
Widget-Based Approach for Remote
Control Labs

Evgeny Bogdanov ∗ Christophe Salzmann ∗ Denis Gillet ∗

∗ Ecole Polytechnique Fédérale de Lausanne, Switzerland
(e-mails: evgeny.bogdanov,christophe.salzmann,denis.gillet@epfl.ch)

Abstract: The paper presents a novel approach to conduct laboratory experiments in relation
with the Control class taught at EPFL. The existing laboratory interface built as a Java applet,
which allows students to access experimentation devices locally or remotely, is split into a set
of light-weight Web applications or widgets. While achieving the same basic functionalities,
these widgets provide user customization and extension. They are more flexible and add off-
the-shelf interaction with other widgets and with the surrounding Web environment. The paper
shows how remote experimentation devices are integrated within the Graasp platform, which
provides knowledge management and enables collaboration among students. The educational
scenario illustrates the technical challenges, and the solutions to tackle them are proposed and
explained.

Keywords: flexible education, remote labs, Web-based learning, widget, collaboration

1. INTRODUCTION

Flexible education is a recent approach used by institu-
tions to transfer knowledge from universities to students.
In Gillet et al. (2005) the authors stated that both a flex-
ible access to experimentation resources and availability
of collaboration facilities are required. The flexible access
to experimentation is provided to students with the help
of virtual and/or remote laboratories. In addition, Web
collaboration facilities are provided to support students
while conducting an experiment. For example, when they
produced resources such as simulation results or mea-
surements, they can be saved in a shared space to be
accessed by other students. These two major requirements
shape the available solutions for remote experimentation
laboratories.

Many of the existing solutions are developed as complex
monolithic stand-alone frameworks that handle both the
remote experimentation aspect and the support for col-
laborative work. However, according to Salzmann et al.
(2012), this monolithic structure is difficult to adapt to
varying user requirements, evolving curriculum and new
technologies. In Salzmann and Gillet (2007) the authors
explain that the high development overhead and the diffi-
culties associated with the integration of the remote exper-
imentation within existing Learning Management Systems
(LMS) has refrained the spread and the acceptance of the
common monolithic solution.

Despite the limitations of existing solutions, the need and
justifications for virtual and remote laboratories are still
present. Salzmann et al. (2012) proposed a new paradigm
to divide the current monolithic solution into smaller
universal components (Web widgets) that users can re-
aggregate dynamically to form a personal environment.
Similarly, some intelligence and the flexibility are added
to a remote experimentation server to provide more au-

tonomous actions and to support a wider range of clients
and protocols.

The paper shows how this novel approach is used at
Ecole Polytechnique Fédérale de Lausanne (EPFL) within
the Automatic Control course. The existing remote lab
implemented as a monolithic Java applet is split into
a set of light-weight widgets according to OpenSocial
apps specification 1 . Afterwards, the widgets are combined
together to provide the same functionality that existed
in the Java applet solution. These settings will be used
within Automatic control course in the fall 2012 semester
at EPFL.

Turning monolithic application into a modular one with
OpenSocial apps has many advantages. First, it brings
more flexibility to teachers and students, since they are
able to assemble modules on their own or replace some
modules at their will. They can even extend the pro-
posed set of modules with other modules such as a chat
tool for communication or a collaborative formula editing
tool. Additionally, maintenance and development costs are
greatly reduced, since universities do not have to maintain
a standalone application but rather relatively simple mod-
ules and can reuse already existing modules. Second, the
widgets use Web protocols which makes them portable be-
tween different Web browsers (including mobile devices).
Moreover, users do not have to install additional plugins
such as Flash or Java. The last but not least, OpenSocial
apps used as a modular unit represent one of the standards
for widgets. This allows to bring a remote experimentation
widget bundle into other Learning Management Systems
that students may already use (e.g., Moodle 2 or Sakai 3 ).
Furthermore, widgets can save and retrieve data to/from
their Web platform. This feature helps users to directly

1 http://docs.opensocial.org/display/OSD/Specs
2 http://moodle.org
3 http://sakaiproject.org/



store data into LMS or other platforms where they run
experiments and avoid additional authentication steps.

The paper is organized as follows. The section 2 introduces
the scenario used in Control course. In the next section 3,
we discuss the architecture supporting the course. In the
section 4 we details the technical challenges we faced, and
the section 5 concludes the paper.

2. CONTROL COURSE TEACHING SCENARIO

Undergraduate students enrolled in engineering programs
at EPFL are asked to perform hands-on laboratory ses-
sions during the last semester of their bachelor program
in the context of an automatic control laboratory course.
These laboratory sessions aim at studying experimentally
the behavior of dynamical systems. These experiments
deal with different thematic modules and are conducted
by students in groups of 2 to 4. Each group is supposed to
handle a report at the end of the semester. The average
number of students who took the course in the last 5 years
is about 150. They can access the laboratory experiments
directly on campus once a week, or remotely, 24 hours a
day, 7 days a week.

The typical laboratory setup introduced to practice po-
sition and speed control is a servo drive where students
first identify the system and then design a PID controller.
This setup consists of a DC motor equipped with a digital
encoder. The motor drives a brass disk acting as the load.
The angular position is measured with a digital encoder
connected to the motor axle. Along the same axle, an
enlarged rotating disk permits an easy visualization of the
motion. This enlarged disk and the rotating load motion
are captured by a video camera. The whole hardware has
been designed in such a way that it is fully controllable
from the connected computer. Similarly, the hardware
state can be diagnosed from the connected computer. For
example, in addition to the required disk position and
speed measurements, diagnostic signals informing about
the power status can be read from the connected computer.
Likewise, additional actuators have also been added. For
example, a second motor acting as a generator is placed
along the main motor axle to generate a perturbation that
can be controlled remotely by switching the generator
load. Also, the main power can be switched on and off
from the connected computer to save energy when not
used. Before the sessions an instructor prepares a list
of recommended widgets and guidelines. An additional
material like reference to the ex-cathedra course is also
recommended.

In the first module students will identify the electrical
drive by applying a step to the servo drive and measure its
response. Students will need two widgets to perform this
task. The first widget is a signal generator that can apply
a given voltage to the servo drive. The second widget is
an oscilloscope that displays both the applied signal and
the servo drive response. Once the successful response is
measured, it can be saved in the user environment by a
simple drag and drop action. The saved measurements are
automatically shared with the other members of the group.

In the next module students will identify the servo drivers
parameters, namely, the time constant and the static

gain. To do so they will use another widget that can
display both the measured response and a simulated
one. The saved response is drag and dropped from the
student environment to the widget. Students will change
the parameters of the simulated signal by dragging the
simulated response until it superposes with the measured
step response. At this time the simulated parameters are
equal to the system parameters.

In the following step students implement a PI controller
to control the rotational speed of the servo drive. The
design of the controller is based on the Ziggler-Nichols
method. Once the Kp and the Ti parameters are defined,
students validate them by adding a controller widget to
the initial signal generator and oscilloscope configuration.
By adding the controller widget to the configuration, the
servo drive automatically switches from open-loop to close
loop mode. Additional measurements can be saved to the
user environment.

Historically these laboratory sessions were first conducted
within an in-house developed LMS, namely, eMersion
(Gillet and Fakas (2001)) and later with eLogbook (Rekik
et al. (2007)). While the possibility to remotely access the
laboratories were praised by students, both environments
suffer limitations. Beside the fact students had to learn
a new environment, one of the main limitations reported
was the lack of integration of tools students were currently
using. For example, to reinforce collaboration among users
we introduced a custom chat application (Salzmann et al.
(2008)). It turned out that it was barely used since stu-
dents had all their contacts in another chat applications.
The assessment of the formers monolithic environments
showed limitations that would be difficult to alleviate
without a complete rethinking of the current LMS envi-
ronment. This reflexion lead to the deconstruction of the
former environments into various functionalities served by
smart devices (Salzmann and Gillet (2008)) on the server
side and presented with the help of widgets on the client
side. This structure permits the development of a richer
and more versatile user experience. Within Graasp 4 , the
aggregation of these functionalities combined with func-
tionalities found elsewhere can form a Personal Learning
Environment (PLE) tailored to users’ needs.

3. REMOTE LAB ENVIRONMENT

This section describes the proposed architecture to sup-
port the Automatic Control teaching scenario at EPFL.
First, it describes how a monolithic Java Applet is split
into a modular set of widgets. Second, it introduces the
platform that is used to run the remote experiment as
widgets and behaves as data storage and a collaboration
environment.

3.1 Widgets as Modular Units

A Web widget is a small application that can be installed
and executed within a Web page by an end user. Widgets
are typically created in DHTML and JavaScript. Several
widget standards exist (OpenSocial apps, W3C widgets 5 ).
We rely on OpenSocial apps standard for widgets. One of
4 http://graasp.epfl.ch
5 http://www.w3.org/2008/webapps/wiki/WidgetSpecs



the main reasons was the fact that the OpenSocial Founda-
tion provides, in addition to the specification for widgets,
a standard API to retrieve the user data from the widget
container. Previously the Remote Experimentation Device
(RED) for the Automatic Control course laboratory was
implemented as a Java applet (Fig. 1). Due to the limita-
tions of this approach it was decided to re-implement the
remote lab framework as light-weight widgets (Salzmann
et al. (2012)). The resulting implementation can be found
in Fig. 2.

Fig. 1. RED device as a Java applet

Fig. 2. RED device as a set of widgets

As it can be seen from the comparison of two pictures,
the main functionalities are still the same, however, the
widgets have many valuable advantages discussed in the
introduction.

3.2 Graasp as Collaborative Widget Container

A set of widgets has to run in a widget container. We use
Graasp (previously known as Graaasp) as a widget con-
tainer (Bogdanov et al. (2010)). Graasp is a Web platform
that has been developed to investigate the potential of so-
cial media in higher education for learning and knowledge
management purposes (Bogdanov et al. (2012)). There are
4 types of entities in the platform: resources, applications,
spaces and people. Graasp targets the management of
people’s spaces. It supports users in creating and sharing

resources and applications with other people in the context
of a space.

To support the Automatic Control course scenario, a
teacher creates a space in Graasp containing resources rel-
evant to the course. In addition, the teacher adds widgets
for remote experimentation into this space. The resulting
remote lab interface within Graasp is depicted in Fig. 3.
Then students are invited into the space where they can
find the resources needed for the course: pdf documents
with lab descriptions and experiment protocols, the course
assistants, the remote lab experimentation interface, etc.

Fig. 3. RED device running in Graasp

When students conduct the experiment, they produce data
that have to be later analyzed or might be used for the
exam preparation. The data produced during the exper-
iment can be transferred from widgets into the Graasp
platform as resources. Later, students can share the pro-
duced data with their peers or tutors and analyze the data
with other widgets. The features that enable communi-
cation between students over the produced artifacts are
supported by Graasp. One important aspect of the whole
installation is the ability of widgets to communicate with
each other, with their hosting platform, and with external
remote smart devices. In the next section we discuss the
technical details enabling the communication.

A ubiquitous access to the remote lab experimentation
is provided to students. This enables collaboration over
produced data which supports the flexible education. In
the Automatic Control course scenario we use Graasp
platform to enable collaboration among teachers/students
and for knowledge management. However, the proposed
solution is not limited to Graasp but encompasses any
OpenSocial-compliant widget container. In particular, it
can be easily exported to an existing LMS. Fig. 4 shows
how our installation setting runs within Moodle LMS.

4. TECHNICAL DETAILS

In order to support the Automatic Control course, sev-
eral technical problems had to be tackled. This section
discusses the problems and the solutions.

4.1 Apache Shindig as Widget Engine

Java applets require a Java Virtual Machine, and widgets
require a widget engine to run in a Web page. The widget



Fig. 4. RED device running in Moodle

engine is provided by a widget container (Graasp in our
case). It is JavaScript based, which means that any recent
Web browser supports widgets without any extension or a
plug-in.

Graasp uses Apache Shindig 6 as the widget engine, which
is an open source reference implementation of the OpenSo-
cial API. OpenSocial currently lacks a concept that can
map to a course or to a place shared by several people
(e.g., group of students sharing an experiment space). To
fulfill our specific needs of space and resource concepts,
we extended OpenSocial APIs and provided an imple-
mentation within Apache Shindig. Since this concept is
a relatively common scenario in collaborative platforms, it
was proposed to the OpenSocial specification (Bogdanov
et al. (2011)).

The resource extension allows to save digital artifacts from
a widget to its hosting container. A similar concept exists
in the OpenSocial specification, though at the moment it
is limited to photo and video albums. The upcoming file
API of the OpenSocial will satisfy our needs but for now
we have to stick to our extension. To sum up, by using the
extended Apache Shindig, Graasp can render OpenSocial
widgets and through the OpenSocial API students can
exchange data between widgets and Graasp.

4.2 Widget-to-widget communication

In the monolithic Java applet that was previously used
for the course (Fig. 1), the different parts were interacting
with each other. If a user moves the slider, the remote
device reacts accordingly by updating the graphs and
rotating the device in the applet. The applet is split
now into modular widgets, however, these widgets still
have to communicate with each other. So if the user
updates the slider position in the slider widget (Fig. 2,
left bottom widget), the other widgets should be notified
about the change. To support data and events exchange
between widgets, two inter-widget communication modes
are needed: local and remote.

In the case of local inter-widget communication (Fig.
5.a), the data does not leave the browser and the remote
services are not involved. Data is transferred from a

6 http://shindig.apache.org/index.html

source widget directly to the browser memory and then
moved from there to a destination widget. In Zuzak
(2011) the author classified the available techniques to
achieve this type of communication. We have chosen
OpenApp approach introduced by Isaksson and Palmér
(2010) for local inter-widget communication due to its
improved usability compared to other approaches and
partial semantic interoperability features.

Even though local inter-widget communication is enough
for the majority of scenarios, it limits several use cases.
As example, consider a graph widget that can send data
to an analysis widget. The graph widget displays normally
a sparse representation of a complete data set for perfor-
mance reasons. So if the graph widget is about to send
the complete data set to the analysis widget, it inevitably
includes an interaction with a server since the complete
data set is located there. This type of communication
is called remote inter-widget communication. Three im-
plementation scenarios for this mode are detailed next.
First, the source widget asks its server for all data and
retrieves it from its remote service. Then the data is sent
via local inter-widget communication to the destination
widget (Fig. 5.c). Second, the source widget locally notifies
the destination widget about data (Fig. 5.d). The source
widget either provides a remote access point, where the
data can be retrieved by the destination widget or asks
the destination widget to update its state. In the latter
case, the destination widget will receive updated data
from its server. Third approach works even in the case
where several widgets are open in different browsers (Fig.
5.b). The source widget either sends some data to its
remote server or asks the server to notify the destination
widget about the updated state of the source widget.
Afterwards, the server sends the data or the new state
to the destination widget. To propagate data from the
server to a widget either HTTP POST requests can be
used or different synchronous communication approaches
(WebSockets, AJAX Comet, etc). It should be noted that
by the server we mean either a single server or a federation
of several servers that can communicate with each other.

Fig. 5. Inter-widget communication



4.3 Widget-to-platform communication

For security reasons, widgets are run on the domain
different from the domain of their hosting platform, which
means they can not directly access (authentication is
required) APIs of the platform to save and retrieve data.
However, Apache Shindig provides a special security token
for widgets and serves as a proxy service to exchange data
between a platform and a widget. With this approach
widgets can save and retrieve data from their hosting
container without any additional authentication.

The OpenSocial API is common among different contain-
ers. If a widget accesses data from the container through
this API, it is guaranteed the widget will work in other
OpenSocial-compliant containers. Widgets can save data
into container with AppData API. These data belong to
widgets and can be further reused by them. For example,
the last used state of the sliders for a widget can be saved
as AppData. Next time the widget is loaded it can retrieve
these data and set sliders into previously saved positions.
The bigger pieces of data (measurements, reports) are
normally saved as resources in Graasp with Resource API
(see the section 4.1). Differently from AppData that always
belong to a widget, resources do not belong to a specific
widget. Resources can be moved from one place to another,
shared among people, accessed by different widgets, etc.

4.4 Widget-to-smart devices communication

Widgets work with remote devices which requires real-time
updates in the browser. In other words, if a user changed
a parameter and a device reacted to the change, the effect
of the action should be seen immediately. The state of the
remote device should be synchronized between the device
and its representation in the browser. Similarly, to support
collaboration among several people over the remote device,
its state should be updated in real time between the
collaborators’ browsers. We use the WebSockets protocol
to synchronize the state and push updates from the remote
device to widgets.

5. CONCLUSION

The paper presented the laboratory experiment used in
the Automatic Control course at the EPFL university.
We proposed to divide the currently used Java applet
through which students can work with the laboratory
device remotely into a combination of light-weight widgets.
While providing the same functionality, this decomposi-
tion tackles the disadvantages of the monolithic applet
approach. We discussed where the main technical difficul-
ties lie in the scenario implementation and how they can
be overcome. In addition, we explained how the remote
experimentation device can be integrated into different
platforms (e.g, Moodle LMS) and provided an example of
its use within collaborative knowledge management system
called Graasp, that will be used at EPFL for the course.

At the moment, we have a working proof-of-concept set-
ting that supports the Automatic Control course scenario.
However, additional work has to be accomplished to fully
realize the scenario before it can be given to students.
First, the set of proof-of-concept widgets has to be brought

into production-ready state by making them user-friendly
and implementing fully the required functionality. Second,
we considerably rely on inter-widget communication. How-
ever, in Isaksson and Palmér (2010) the authors stated
that widget communication risks worsening the user ex-
perience, since it may cause the user interface to become
more complicated and unintuitive. Thus, further research
in this area and required adaptations are needed.

ACKNOWLEDGEMENTS

The research work described in this paper is partially
funded through the ROLE Integrated Project; part of
the Seventh Framework Programme for Research and
Technological Development (FP7) of the European Union
in Information and Communication Technologies, and the
Personal Learning Environment (Phase 3) project of the
AAA/SWITCH programme.

REFERENCES

Bogdanov, E., El Helou, S., Gillet, D., Salzmann, C., and
Sire, S. (2010). Graaasp: a web 2.0 research platform for
contextual recommendation with aggregated data. CHI
EA ’10, 3523–3528.

Bogdanov, E., Limpens, F., Li, N., El Helou, S., Salzmann,
C., and Gillet, D. (2012). A social media platform in
higher education. Accepted to Educon Conference.

Bogdanov, E., Salzmann, C., and Gillet, D. (2011). Con-
textual Spaces with Functional Skins as OpenSocial
Extension. Advances in Computer-Human Interactions.

Gillet, D. and Fakas, G. (2001). eMersion: A New
Paradigm for Web-Based Training in Mechanical En-
gineering Education. 8, 10–14.

Gillet, D., NguyenNgoc, A.V.N., and Rekik, Y. (2005).
Collaborative Web-Based Experimentation in Flexible
Engineering Education. IEEE Transactions on Educa-
tion, 48(4), 696–704.

Isaksson, E. and Palmér, M. (2010). Usability and inter-
widget communication in PLEs. Proceedings of the 3rd
Workshop on Mashup Personal Learning Environments.

Moccozet, L., Benkacem, O., Ndiaye, B., Ahmeti, V.,
Roth, P., and Burgi, P.Y. (2011). An exploratory study
for the implementation of a techno-pedagogical personal
learning environment. The PLE Conference 2011.

Rekik, Y., Gillet, D., El Helou, S., and Salzmann, C.
(2007). The eLogBook Framework: Sustaining In-
teraction, Collaboration, and Learning in Laboratory-
Oriented CoPs. International Journal of Web-based
Learning and Teaching Technologies, 2(3), 61–76.

Salzmann, C. and Gillet, D. (2007). Challenges in Remote
Laboratory Sustainability. In ICEE 2007.

Salzmann, C. and Gillet, D. (2008). From online experi-
ments to smart devices.

Salzmann, C., Gillet, D., Esquembre, F., Vargas, H.,
Sánchez, J., and Sebastián, D. (2012). Web 2.0 open
remote and virtual laboratories in engineering educa-
tion. In Book chapter: Collaborative Learning 2.0: Open
Educational Resources, by IGI Global. In print.

Salzmann, C., Gillet, D., Scott, P., and Quick, K. (2008).
Remote lab: online support and awareness analysis.

Zuzak, I. (2011). List of systems that enable
inter-window or web worker communication.
code.google.com/p/pmrpc/wiki/IWCProjects.


