Robust joint reconstruction of misaligned images

 using semi-parametric dictionariesG. Puy ${ }^{1,2}$ and P. Vandergheynst ${ }^{1}$

${ }^{1}$ Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
${ }^{2}$ Institute of the Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Motivation

- A scene $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ is observed from l point-of-views, providing l noisy measurement vectors $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{l} \in \mathbb{R}^{m}, m \leqslant n$.
- The scene is partly occluded by some objects $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l} \in \mathbb{R}^{n}$.
- The scene undergoes geometric transformations $\tau_{1}, \ldots, \tau_{l}$ that depend on the position of the observer.

Observed images (dataset available in [1]).

- The observation system is modeled by a linear operator $\mathrm{A} \in \mathbb{R}^{m \times n}$.
- The goal is to reconstruct \boldsymbol{x}_{0} from the observations $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{l}$, without the knowledge of the geometric transformations $\tau_{1}, \ldots, \tau_{l}$.

Problem formulation

- The transformations belong to a transformation group represented - The inverse ill-posed problem is regularized by assuming that the
by p parameters: $\theta_{j} \in \mathbb{R}^{p}, \forall j \in\{1, \ldots, l\}$.
- We denote $S\left(\theta_{j}\right) \in \mathbb{R}^{n \times n}$ the interpolating matrix such that $\boldsymbol{x}_{0} \circ \tau_{j}=\mathrm{S}\left(\theta_{j}\right) \boldsymbol{x}_{0}$.
- The measurement model satisfies:

$$
\underbrace{\left[\begin{array}{c}
\boldsymbol{y}_{1} \\
\vdots \\
\boldsymbol{y}_{l}
\end{array}\right]}_{\boldsymbol{y}}=\underbrace{\left[\begin{array}{cccc}
\mathrm{AS}\left(\theta_{1}\right) & \mathrm{A} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{AS}\left(\theta_{l}\right) & 0 & \ldots & \mathrm{~A}
\end{array}\right]}_{\tilde{\mathrm{A}}(\theta)} \underbrace{\left[\begin{array}{c}
\boldsymbol{x}_{0} \\
\vdots \\
\boldsymbol{x}_{l}
\end{array}\right]}_{\boldsymbol{x}}+\left[\begin{array}{c}
\boldsymbol{n}_{1} \\
\vdots \\
\boldsymbol{n}_{l}
\end{array}\right]
$$

Method

- We define $\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta)=\|\boldsymbol{\alpha}\|_{1}+\kappa\|\mathrm{A}(\theta) \boldsymbol{\alpha}-\boldsymbol{z}\|_{2}^{2}+i_{\mathcal{B}(\boldsymbol{y}, \epsilon)}(\boldsymbol{z})+i_{\mathcal{T}}(\theta)$, - The algorithm is similar to the method studied by Attouch et al. in where $i_{\mathcal{T}}$ is the indicator function of the set \mathcal{T}, and $i_{\mathcal{B}(\boldsymbol{y}, \epsilon)}$ the indicator [2-3] for solving non-convex problems. We have replaced the cost-tofunction of the set $\mathcal{B}(\boldsymbol{y}, \epsilon)=\left\{\boldsymbol{z}=\left\{\boldsymbol{z}_{j}\right\}_{1 \leqslant j \leqslant l}:\left\|\boldsymbol{y}_{j}-\boldsymbol{z}_{j}\right\|_{2}^{2} \leqslant \epsilon_{j}\right\}$.
- Initializations: set $k=0, \boldsymbol{\alpha}^{0}=\mathbf{0} \in \mathbb{R}^{(l+1) n}, \boldsymbol{z}^{0}=\boldsymbol{y}, \theta^{0} \in \mathcal{T}$, choose $0<\lambda_{\min } \leqslant \lambda_{\boldsymbol{z}}, \lambda_{\theta},\left\{\lambda_{\boldsymbol{\alpha}}^{k}\right\}_{k \in \mathbb{N}} \leqslant \lambda_{\max }$.
- Repeat:

1) $\left(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}\right) \in \underset{\boldsymbol{\alpha}, \boldsymbol{z}}{\operatorname{argmin}} \mathcal{L}\left(\boldsymbol{\alpha}, \boldsymbol{z}, \theta^{k}\right)+\lambda_{z}\left\|\boldsymbol{z}-\boldsymbol{z}^{k}\right\|_{2}^{2}+\lambda_{\boldsymbol{\alpha}}^{k}\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{k}\right\|_{1}$.
2) Find $\theta^{k+1} \in \mathcal{T}$ such that:
$\kappa\left\|\mathrm{A}\left(\theta^{k+1}\right) \boldsymbol{\alpha}^{k+1}-\boldsymbol{z}^{k+1}\right\|_{2}^{2}+\lambda_{\theta}\left\|\theta^{k+1}-\theta^{k}\right\| \leqslant \kappa\left\|\mathrm{A}\left(\theta^{k}\right) \boldsymbol{\alpha}^{k+1}-\boldsymbol{z}^{k+1}\right\|_{2}^{2}$ • We also have:
3) $k \leftarrow k+1$, |2 Attonchet al.. Mathematics of Operations Resen $\|_{2}^{2}$.
until convergence or $k \geqslant k_{\text {max }}$.
[2] Attouch et al.,
pp. 438-457, 2010

Illustration

- $m=0.1 n$ measurements per image obtained with the spread spectrum technique [4].
- The transformations are assumed to be homographies modeled by 8 unknown parameters.

Reconstructions obtained without taking into account correlations between the measurements.
scene \boldsymbol{x}_{0} and the occluding objects $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}$ are sparse in a wavelet basis $\mathrm{W} \in \mathbb{R}^{n \times n}$. The decomposition of \boldsymbol{x}_{j} in W is denoted $\boldsymbol{\alpha}_{j} \in \mathbb{R}^{n}$.

- We want to solve the following non-convex problem:

$$
\min _{\boldsymbol{\alpha}, \boldsymbol{z}, \theta}\|\boldsymbol{\alpha}\|_{1}+\kappa\|\mathrm{A}(\theta) \boldsymbol{\alpha}-\boldsymbol{z}\|_{2}^{2} \text { s.t. }\left\{\begin{array}{c}
\left\|\boldsymbol{y}_{1}-\boldsymbol{z}_{1}\right\|_{2} \leqslant \epsilon_{1} \\
\vdots \\
\left\|\boldsymbol{y}_{l}-\boldsymbol{z}_{l}\right\|_{2} \leqslant \epsilon_{l}
\end{array} \text { and } \theta \in \mathcal{T}\right.
$$ where $\boldsymbol{\alpha}=\left[\boldsymbol{\alpha}_{0}, \ldots, \boldsymbol{\alpha}_{l}\right]^{\top}, \boldsymbol{z}=\left[\boldsymbol{z}_{0}, \ldots, \boldsymbol{z}_{l}\right]^{\top}$, and $\mathrm{A}(\theta)=\tilde{\mathrm{A}}(\theta) \underbrace{[\mathrm{W}, \ldots, \mathrm{W}}]^{\top}$.

move function $\lambda_{\boldsymbol{\alpha}}^{k}\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{k}\right\|_{2}^{2}$ by $\lambda_{\boldsymbol{\alpha}}^{k}\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{k}\right\|_{1}$. For the considered problem, this leads to much better results in practice.

- By construction \mathcal{L} is not increasing. Indeed, for all $k \geqslant 0$,

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}, \theta^{k+1}\right)+ & \lambda_{\boldsymbol{z}}\left\|\boldsymbol{z}^{k+1}-\boldsymbol{z}^{k}\right\|_{2}^{2}+\lambda_{\theta}\left\|\theta^{k+1}-\theta^{k}\right\|_{2}^{2} \\
& +\lambda_{\boldsymbol{\alpha}}^{k}\left\|\boldsymbol{\alpha}^{k+1}-\boldsymbol{\alpha}^{k}\right\| \leqslant \mathcal{L}\left(\boldsymbol{\alpha}^{k}, \boldsymbol{z}^{k}, \theta^{k}\right)
\end{aligned}
$$

$$
\sum_{k=0}^{\infty}\left\|\boldsymbol{z}^{k+1}-\boldsymbol{z}^{k}\right\|_{2}^{2}+\left\|\theta^{k+1}-\theta^{k}\right\|_{2}^{2}+\left\|\boldsymbol{\alpha}^{k+1}-\boldsymbol{\alpha}^{k}\right\|_{1}<\infty
$$

Simulation results

- Simulations for several number of measurements and noise levels using the following 5 images.

Conclusions \& Perspectives

- We presented a method using semi-parametric dictionaries for joint reconstruction of misaligned images.
- The method estimates correctly the parameters of the semiparametric dictionary as well as the background \boldsymbol{x}_{0} and foreground images $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}$.
- This method may have interests in, e.g., cardiac MR imaging.

