Abstract

Intricate relationships between mechanical and electrochemical degradation aspects likely affect the durability of solid oxide fuel cell stacks. This study presents a modelling framework that combines thermo-electrochemical models including degradation and a contact thermo-mechanical model that considers rate-independent plasticity and creep of the components materials and the shrinkage of the nickel-based anode during thermal cycling. This Part II investigates separately or together the contributions of mechanical and electrochemical degradation on the behaviour during long-term operation and thermal cycling.

Details

Actions