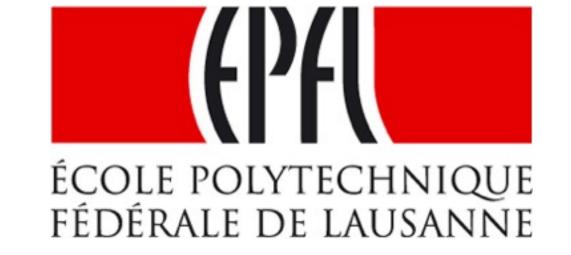


Robust joint reconstruction of misaligned images using semi-parametric dictionaries

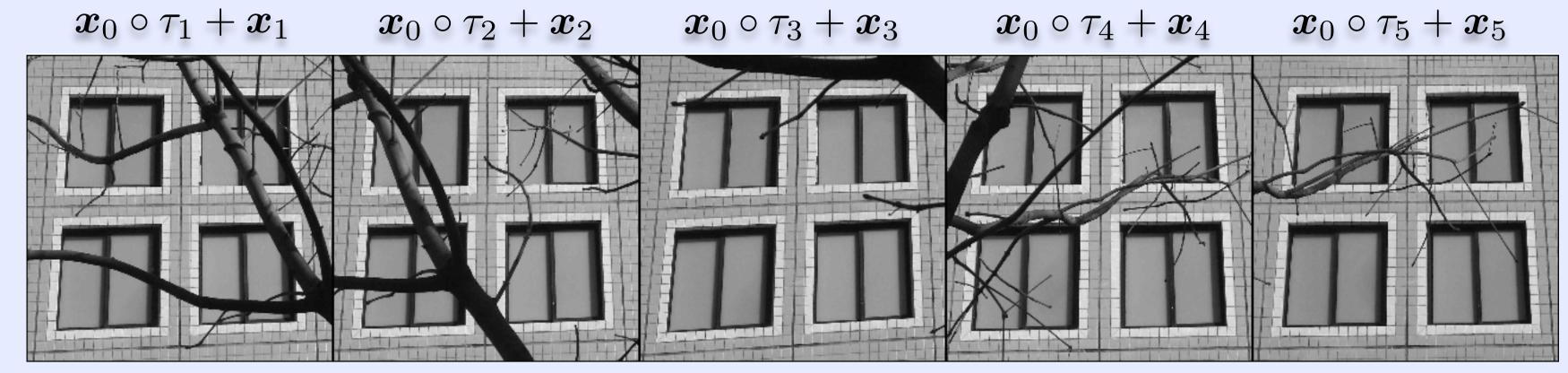
G. Puy^{1,2} and P. Vandergheynst¹



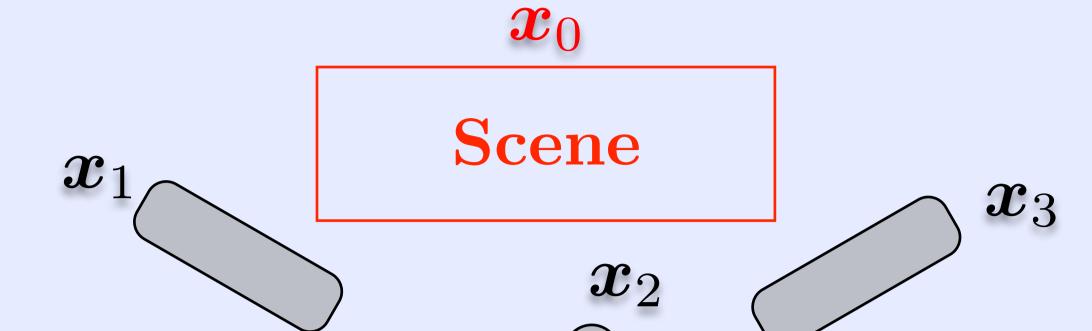
¹Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland ² Institute of the Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Motivation

• A scene $x_0 \in \mathbb{R}^n$ is observed from l point-of-views, providing l noisy • The observation system is modeled by a linear operator $A \in \mathbb{R}^{m \times n}$. measurement vectors $\boldsymbol{y}_1, \ldots, \boldsymbol{y}_l \in \mathbb{R}^m, m \leq n$. • The scene is partly occluded by some objects $x_1, \ldots, x_l \in \mathbb{R}^n$. • The scene undergoes geometric transformations τ_1, \ldots, τ_l that depend on the position of the observer.



• The goal is to reconstruct x_0 from the observations y_1, \ldots, y_l , without the knowledge of the geometric transformations τ_1, \ldots, τ_l .



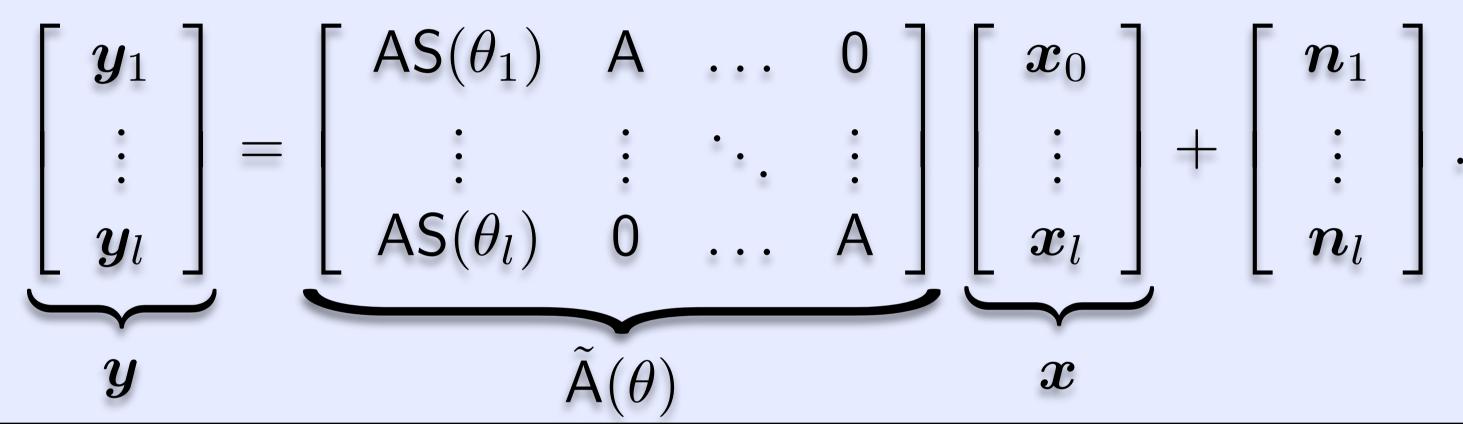
Observed images (dataset available in [1]).

Problem formulation

• The transformations belong to a transformation group represented • The inverse ill-posed problem is regularized by assuming that the by p parameters: $\theta_j \in \mathbb{R}^p, \forall j \in \{1, \dots, l\}$.

• We denote $S(\theta_i) \in \mathbb{R}^{n \times n}$ the interpolating matrix such that $\boldsymbol{x}_0 \circ \tau_j = \mathsf{S}(\theta_j) \boldsymbol{x}_0.$

• The measurement model satisfies:



scene x_0 and the occluding objects x_1, \ldots, x_l are sparse in a wavelet basis $W \in \mathbb{R}^{n \times n}$. The decomposition of x_j in W is denoted $\alpha_j \in \mathbb{R}^n$. • We want to solve the following non-convex problem: $\min_{\boldsymbol{\alpha}, \boldsymbol{z}, \boldsymbol{\theta}} \|\boldsymbol{\alpha}\|_{1} + \kappa \|\mathsf{A}(\boldsymbol{\theta}) \,\boldsymbol{\alpha} - \boldsymbol{z}\|_{2}^{2} \text{ s.t. } \begin{cases} \|\boldsymbol{y}_{1} - \boldsymbol{z}_{1}\|_{2} \leqslant \epsilon_{1} \\ \vdots \\ \|\boldsymbol{y}_{l} - \boldsymbol{z}_{l}\|_{2} \leqslant \epsilon_{l} \end{cases}$ and $\theta \in \mathcal{T}$, where $\boldsymbol{\alpha} = [\boldsymbol{\alpha}_0, \dots, \boldsymbol{\alpha}_l]^{\mathsf{T}}, \boldsymbol{z} = [\boldsymbol{z}_0, \dots, \boldsymbol{z}_l]^{\mathsf{T}}, \text{ and } \mathsf{A}(\theta) = \tilde{\mathsf{A}}(\theta)[\mathsf{W}, \dots, \mathsf{W}]^{\mathsf{T}}$ $\times (l+1)$

Method

• We define $\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta) = \|\boldsymbol{\alpha}\|_1 + \kappa \|\mathsf{A}(\theta) \boldsymbol{\alpha} - \boldsymbol{z}\|_2^2 + i_{\mathcal{B}(\boldsymbol{y}, \epsilon)}(\boldsymbol{z}) + i_{\mathcal{T}}(\theta)$, • The algorithm is similar to the method studied by Attouch et al. in where $i_{\mathcal{T}}$ is the indicator function of the set \mathcal{T} , and $i_{\mathcal{B}(\boldsymbol{y},\epsilon)}$ the indicator [2-3] for solving non-convex problems. We have replaced the cost-tomove function $\lambda_{\alpha}^k \| \alpha - \alpha^k \|_2^2$ by $\lambda_{\alpha}^k \| \alpha - \alpha^k \|_1$. For the considered $|\text{function of the set } \mathcal{B}(\boldsymbol{y}, \epsilon) = \{\boldsymbol{z} = \{\boldsymbol{z}_j\}_{1 \leq j \leq l} : \|\boldsymbol{y}_j - \boldsymbol{z}_j\|_2^2 \leq \epsilon_j \}.$ problem, this leads to much better results in practice. • Initializations: set $k = 0, \ \boldsymbol{\alpha}^0 = \mathbf{0} \in \mathbb{R}^{(l+1)n}, \ \boldsymbol{z}^0 = \boldsymbol{y}, \theta^0 \in \mathcal{T},$ choose • By construction \mathcal{L} is not increasing. Indeed, for all $k \ge 0$, $0 < \lambda_{\min} \leq \lambda_{\boldsymbol{z}}, \lambda_{\theta}, \{\lambda_{\boldsymbol{\alpha}}^k\}_{k \in \mathbb{N}} \leq \lambda_{\max}.$ $\mathcal{L}(oldsymbol{lpha}^{k+1}, oldsymbol{z}^{k+1}, heta^{k+1}) + \lambda_{oldsymbol{z}} \|oldsymbol{z}^{k+1} - oldsymbol{z}^k\|_2^2 + \lambda_{ heta} \|oldsymbol{ heta}^{k+1} - oldsymbol{ heta}^k\|_2^2$ • Repeat: 1) $(\boldsymbol{\alpha}^{k+1}, \boldsymbol{z}^{k+1}) \in \operatorname{argmin} \mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{z}, \theta^k) + \lambda_z \|\boldsymbol{z} - \boldsymbol{z}^k\|_2^2 + \lambda_{\boldsymbol{\alpha}}^k \|\boldsymbol{\alpha} - \boldsymbol{\alpha}^k\|_1.$ $+\lambda_{\boldsymbol{\alpha}}^{k} \| \boldsymbol{\alpha}^{k+1} - \boldsymbol{\alpha}^{k} \| \leqslant \mathcal{L}(\boldsymbol{\alpha}^{k}, \boldsymbol{z}^{k}, \theta^{k}).$ 2) Find $\theta^{k+1} \in \mathcal{T}$ such that: $\kappa \|\mathsf{A}(\theta^{k+1}) \,\boldsymbol{\alpha}^{k+1} - \boldsymbol{z}^{k+1}\|_2^2 + \lambda_{\theta} \|\theta^{k+1} - \theta^k\| \leqslant \kappa \|\mathsf{A}(\theta^k) \,\boldsymbol{\alpha}^{k+1} - \boldsymbol{z}^{k+1}\|_2^2. \quad \text{We also have:} \quad \underline{\infty}$ $\begin{array}{c} 3 \\ 3 \\ 1 \\ intil \begin{array}{c} k \leftarrow k+1 \\ convergence \end{array} \\ \text{or} \begin{array}{c} k \geqslant k_{\max} \end{array} \\ \cdot \end{array}$ $\sum \|\boldsymbol{z}^{k+1} - \boldsymbol{z}^k\|_2^2 + \|\theta^{k+1} - \theta^k\|_2^2 + \|\boldsymbol{\alpha}^{k+1} - \boldsymbol{\alpha}^k\|_1 < \infty.$ [2] Attouch et al., Mathematics of Operations Research , vol. 35(2) , pp. 438-457, 2010. [3] Attouch et al., J. Mathematical programming, 2011.

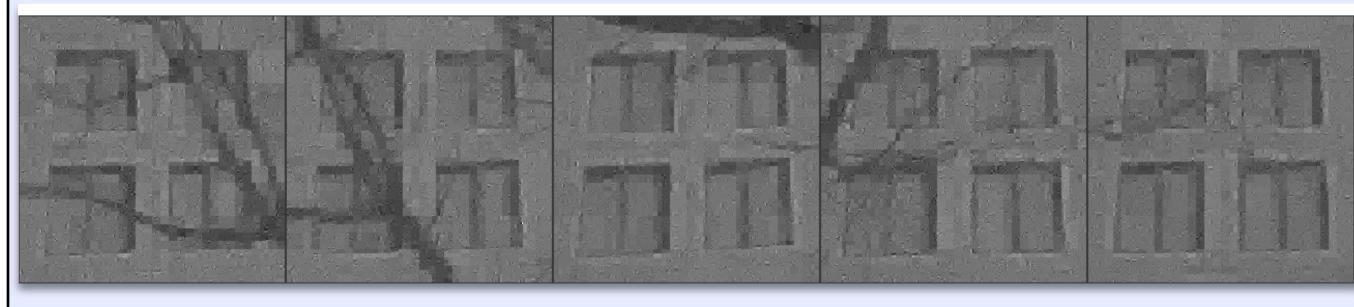
Illustration

• m = 0.1n measurements per image obtained with the spread spec-

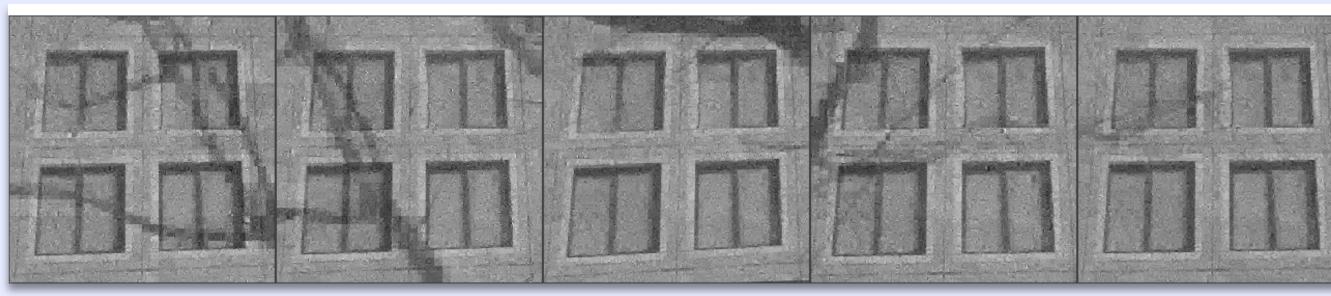
Simulation results

• Simulations for several number of measurements and noise levels

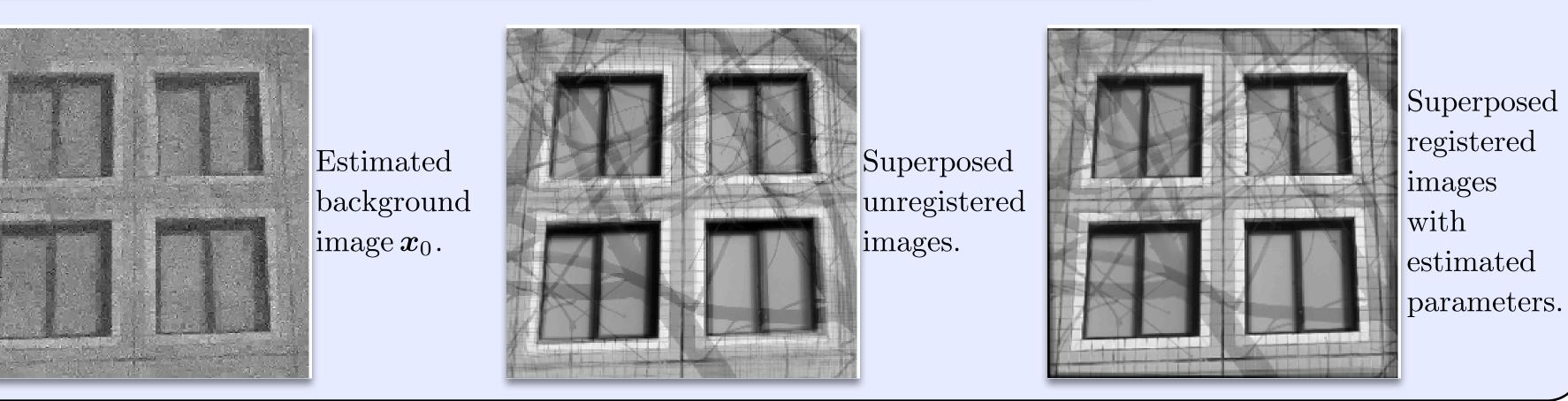
trum technique [4]. [4] Puy et al., EURASIP Journal on Advances in Signal Processing, vol. 2012(6), 2012. • The transformations are assumed to be homographies modeled by 8 unknown parameters.

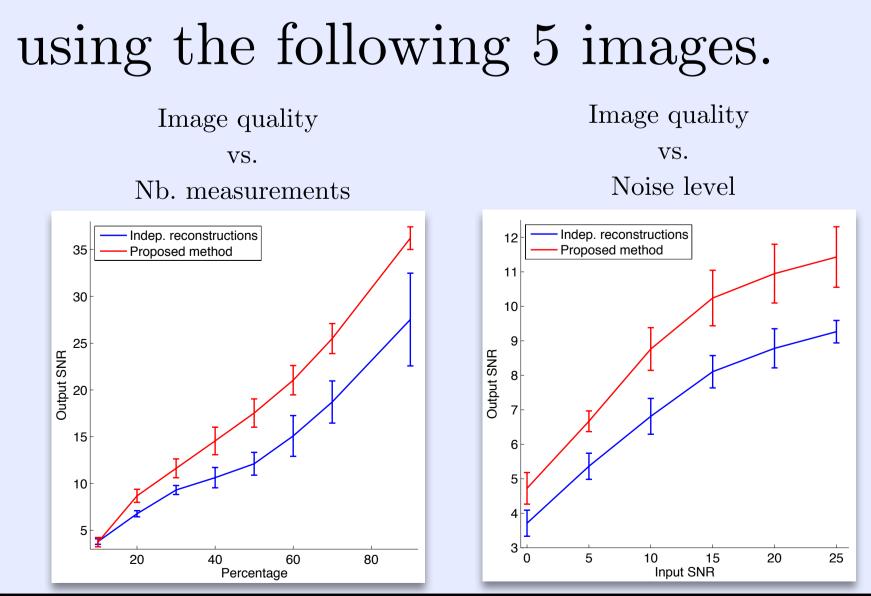


Reconstructions obtained without taking into account correlations between the measurements.



Reconstructions obtained with the proposed method.





Conclusions & Perspectives

- We presented a method using semi-parametric dictionaries for joint reconstruction of misaligned images.
- The method estimates correctly the parameters of the semiparametric dictionary as well as the background \boldsymbol{x}_0 and foreground images $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_l\cdot$
- This method may have interests in, e.g., cardiac MR imaging.