drop predicted by the 2-D model
is higher than the local pressure drop predicted by the 3-
D model. This is because the local pressure drop is closely
linked to the actual number of channels available for feed-
ing. a 2-D geometry liquid cannot pass once two grains
have coalesced, whereas liquid can move around in the 3-
D model, due to the additional third dimension. As pointed
out in Phillion et al. [16], both the solid and liquid phases
can percolate in three dimensions, while this cannot be
the case in two dimensions.

3.1.3. Solidification shrinkage and deformation

In the second test the volume of liquid required to feed
solidification shrinkage and deformation is considered. The
amount of liquid required to feed a deforming and solidify-
ing isothermal RVE can be calculated analytically, and is
given by:

Q
V

� �
¼ b

dgs

dt
þ _esv ð14Þ

where V is the volume of the RVE, and Q is the volumetric
flow (m3 s�1). To simulate this case using the present 3-D
fluid flow granular model all the surfaces of the RVE are

closed except for one where feeding is allowed. Solidifica-
tion and deformation is then initiated, and the volumetric
liquid flow into the RVE through the open surface is re-
corded as a function of gs. Fig. 6 shows a comparison of
the variation in net fluid inflow with gs due to solidification
shrinkage and semi-solid deformation as calculated using
Eq. (14), and as calculated by the 3-D fluid flow model
for two different cooling rates ( _T ¼ �5 and �1 K s�1)
and two different strain rates (_esv ¼ 0:0 and 2� 10�3 s�1).
The evolution of gs for this alloy was calculated using the
granular solidification model [16]. As can be seen, there is
good agreement for both cooling rates between the two
curves. Hence the 3-D fluid flow model is able to accurately
simulate the liquid flow induced by solidification shrinkage
and semi-solid deformation. The formation of hot tears is
similar to porosity formation in the sense that it is linked
to a lack of liquid feeding in the mushy zone, but addition-
ally requires shear or tensile deformation. As can be seen in
Fig. 6, although the need for fluid to account for solidifica-
tion shrinkage decreases with increasing gs, the need for
fluid to account for deformation remains nearly constant
at high gs. Previous work has also shown that, locally,
the fluid needed to counteract deformation may even in-
crease at high gs since the deformation localizes along a
few preferential paths [25].

3.2. Hot tearing sensitivity index

Although many hot tearing criteria have been suggested
in the literature (review by Eskin et al. [30] for example),
the pressure drop due to shrinkage and deformation is a
key parameter of the most recently developed criteria. In
the RDG criterion [4] the amount of liquid Q needed to
feed a mushy zone under deformation is given by Eq. (14).

Assuming an isothermal mushy zone under uniform
straining of the solid skeleton, the pressure drop or pres-

Fig. 5. The variation in permeability K with gs for a random network of
grains calculated using the 3-D fluid flow model. The 2-D fluid flow model
of Vernède et al. [18] and the Carman–Kozeny relationship are also
provided for comparison.

Fig. 6. A comparison of the variation in net fluid inflow per unit volume
with gs due to solidification shrinkage and semi-solid deformation as
calculated using the 3-D fluid flow model and with Eq. (14) at two different
cooling rates ( _T ¼ �5 and � 1 K s�1) and two different strain rates
(_esv ¼ 0:0 and 2� 10�3 s�1).
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sure gradient according to Darcy’s law is thus proportional
to:

Dp / b _gs þ _esv

K

� �
ð15Þ

Therefore the coefficient M ¼ b _gsþ_esv

K
� �

represents the sensi-
tivity of the mushy zone to hot tearing.

The expression M has been computed using the simula-
tions performed for Figs. 5 and 6. The results are shown in
Fig. 7 as a function of gs at a cooling rate of _T ¼ �1 K s�1

for different strain rates between _esv ¼ 0 and 0:01. As can
be seen, M values at gs < 0.9 are insignificant, but increase
sharply beginning at gs = 0.9; with increasing strain rate
the rapid increase in M occurs at lower gs. As shown by
many previous authors (see, for example, Davidson et al.
[31]), hot tearing susceptibility is significantly increased at
gs > 0.9. These results confirm those findings, and indicate
that it is the feeding ability of the mushy zone that deter-
mines hot tear formation. At values of gs > 0.9 the feeding
ability becomes significantly reduced. The addition of the
strain rate term, i.e. a deforming mushy zone, simply
enhances the problem of feeding and enables the crack to
form and grow at an earlier stage.

3.3. Case study: direct chill casting of round billets

The direct chill (DC) semi-continuous casting pro-
cess[32], schematically presented in Fig. 8, is widely used
in the aluminum alloy industry. Experimentally, hot tears
are observed in the center of round billets when the casting
speed is increased [32]. To examine fluid flow in DC casting
in the context of hot tearing a column of semi-solid metal
located at the center of the billet and spanning the distance
between the solidus and liquidus temperatures has been
studied using the new 3-D granular fluid flow model. In this
region lateral feeding is assumed to be negligible for axi-
symmetric reasons. The characteristics of the primary and
secondary cooling systems, such as the amount and quality

of the cooling water and the mold geometry, together with
the casting speed, determine the sump depth h and cooling
rate _T . The typical values of h and _T for the billet of
200 mm diameter considered in this study are 100 mm
and 5 K s�1 at a casting speed of 90 mm min�1 (i.e. a ver-
tical thermal gradient of 3.33 � 103 K m�1) [32]. With this
thermal history the evolution of gs at any point along the
billet center line can be computed using the granular solid-
ification model [16]. The resulting semi-solid geometry will
be used to calculate the pressure drop associated with solid-
ification shrinkage and semi-solid deformation under a uni-
form volumetric strain rate _esv.

In a way similar to heavy computations performed on
multiple processors the semi-solid column is sub-divided
into six smaller RVEs, each containing 16,000
(40 � 20 � 20) grains, in order to reduce the computational
cost, as shown in Fig. 8. The size of each RVE is H = 4 mm
along the axis of the billet and 2 � 2 mm in cross-section.
Since the values of the fluxes Qij exchanged at the boundary
between the RVE domains (i) and (i + 1) (i = 1–6) are
unknown the simulation is performed twice. Please note
that since Qij depends only on the pressure gradient, the
actual pressure value imposed is not critical to the flux
computation. For the first simulation the Qij values are cal-
culated sequentially in order to acquire the fluid flow
within the mushy zone. The sequential calculation begins
with the first RVE (i = 1) located at the bottom of the
mushy zone. Since there is no flux possible at the bottom
boundary (i.e. at the interface with the fully solid material)
the simulation can be performed by imposing a constant

Fig. 7. Variation in hot tearing sensitive coefficient M, i.e. [(b _g s + _esv)/K],
with gs for four different strain rates.

Fig. 8. A schematic diagram illustrating the DC casting process for round
billets. As shown on the right, the mushy zone has been subdivided into six
segments in order to simulate fluid flow within the sump region.
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pressure equal to zero at the upper boundary. This allows
one to calculate the entering flow Q12 at this upper bound-
ary, since the evolution of gs is known from the thermal
field. This value is then imposed on the bottom side of
the second RVE (i = 2) and a constant pressure is imposed
on the upper side. The flow Q23 is thus obtained and the
problem is repeated sequentially up to the sixth RVE.
For the second simulation the process is reversed in order
to acquire the actual pressure drop within each RVE. This
time the simulation begins with the RVE i = 6, since the
pressure on the upper side of this volume (pa + qgh) is
known, where pa is the atmospheric pressure. This pressure
is imposed on the upper side of this RVE, while the flow
Q56 calculated from the first simulation is imposed at the
bottom boundary. With these two conditions, as for
Fig. 5, the actual pressure at the surface S56, i.e. p56, can
be computed using the granular fluid flow model. This pro-
cess is continued until the pressure drop within each RVE
is acquired.

Fig. 9 shows the calculated pressure drop through the
center line mushy zone of a DC cast billet along with the
associated Darcy’s velocity. The pressure drop is entirely
due to solidification shrinkage and semi-solid deformation
at uniform and fixed volumetric strain rates of _esv ¼ 0:0

(Fig. 9a), 10�4 (Fig. 9b) and 10�3 s�1 (Fig. 9c). Although
the minimum average pressures reported are approximately
�15 kPa (Fig. 9a), �29 kPa (Fig. 9b) and �156 kPa
(Fig. 9c), the minimum calculated local pressure is typically
much lower, �459 kPa (Fig. 9a), �498 kPa (Fig. 9b) and
�795 kPa (Fig. 9c), in some of the channels which are
recognizable as dark spots (noted as 1,2,3 in Fig. 9,
RVE i = 1). These extremely large pressure drops occur
due to the low feeding ability of some individual thin chan-
nels. However, in a granular model that includes additional
physical phenomena, including porosity formation and
solid grain deformation/displacement [23], such a high
depression will be lessened. In this case, when the pressure
within the thin liquid channels falls below a cavitation pres-
sure (pc) a void would form, giving rise to a crack [4]. Since
the radius of curvature of the pores is also dictated by the
width of the liquid channel, the cavitation pressure itself
also depends on the thickness of the liquid channel. As
shown in Fig. 9, if pc is set to 2 kPa for the sake of simplic-
ity [4,32], hot tearing occurs at gs = 0.979 (Fig. 9a), 0.964
(Fig. 9b) and 0.938 (Fig. 9c). Therefore, with increasing _e
the hot tearing occurs at lower gs and hot tearing suscepti-
bility is significantly increased. This remark was also
deduced previously from the sensitivity coefficient M.

Fig. 9. The calculated pressure drop through a mushy zone located at the center of a solidifying aluminum alloy DC cast round billet for an Al–1 wt.% Cu
alloy cooled at �5 K s�1 in a gradient of 3.33 � 103 K m�1 at strain rates of (a) _esv ¼ 0:0, (b) 10�4 and (c) 10�3 s�1. Pa has been set to 0 in this case. The
grain view and flow shown on the left corresponds to case (a).
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4. Conclusions

A 3-D granular fluid flow model has been developed to
simulate the localization of feeding through the mushy
zone. In this new model, the pressure drop was calculated
assuming Poiseuille flow in each channel. The model pre-
dictions (permeability and shrinkage) were validated
against the results obtained from averaging techniques.
The results show that the model is able to calculate the per-
meability of the mushy zone and the flow associated with
solidification shrinkage accurately for values of gs greater
than 0.4. Although the average values fit well with those
obtained by simple averaging techniques such as the
Carman–Kozeny model it is also shown that locally, in par-
ticular in the thinnest channels of liquid, the pressure drop
can deviate substantially from the analytical solution.

A hot tearing criterion has been developed for globular
solidification and the sensitivity of the mushy zone to hot
tearing at various gs values has been analyzed using the
results obtained with the fluid flow model. Although the
hot tearing sensitivity coefficient at gs < 0.9 has an insignif-
icant value, it rapidly increases above gs = 0.9. This rapid
increase confirms that the susceptibility of the mushy zone
to hot tearing occurs at a high solid fraction and near the
end of solidification due to its low feeding ability. Finally,
the model has been applied to the particular case of DC
casting of an aluminum extrusion billet. The calculated
pressure demonstrates that deep within the mushy zone,
where the permeability is low, the local pressure can be
very low in the thinnest liquid channels, even though
the average pressure drop remains limited. This low pres-
sure in such channels will have to be placed into relation
to the cavitation pressure required to nucleate and grow
a non-wetting pore at those locations. Furthermore, this
fluid flow model is being coupled with a semi-solid defor-
mation model [23] by the present authors. The hydro-
mechanical coupling will provide a fairly unique tool and
good insight into the determinant phenomena of hot tear-
ing and, in particular, into the contribution of localization
of strain and feeding.
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[21] Vernède S, Dantzig JA, Rappaz M. Acta Mater 2009;57:1554.
[22] Phillion AB, Cockcroft SL, Lee PD. Model Simul Mater Sci Eng

2009;17:055011.
[23] Sistaninia M, Phillion AB, Drezet JM, Rappaz M. Metall Trans A

2011;42:239.
[24] Rappaz M, Jacot A, Boettinger WJ. Metall Trans A 2003;34:467.
[25] Charbon C, Rappaz M. Acta Mater 1996;44:2663.
[26] Drezet J-M, Sistaninia M, Rappaz M. Matériaux Tech 2010;98:261.
[27] Dongarra J, Lumsdaine R, Pozo R, Remington K. In: Proceedings of

the second object oriented numerics conference. Sunriver, Oregon;
1992. p. 214.

[28] Bernard D, Nielsen O, Salvo L, Cloetens P. Mater Sci Eng A: Struct
Mater Prop Microstruct Process 2005;392:112.

[29] Khajeh E, Maijer DM. Acta Mater 2010;58:6334.
[30] Eskin DG, Suyitno, Katgerman L. Prog Mater Sci 2004;49:629.
[31] Davidson C, Viano D, Lu L, St. John D. Int J Cast Met Res 2006;19:

59.
[32] Drezet JM, Rappaz M. In: Whiteley PR, Grandfield JF, editors. Sixth

Australian Asian pacific conference on aluminium cast house tech-
nology. Warrendale (PA): Minerals, Metals & Materials Society;
1999.

M. Sistaninia et al. / Acta Materialia 60 (2012) 3902–3911 3911


