
On Accelerated Hard Thresholding Methods for Sparse
Approximation

Volkan Cevher

Swiss Institute of Technology, Lausanne, Switzerland.

ABSTRACT

We propose and analyze acceleration schemes for hard thresholding methods with applications to sparse approx-
imation in linear inverse systems. Our acceleration schemes fuse combinatorial, sparse projection algorithms
with convex optimization algebra to provide computationally efficient and robust sparse recovery methods. We
compare and contrast the (dis)advantages of the proposed schemes with the state-of-the-art, not only within
hard thresholding methods, but also within convex sparse recovery algorithms.

Keywords: sparse recovery, hard thresholding methods, algebraic pursuits, model based compressive sensing.

1. INTRODUCTION

Given a regression matrix A ∈ R
M×N (M < N), a vector x∗ ∈ ΣN

K , suppose we observe u ∈ R
M via

u = Ax∗ + n, (1)

where n is an additive noise, and ΣN
K ⊂ R

N denotes a union-of-subspaces model with at most K-nonzero entries
in N -dimensions (K � N).1 To determine x∗ from u, we propose to solve the following minimization problem:

min
x:x∈ΣN

K

f(x), f(x) = ‖u−Ax‖2. (2)

The combinatorial problem, as defined by (2), is an instance of sparse approximation—a topic of great interest
in underdetermined linear regression (i.e., M < N), where sparsity is the de facto regularization standard to
obtain “good” solutions; examples include learning sparse subsets of features in classification,2 learning sparse
graphical models in statistical inference,3 and compressive sensing.4

In this paper, we focus on the class of hard thresholding methods for sparse approximation; c.f.,5,6 for a
review of existing methods and their applications. Typically, these methods iteratively refine a putative solution
with a correction term, followed by a combinatorial projection to satisfy the sparsity constraint. For instance,
the iterative hard thresholding (IHT) algorithm with step size μ has the following recursion:

xi+1 = HK

(
xi + μAt(u−Axi)

)
, (3)

where i is the iteration number, and HK is the combinatorial projection onto ΣN
K :

HK(y) = argminx:x∈ΣN
K
‖x− y‖, (4)

whose action amounts to hard thresholding.

While the solution of (2) is NP-Hard in general, we can establish the correctness of the hard thresholding
methods when A satisfies the so-called restricted isometry property (RIP). When ΣN

K is modulo isomorphic (i.e.,
if xi ∈ ΣN

Ki
(i = 1, 2), then (x1 + x2) ∈ ΣN

K1+K2
), the RIP implies that the linear system is bi-Lipschitz:

(1− δK)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δK)‖x‖2, ∀x ∈ ΣN
K , (5)

Contact e-mail: volkan.cevher@epfl.ch. This work was supported in part by part by the European Commission under
Grant MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like to acknowledge Rice University
for his Faculty Fellowship.

Wavelets and Sparsity XIV, edited by Manos Papadakis, Dimitri Van De Ville, Vivek K. Goyal,
Proc. of SPIE Vol. 8138, 813811 · © 2011 SPIE · CCC code: 0277-786X/11/$18

doi: 10.1117/12.894386

Proc. of SPIE Vol. 8138 813811-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

where δK is the minimum among the isometry constants of A on the set ΣN
K . Assuming the RIP, the recursion

of several hard thresholding methods satisfies ‖x∗−xi‖ ≤ ρi‖x∗−x0‖+C‖n‖, where x∗ ∈ ΣN
K and n are related

to u as in (1), C is a constant, and |ρ| < 1 depends on δcK , where c = 2, 3, 4.∗

Per iteration complexity of the hard thresholding methods are dominated by two main factors: the combi-
natorial projection onto ΣN

K , and the application of A (and its adjoint At). Depending on the problem (e.g.,
N or the definition of the set ΣN

K), these operations can have different relative costs; hence, hard thresholding
methods with low iteration counts and the flexibility to trade-off these operations are desired.

To obtain the desidera, several well-known ideas from convex optimization are applied to create different
variants of hard thresholding methods:5 analyze the IHT algorithm in the context of the gradient descent method
and propose to use μ = 1/(1 + δ2K) as the step size.7 proposes an involved line-search method to adaptively
select the step size per iteration.,8,7 and9 propose multi-stage approaches, which also minimize f(x′)–exactly or
approximately–restricted to the non-zero coefficients of the putative solution.

A major alternative to the hard thresholding methods for sparse approximation is based on convex optimiza-
tion with sparsity inducing, convex norms.6,10 Once the sparse approximation problem is convexified, decades of
experience in convex optimization methods can be leveraged. In the high-dimensional scaling of (2), first-order
methods, such as accelerated Nesterov, augmented Lagrangian, and operator splitting, are the modus operandi
of convexified sparse approximation. Unsurprisingly, we can also establish the correctness of these methods
by assuming RIP.6 Albeit lacking convergence guarantees, another promising alternative to hard thresholding
methods is called the approximate message passing (AMP).11

Contributions: We propose and analyze three acceleration schemes, broadly applicable to the class of hard
thresholding methods for sparse approximation. The first scheme is a computationally efficient, one shot step
size selection procedure that exploits the structure of the sparse approximation problem. Inspired by Nesterov’s
accelerated first-order methods, the second scheme incorporates a momentum term based on the previous iterate
of hard thresholding methods. Inspired by the AMP algorithm, the third scheme incorporates a weighted sum
of thresholded gradients for acceleration. We compare and contrast the (dis)advantages of the proposed schemes
with the state-of-the-art, not only within hard thresholding methods, but also within the convex approaches.
We also provide a loose RIP analysis of the proposed algorithms for completeness.

2. PRELIMINARIES

Notation: We assume ΣN
K is modulo isomorphic (or has the nested approximation property12) along with the

RIP, as in (5).

We use the �2-norm ‖ · ‖ throughout, unless otherwise stated. The bracket notation 〈x, y〉 = xty refers to the
inner product, where t is the transpose operation. By objective function, we specifically mean the �2-observation

error: f(x) = ‖u − Ax‖2, where ‖x‖ =
(∑N

i=1 |[x]i|
)1/2

, and [x]i refers to the i-th element of the vector x. We

use ∇f(x) = −2At(u−Ax) to denote the gradient of the objective f(x).

The support supp(x) of a vector x is defined as the index set of its non-zero coefficients. The set difference
operator is denoted as \. Given an index set S ⊆ I = {1, 2, . . . , N}, the notation ∇Sf(x) means that [∇Sf(x)]i =
[∇f(x)]i, whenever i ∈ S, and [∇Sf(x)]i = 0, otherwise.

Structure of the objective function: We highlight two key properties for the objective function, which are used
in establishing method guarantees.

Property 1 (Quadratic surrogates). Define the Bregman distance based on the objective function:

∗A great deal of research therefore revolves around bounding the isometry constant for convergence and estimation
guarantees. While the isometry constant is typically unknown a priori, a larger M leads to a better (or smaller) δ, as a
rule of thumb. For instance, for random matrices with sub-Gaussian entries, M = O(

log
∣
∣ΣN

K

∣
∣) is sufficient to provide a

desired level of isometry, where
∣
∣ΣN

K

∣
∣ is the cardinality of ΣN

K .1

Proc. of SPIE Vol. 8138 813811-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

B(y, x) = f(y)− f(x)− 〈∇f(x), y − x〉. Then, B(y, x) satisfies the following (j = 1, 2):

(1) B(x2, x1) = ‖A(x2 − x1)‖2, ∀xj ∈ R
N ;

(2) B(x2, x1) ≤ (1 + δK′)‖x2 − x1‖2, ∀xj ∈ ΣKj
;

(3) B(x2, x1) ≥ (1− δK′)‖x2 − x1‖2, ∀xj ∈ ΣKj ;
(6)

where K ′ = K1 +K2. These expressions follow from simple linear algebra and the RIP assumption in (5).

Property 2 (Hard thresholding distance). Let b ∈ ΣN
B , where B > K, and b̄ = HK(b). Then, given

x∗ ∈ ΣN
K , the following inequalities hold (j = 1, 2):

‖x∗ − b̄‖ ≤ 2‖x∗ − b‖ (7)

≤ 2√
1− δK′

(‖u−Ab‖+ ‖n‖) , (8)

where K ′ = K +B. Defining κ = 2
√

1+δ2K
1−δK′ , whenever f(b̄) ≥ ‖n‖2, we also have

‖u−Ab̄‖ ≤ κ‖u−Ab‖+ (1 + κ)‖n‖. (9)

A proof of this property is in the Appendix.

Distance mapping: For many hard thresholding methods, it is easier to track the evolution of the objective values
than to track the distance to x∗. The following lemma shows that a small objective value implies proximity to
x∗, which is proved in the Appendix.

Lemma 2.1 (Distance mapping). Let ‖u−Aa‖ ≤ c‖n‖ for some c > 0. If a ∈ ΣN
K , then

‖x∗ − a‖ ≤ c+ 1√
1− δ2K

‖n‖. (10)

3. ACCELERATION VIA STEP SIZE SELECTION

Motivation: Step size selection is a natural way of improving the convergence speed of hard thresholding methods.
Existing approaches broadly fall into two categories: constant and adaptive step size selection.

Among the constant step sizes, μ∗ = 1/(1 + δ2K) of GraDes5 is theoretically optimal. To see this, it is
instructive to view the IHT algorithm (3) in the context of proximal algorithms, where the quadratic surrogate
in Property 1(2) is used as a majorizing function to f(x) around xi to obtain

argmin
x∈ΣN

K
f(xi) + 〈∇f(xi), x− xi〉+ (1 + δ2K)‖x− xi‖2 = HK

(
xi + 1/(1 + δ2K)At(u−Axi)

)
.

As δ2K is the minimum over all the isometry constants of A on ΣN
2K , any μ larger than μ∗ can violate the RIP

assumption during method execution; this potentially leads to instability. Unfortunately, unless A has a special
structure (e.g., randomized), calculation of μ∗ is a hefty task.13

There is limited work on the adaptive step size selection for hard thresholding methods. To the best of our
knowledge,7,14 are the only studies that attempt line searching in this context. The main disadvantage of these
approaches is computational: they require several combinatorial projections and function evaluations to calculate
an iteration dependent step size μi while guaranteing sufficient descent and stability.

In contrast, our acceleration scheme is based on a one-shot step size selection procedure, and empirically
outperforms the approaches above, as demonstrated in Section 6. Our approach relies on a key observation:

Remark 1. Suppose an oracle provides us the largest μ∗
i at iteration i, which does not violate a relaxed RIP as-

sumption, given that Xi = supp(xi) is fixed. Based on this knowledge, we obtain x∗,i+1 = HK

(
xi + μ∗

iA
t(u−Axi)

)
.

It then holds that supp(x∗,i+1) is necessarily included in the index set Si with cardinality |Xi|+K, where

Si = Xi ∪ supp
(
HK

(∇I\Xi
f(xi)

))
. (11)

The proof is straightforward as Si contains supp(xi+1) for any μ, and is left to the reader. While supp(x∗,i+1)
is unknown, we obtain the smallest set Si that contains it at the cost of one combinatorial projection.

Proc. of SPIE Vol. 8138 813811-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

Algorithm 1 Template for memoryless IHT methods

Input: u, A, x0, ε, and MaxIterations;
repeat
Determine Si via (11).
if SolveNewtonb=1 then

Solve b = argminv:supp(v)=Si
‖∇Si

f(v)‖.
else
Calculate b via (12) and (13).

end if
Set xi+1 = HK(b) and Xi+1 = supp(xi+1).
if GradientDescentx=1 then

Calculate ∇Xi+1
f(xi+1); Set [xi+1]Xi+1

=

[xi+1]Xi+1
+

‖∇Xi+1
f(xi+1)‖2∇Xi+1

f(xi+1)

2‖A∇Xi+1
f(xi+1)‖2

else if SolveNewtonx=1 then
xi+1 = argminv:supp(v)=Xi+1

‖∇Xi+1
f(v)‖

end if
until ‖xi − xi+1‖ ≤ ε‖xi+1‖ or MaxIterations.

Main idea: We propose to calculate a step-size μ̄i that first takes xi to a proxy-vector b ∈ ΣN
2K , whose support

is restricted to Si, that best minimizes f(x) via

b = xi − 0.5μ̄i∇Sif(xi), where (12)

μ̄i = argminμf(xi − 0.5μ∇Sif(xi)) =
‖∇Si

f(xi)‖2
‖A∇Sif(xi)‖2 . (13)

Note that 1− δ2K ≤ μ̄−1
i ≤ 1 + δ2K due to RIP. Proposition 1, whose proof is in the Appendix, characterizes a

variant of the IHT algorithm with this approach:

Proposition 1. The vector b ∈ ΣN
2K in (12) satisfies

‖u−Ab‖ ≤
√
2δ2K‖x∗ − xi‖+ ‖n‖. (14)

Moreover, if we use xi+1 = HK(b), then

‖x∗ − xi+1‖ ≤ ρ‖x∗ − xi‖+ 4√
1− δ3K

‖n‖, (15)

where ρ = 2
√

2δ2K
1−δ3K

. If ρ < 1, then we have

‖x∗ − xi‖ ≤ ρi‖x∗ − x0‖+ 4(1− ρ)−1

√
1− δ3K

‖n‖. (16)

While the resulting RIP requirement for the algorithm is more stringent than the IHT methods in7,9, 14 this
variant of IHT empirically outperforms the alternative methods.†

A template for memoryless IHT methods: We describe how to incorporate our step size selection scheme into
the class of memoryless hard thresholding methods. By memoryless, we mean the class of methods that does
not keep track of the previous solutions.

Algorithm 1 provides a template with three options that trade-off the number of combinatorial projections
with the applications of A and At. The SolveNewton() options correspond to solving the Newton system

†MATLAB implementations of all the IHT methods proposed in this paper can be found at http://lions.epfl.ch/ALPS.

Proc. of SPIE Vol. 8138 813811-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

restricted to a sparse support, which can be efficiently computed via conjugate gradients. For instance, setting
(SolveNewtonb=1) has the same flavor as the subspace pursuit algorithm15 (but it is not quite the same, since
the support selection steps are different), whereas setting (SolveNewtonx=1) is akin to hard thresholding pursuit
in.9 The GradientDescentx switch enables a single gradient update on b̄ restricted to its support with line search,
which is similar to fast hard thresholding pursuit in.9

Proposition 2. All variants of Algorithm 1 satisfy

‖u−Axi‖ ≤ ρi‖u−Ax0‖+ C‖n‖, (17)

where ρ = 2
√

2δ2K(1+δ2K)
(1−δ2K)(1−δ3K) , and C is a constant. A proof of this statement is in the Appendix.

According to Proposition 2, it is possible to reduce the objective to C(1−ρ)−1‖n‖ by iterating on the template
defined by Algorithm 1. We then invoke Lemma 2.1 to obtain the final estimation guarantee. To obtain tighter
RIP guarantees, we can do further analysis on individual algorithm variants, such as.16

4. ACCELERATION VIA 1-MEMORY

Motivation: To introduce the new acceleration scheme, consider the following convexified version of (2):

min
x:x∈RN

f ′(x), f ′(x) = ‖u−Ax‖2 + λ‖x‖1, (18)

where we replace the set constraint ΣN
K by 1-norm regularization (‖x‖1 =

∑N
i=1 |[x]i|). The parameter λ > 0 is

a constant. The classical iterative soft thresholding (IST) algorithm is a popular method to solve (18):

xi+1 = Tλμ/2

(
xi + μAt(u−Axi)

)
, (19)

where [Tα(x)]i = (|[x]i| − α)+sign([x]i). Theoretically, the IST algorithm has a sublinear convergence rate of

f(xi) − f(x∗) ≈ O(
1/
√
i
)
, where x∗ is the minimizer of f ′(x).17 However, it is possible to improve this rate to

f(yi)− f(x∗) ≈ O(1/i) by

yi = Tλμ/2

(
xi + μAt(u−Axi)

)
,

xi+1 = yi +
ai − 1

ai+1
(yi − yi−1),

ai+1 =

(
1 +

√
1 + 4a2i

)
/2;

(20)

where a1 = 1. The recursion in (20) is proposed as the fast iterative shrinkage and thresholding algorithm
(FISTA) by Beck and Teboulle17 in the light of Nesterov’s work on accelerated gradient methods.18

Main idea: Based on a similar momentum term, we propose the following hard thresholding method:

yi = HK(b), xi+1 = yi + τi(yi − yi−1); (21)

where τi ∈ (0, 1], and b is calculated using (12). When μ∗ is known, we set yi+1 = HK

(
xi + μ∗At(u−Axi)

)
.

Proposition 3, whose proof is given in the Appendix, characterizes the convergence of the hard thresholding
method with 1-memory in (21).

Proposition 3. Let c = 2
√

2δ3K
1−δ4K

< 1/3, τ0 = 0, and τi ≤ 1. The output yi of (21) satisfies the following:

‖x∗ − yi‖ ≤ C1ρ
i
+ + C2ρ

i
− +

4(1− 3c)−1

√
1− δ4K

‖n‖, (22)

where ρ± = c±√c2 + c; and, C1 and C2 are constants.

We further improve the RIP requirements of the 1-memory methods and provide further enhancements in.16

Proc. of SPIE Vol. 8138 813811-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

50 100 150

10−2

100

[i]:iteration number

||x
−x

i||

GraDes(μ*) [129.33]
GraDes(4/3) [∞]
GraDes(3) [138.39]
0−IHT(0) [99.4]
0−IHT(2) [26.74]
0−IHT(1) [10.82]
0−IHT(5) [7.53]
SP [120]
BIHT [37.7]
noise level

100 200 300 400 500

10−2

100

[i]:iteration number

||x
−x

i||

l1−magic [34.36]
SPGL1 [282.08]
D−R [208.89]
FISTA w/LineSearch [448.21]
AMP [554.6]
noise level

50 100 150

10−2

100

[i]:iteration number

||x
−x

i||

1−IHT(1) [129.58]
1−IHT(3/4) [52.72]
1−IHT(2/3) [47.19]
1−IHT(1/2) [50.74]
1−IHT(1/3) [68.31]
1−IHT(1/4) [76.5]
1−IHT(ai) [85.61]
noise level

50 100 150

10−2

100

[i]:iteration number

||x
−x

i||

∞−IHT(1) [∞]
∞−IHT(3/4) [101.97]
∞−IHT(2/3) [77.4]
∞−IHT(1/2) [49.42]
∞−IHT(1/3) [60.47]
∞−IHT(1/4) [70.68]
noise level

50 100 150

10−2

100

[i]:iteration number

||x
−x

i||

GraDes(μ*) [DNF]
GraDes(4/3) [DNF]
GraDes(3) [DNF]
0−IHT(0) [118.55]
0−IHT(2) [35.57]
0−IHT(1) [11.52]
0−IHT(5) [7.71]
SP [144.51]
BIHT [47.72]
noise level

100 200 300 400 500

10−2

100

[i]:iteration number

||x
−x

i||

l1−magic [34.37]
SPGL1 [400.66]
D−R [227.4]
FISTA w/LineSearch [998.88]
AMP [157.81]

50 100 150

10−2

100

[i]:iteration number

||x
−x

i||

1−IHT(1) [149.87]
1−IHT(3/4) [135.76]
1−IHT(2/3) [132.95]
1−IHT(1/2) [109.66]
1−IHT(1/3) [99.89]
1−IHT(1/4) [97.37]
1−IHT(ai) [147.97]
noise level

50 100 150

10−2

100

[i]:iteration number

||x
−x

i||

∞−IHT(1) [∞]
∞−IHT(3/4) [119.07]
∞−IHT(2/3) [87.51]
∞−IHT(1/2) [57.31]
∞−IHT(1/3) [71.16]
∞−IHT(1/4) [82.27]
noise level

(a) memoryless (b) convex (c) 1-memory (d) ∞-memory
Figure 1. Top/bottom row corresponds to dense/sparse matrix case.

5. ACCELERATION VIA ∞-MEMORY

Motivation: The approximate message passing (AMP) algorithm leverages a heuristic, called the Onsager cor-
rection, from statistical physics to improve the IST algorithm.11 The AMP recursion is

xi+1 = Tλi

(
xi +Atzi

)
, zi = ri + zi−1

‖xi−1‖0
M

; (23)

where λi = ‖zi‖/
√
M , ri = u−Axi, and ‖x‖0 counts the number of non-zero entries of x.

Main idea: We propose the following hard thresholding version of AMP based on our step size selection scheme

xi+1 = HK (xi + yi) , yi = −0.5μ̄i∇Si
f(xi) + τiyi−1; (24)

where τi ∈ (0, 1) controls the momentum (e.g., τi = K/M based on (23)). We categorize the algorithm in
(24) as an ∞-memory method since it uses a weighted sum of previous gradients (e.g., if τi = τ , then yi =

−0.5∑i
j=1 μ̄jτ

i−j∇Si
f(xi) with y0 = 0).

Proposition 4. Let τi = 1/4 and c =
√

2δ2K
1−δ3K

< 1/8. The output xi of (24) satisfies the following:

‖x∗ − xi‖ ≤ D1ρ
i
+ +D2ρ

i
− + γ‖n‖, (25)

where ρ± = (1/8 + c)±√
(1/8 + c)2 + 1/2, and γ, D1, and D2 are constants.

We provide a proof for Proposition 4 in the Appendix.

6. EXPERIMENTS

Prologue: We refer to the memoryless IHT algorithms as 0-IHT(#), where # is the decimal representation of the
binary number, generated by the options (SolveNewtonb, GradientDescentx, SolveNewtonx). We refer to the 1-
memory IHT algorithm as 1-IHT(τi), and explicitly specify the parameter. Similarly, we refer to the ∞-memory
algorithm as ∞-IHT(τi).

In this paper, we only provide experiments with a restricted set of the options (# = 0, 1, 2, 5) for 0-IHT
methods. We also do not consider other variants of the 1- and ∞-memory algorithms, as in Algorithm 1, which
can provide other computational trade-offs.

Proc. of SPIE Vol. 8138 813811-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

Table 1. Per iteration cost of the proposed methods

⎡
⎢⎢⎢⎢⎢⎢⎣

0-IHT(0)
0-IHT(1)
0-IHT(2)
0-IHT(5)
1-IHT
∞-IHT

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

HN +H2K +∇N

HN +H2K +∇N + NK

HN +H2K +∇N +∇K

HN +H2K +∇N + N2K + NK

HN +H3K +∇N

2HN +∇N

⎤
⎥⎥⎥⎥⎥⎥⎦

Caveat emptor: We mainly focus on the iteration count of the hard thresholding methods to illustrate the
acceleration due to the schemes we propose. In order to better estimate the total computational complexity, we
first provide an analysis of complexity per iteration. Below is a description of the basic operations:

HK(·): We denote the computational cost of this operation as Hd, where the subscript d refers to the effective
dimension of the combinatorial projection. For instance, d = N when we calculate S in (11), whereas d = |S|
when we calculate HK(b). For many interesting structured sparsity models, the combinatorial projection is
manageable. For instance, when ΣN

K is the set of all K-sparse signals, this operation amounts to sorting with
HN = O(N logN) complexity. When ΣN

K is the set of K-tree sparse signals, a dynamic program can obtain the
combinatorial projection with HN = O(N logN) complexity.12

∇f(·): We denote the computational cost of this operation as ∇d, where the subscript d refers to the effective
dimension of the needed gradient. Atu can be precalculated. Assuming AtA can be stored, the computational
cost is then dominated by AtA applied to a K-sparse vector. Then, ∇N = O(KN) and ∇K = O(K2) (Gradi-
entDescentx=1) for general matrices.

SolveNewton(): We denote the computational cost of this operation as Nd, where d is the effective dimension
of the Newton system. The effective dimension is d = |S| when (SolveNewtonb=1), whereas d = K when
(SolveNewtonx=1). The main complexity of this operation is dominated by the solution of (presumably) well-
conditioned d × d symmetric linear system of equations. We use conjugate gradients for the solution of this
problem, where L = 50 is the upper-bound on the number of iterations, leading to Nd = O(Ld2).

Table 1 provides a summary.

The competition: To illustrate the effectiveness of our acceleration schemes, we also test the following algorithms:
�1-magic (an interior point algorithm), which uses conjugate gradients for solution of the Newton system (L = 200
by default); SPGL1 (spectral gradient method), which on the average requires one multiplication by A and two
by At per iteration;19 and Douglas-Rachford (D-R) splitting,20 which is a monotone operator splitting technique,
requiring one multiplication by A and one by At, if A is a tight frame (otherwise a constant factor more by each).

To solve (18), we use FISTA with line search (a simplified version is discussed in Section 4), and the AMP
algorithm. The AMP algorithm requires one multiplication by A and At each at every iteration. FISTA’s base
requirements are the same with a constant factor increase for the line search steps.

We also compare against Blumensath’s most recent accelerated IHT method (BIHT) that use adaptive step
size strategy,7 subspace pursuit (SP)15 as well as GraDes5 for which we calculate the optimal step-size μ∗, using
concentration-of-measures.

Set-up: We test the algorithms in two distinct regression matrix settings. Case 1[dense matrix]: A is a random
matrix whose entries are iid Gaussian with zero mean and variance 1/M . For such matrices, it is possible to
show that μ∗ = 1 + δ2K′ � (1 +

√
2K/M + t)2 with probability 1 − exp (−Mt2/2). We use Mt2/2 = 10 for

GraDes(μ∗). Case 2[sparse matrix]: A is the normalized adjacency matrix of an unbalanced 8-regular expander
graph. Such matrices have the RIP in the 1-norm, which corresponds to ‖Ax‖2 ≤ ‖Ax‖1 ≤ ‖x‖1 ≤

√
K‖x‖2.

Hence, we use μ∗ = 2K for GraDes(μ∗) and also use the algorithm’s suggested settings, where μ = 4/3 and
μ = 3.

Proc. of SPIE Vol. 8138 813811-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

10−4 10−3 10−2 10−110−6

10−4

10−2

100

||n||

2−
no

rm
 e

rr
or

0−IHT(0)
0−IHT(2)
0−IHT(1)
0−IHT(5)
1−IHT(2/3)
∞−IHT(1/2)
l1−magic

10−4 10−3 10−2 10−110−6

10−4

10−2

100

||n||

2−
no

rm
 e

rr
or

0−IHT(0)
0−IHT(2)
0−IHT(1)
0−IHT(5)
1−IHT(2/3)
∞−IHT(1/2)
l1−magic

(a) K = Ktrue (b) K = 1.25Ktrue

Figure 2. Noise sensitivity and model mismatch.

To demonstrate the convergence speeds, we generate 100 realizations of K = 100 sparse signal in N = 1000-
dimensions with unit norm, whose nonzero coefficients are iid Gaussian. We pick M = 400 = 4K. We then
add Gaussian noise to the observations, whose norm is ‖n‖ = 10−3. We provide the hard thresholding methods
with the true sparsity, the convex optimization methods with the correct noise and the soft-thresholding values.
All the algorithms are tested for the same signal-matrix-noise realizations. All the algorithms use the same
convergence tolerance ε = 10−5.

Performance summary: Figure 1 illustrates effectiveness of the proposed acceleration schemes on dense and sparse
matrix settings. In the figure, the error curves are the median values across realizations over each iteration. We
also indicate the average number of iterations each algorithm takes to reach the convergence tolerance, next to
the algorithm names.

The results provide good empirical support for our step size selection procedure. For instance, 0-IHT(0), which
only use the adaptive step size selection procedure, converges faster than GraDes(μ∗), since μ∗ is a conservative
value that is valid for all ΣN

K . 1-memory and inf-memory methods also accelerate the convergence of 0-IHT(0)
algorithm. The algorithm 1-IHT(ai) use the weights ai in (20). The results favor 0-IHT(2) algorithm over the
other alternatives when HK is cheap. Otherwise, 0-IHT(1) is preferred since it has a smaller iteration count,
and it needs to solve a smaller Newton system.

While SP and AMP quickly reach a “good” solution in the tests, they did not reach the desired accuracy in
many cases and continued iterating until MaxIterations. Moreover, the AMP algorithm performed poorly with
sparse matrices (we believe that it requires a different soft thresholding rule).

Robustness summary: Figure 2 illustrates the robustness of the accelerated IHT methods vs. the linear program-
ming approach. For this test, we vary the noise variance, repeat the above test 100 times, and record the average
reconstruction errors. Moreover, we also input a target sparsity K, which is not the true target sparsity Ktrue,
for the hard thresholding methods. The accelerated methods appear insensitive to the input value K as long
as it overestimates the true sparsity, and the (K,M)-pair for the input K is on the phase transition curve.21

If the sparsity is underestimated, then the reconstruction error grows proportional to the mismatch. As all the
methods were limited by 150 iterations, the method 0-IHT(0) tapers off at low noise as it needs more iterations
to reach the high accuracy solution.

7. CONCLUSIONS

We derive acceleration schemes that provide salient computational trade-offs for the class of hard thresholding
methods for sparse approximation. Our approach in essence reinterprets the convex optimization algebra specif-
ically for sparse sets. Hence, the proposed IHT methods, as they iterate, optimally exploit the sparse scaffold

Proc. of SPIE Vol. 8138 813811-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

on which the approximation problem resides. This leads to convergence speed and computational advantages
over the convex sparse recovery algorithms (e.g., based on soft-thresholding), which have to iterate over dense
putative solutions until they reach a sparse solution. Empirical results demonstrate that our acceleration schemes
are quite effective without sacrificing the robustness.

APPENDIX A. PROOFS OF KEY RESULTS

Proof. [Property 2] To establish (7), we use the triangle inequality ‖x∗ − b̄‖ ≤ ‖b̄− b‖+ ‖x∗ − b‖, and note that
b is closer to b̄ than to x∗. To prove (7), we first leverage the RIP property: ‖x∗ − b‖ ≤ 1√

1−δK′
‖A(x∗ − b)‖,

which is followed by another triangle inequality: ‖A(x∗ − b) + n − n‖ ≤ ‖u − Ab‖ + ‖n‖. Note that depending
on the support of x∗ and b, K ′ is at most K + B. To obtain (9), we apply RIP on the left hand side of (7):

1√
1+δ2K

‖A(x∗− b̄)‖ ≤ ‖x∗− b̄‖. Now, ‖A(x∗− b̄) + n− n‖ ≥ ‖u−Ab̄‖− ‖n‖, whenever f(b̄) ≥ ‖n‖2. Combining

this observation with (8), we obtain the final inequality.

Proof. [Lemma 2.1] We first exploit Property 1(1): ‖A(x∗ − a)‖2 = f(a)− f(x∗)− 〈∇f(x∗), a− x∗〉. Noting
that f(x∗) = ‖n‖2, we have ‖A(x∗−a)‖2+‖n‖2 ≤ c2‖n‖2+2

〈
AT (u−Ax∗), a− x∗〉. Applying Cauchy-Schwarz

to the right hand side of this equation and rearranging, we obtain ‖A(x∗−a)‖2−2‖n‖‖A(x∗−a)‖+‖n‖2 ≤ c2‖n‖2.
Taking the square root of both sides and applying RIP, we reach the desired.

Proof. [Proposition 1] We first define S∗
i = X ∗ ∪ Xi where X ∗ = supp(x∗), and note that ‖∇Si

f(xi)‖ ≥
‖∇S∗

i
f(xi)‖. This is because Si ∪ Xi, as defined in (11), includes the K-largest elements in magnitude of the

gradient. Let L∗ = 2(1 + δ2K) and b̃ = xi − 1
L∗∇Sif(xi). By using Property 1(2), we have

f(b̃)− f(xi)−
〈
∇f(xi),

−1
L∗∇Si

f(xi)

〉
≤ L∗

2

∥∥∥∥∇Si
f(xi)

L∗

∥∥∥∥
2

⇒ f(b̃)− f(xi) ≤ − 1

2L∗ ‖∇Si
f(xi)‖2 ≤ − 1

2L∗ ‖∇S∗
i
f(xi)‖2

≤ L∗

2

∥∥∥∥x∗ −
(
xi − 1

L∗∇S∗
i
f(xi)

)∥∥∥∥
2

− 1

2L∗ ‖∇S∗
i
f(xi)‖2

=
〈∇S∗

i
f(xi), x

∗ − xi

〉
+

L∗

2
‖x∗ − xi‖2

Via Property 1(3), we have the following bound

〈∇S∗
i
f(xi), x

∗ − xi

〉 ≤ f(x∗)− f(xi)− (1− δ2K)‖x∗ − xi‖2,

when combined with the bound right above leads to

f(b̃) ≤ f(x∗) + 2δ2K‖x∗ − xi‖2. (26)

Note that f(b) ≤ f(b̃) as supp(b̃) = supp(b) = Si, and b is updated with a step size μ̄i that minimizes f(x) on Si,
as described in (12) and (13). Substituting f(x∗) = ‖n‖2 into (26), and leveraging the fact that a21 ≤ a22 + a23 ⇒
a1 ≤ a2 + a3 for ai ≥ 0, we obtain (14). To reach (15), we simply recall (8) in Property 2 and substitute (14)
with K ′ = 3K.

To establish (16), we look at the single root of the characteristic equation of the series inequality defined
by (15), which is given by ρ > 0, as defined in Proposition 1. Assuming ρ < 1, which defines the isometry
requirements of the algorithm, the series is convergent. At the stationary point, we solve

‖x∗ − x∞‖ ≤ ρ‖x∗ − x∞‖+ 4√
1− δ3K

‖n‖, (27)

to obtain the final result (16). It is easy to check that the first iteration of the algorithm satisfies the recursion
(15), completing the proof.

Proc. of SPIE Vol. 8138 813811-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

Proof. [Proposition 2] We revisit the proof of Proposition 1 at (26). Note that f(b) ≤ f(b̃) is still satisfied
for (SolveNewtonb=1) option. Let us define x̃ = HK(b). Only this time, we apply the inequality (9) in Property
(2) to obtain

‖u−Ax̃‖ ≤ κ
√
2δ2K‖x∗ − xi‖+ C1‖n‖, (28)

where κ is as defined in Property (2) with K ′ = 3K, and C1 = 1 + 2κ. We apply RIP to obtain ‖x∗ − xi‖ ≤
‖u−Axi‖+‖n‖√

1−δ2K
, when substituted into (28) leads to

‖u−Ax̃‖ ≤ ρ‖u−Axi‖+ C2‖n‖, (29)

where ρ is as defined in Proposition 2 and C2 = 1+ ρ+2κ. Note that the recursion in (29) is still satisfied if we
“refine” x̃ by any operation, restricted to Si that decreases f(x). Therefore, (17) holds for all variants Algorithm
1 with C = (1− ρ)−1C2.

Proof. [Proposition 3] As yi = HK(b), we first recycle (15) from Proposition 1. Only this time, we have
K ′ = 4K since xi now has 2K sparsity: ‖x∗−yi‖ ≤ c‖x∗−xi‖+ 4√

1−δ4K
‖n‖, where c is as defined in Proposition

3. Thanks to the triangle inequality and the new definition of xi+1, we also have ‖x∗−xi+1‖ ≤ ‖x∗−yi‖+τi‖x∗−
yi‖ + τi‖x∗ − yi−1‖. Combining these two expressions, we stumble upon the following second order difference
inequality: ‖x∗ − yi+1‖ ≤

c(1 + τi)‖x∗ − yi‖+ cτi‖x∗ − yi−1‖+ 4√
1− δ4K

‖n‖. (30)

Assuming τi ≤ 1, (22) provides the homogeneous solution and the particular solution, where the roots ρ± are
obtained from the characteristic polynomial. The values of C1 and C2 depend on the initial conditions.

Proof. [Proposition 4] Let τi = τ ∈ (0, 1). Using (7) from Property 2, we first note that ‖x∗ − xi+1‖ ≤
2‖x∗− bi‖+2τ‖yi−1‖, where bi is calculated as in (12). Similarly, it is clear that yi =

∑i
j=1 τ

i−j(bj −xj), which
allows us to bound the norm of yi via

‖yi−1‖ ≤∑i−1
j=1 τ

i−1−j (‖x∗ − bj‖+ ‖x∗ − xj‖) (31)

≤ (1 + c)
∑i−1

j=1 τ
i−1−j‖x∗ − xj‖+ C1‖n‖, (32)

where c =
√

2δ2K
1−δ3K

and C1 = 2(1−τ)−1

√
1−δ3K

. In (31), we apply RIP to first obtain ‖x∗ − bj‖ ≤ ‖u−Abj‖+‖n‖√
1−δ3K

, followed

by the inequality (14) from Proposition 1. We then upperbound the summation
∑i−1

j=1 τ
i−1−j ≤ (1 − τ)−1 to

obtain C1.

Combining the statements above, we reach the following inequality for the iterations of (24): ‖x∗ − xi+1‖ ≤

2c‖x∗ − xi‖+ 2(1 + c)τ

i−1∑
j=1

τ i−1−j‖x∗ − xj‖+ C‖n‖,

where C = 2C1. Let us now suppose that the i-th iterate satisfies ‖x∗−xi‖ ≤ Dρi+γ‖n‖, for some constants D,
|ρ| < 1, and γ. We now seek the conditions on c and τ to see if an induction argument can hold for the (i+1)-th
iterate: ‖x∗ − xi+1‖ ≤ 2Dcρi+

2cγ‖n‖+ 2(1 + c)τ
i−1∑
j=1

τ i−1−j(Dρj + γ‖n‖) + C‖n‖.

At this juncture, let us assume τ = 1/4. After some laborious algebra, it is possible to show that the induction
hypothesis would be satisfied if c < 1/8 and γ = 3(1/8− c)−1C with the two values of ρ, as stated in Proposition
4. It is easy to see that the induction hypothesis is satisfied for i = 1, completing the proof.

Proc. of SPIE Vol. 8138 813811-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

REFERENCES

[1] Blumensath, T. and Davies, M., “Sampling theorems for signals from the union of finite-dimensional linear
subspaces,” Information Theory, IEEE Trans. on 55(4), 1872–1882 (2009).

[2] Tibshirani, R., “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society.
Series B (Methodological) , 267–288 (1996).

[3] Banerjee, O., El Ghaoui, L., and d’Aspremont, A., “Model selection through sparse maximum likelihood
estimation for multivariate gaussian or binary data,” J. of Machine Learning Research 9, 485–516 (2008).

[4] Candès, E. and Wakin, M., “An introduction to compressive sampling,” Signal Processing Magazine,
IEEE 25(2), 21–30 (2008).

[5] Garg, R. and Khandekar, R., “Gradient descent with sparsification: An iterative algorithm for sparse
recovery with restricted isometry property,” in [ICML], ACM (2009).

[6] Tropp, J. and Wright, S., “Computational methods for sparse solution of linear inverse problems,” Proceed-
ings of the IEEE 98(6), 948–958 (2010).

[7] Blumensath, T., “Accelerated Iterative Hard Thresholding,” preprint (2011).

[8] Needell, D. and Tropp, J., “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,”
ACHA 26(3), 301–321 (2009).

[9] Foucart, S., “Hard thresholding pursuit: An algorithm for compressive sensing,” preprint (2010).

[10] Bach, F., “Structured sparsity-inducing norms through submodular functions,” in [NIPS], (2010).

[11] Montanari, A., “Graphical Models Concepts in Compressed Sensing,” preprint, arXiv:1011.4328 (2010).

[12] Baraniuk, R., Cevher, V., Duarte, M., and Hegde, C., “Model-based compressive sensing,” Information
Theory, IEEE Trans. on 56(4), 1982–2001 (2010).

[13] Juditsky, A. and Nemirovski, A., “On verifiable sufficient conditions for sparse signal recovery via l1 mini-
mization,” arXiv:0809.2650v2 (2008).

[14] Blumensath, T. and Davies, M., “Normalized iterative hard thresholding: Guaranteed stability and perfor-
mance,” Selected Topics in Signal Processing, IEEE Journal of 4(2), 298–309 (2010).

[15] Dai, W. and Milenkovic, O., “Subspace pursuit for compressive sensing signal reconstruction,” Information
Theory, IEEE Trans. on 55(5), 2230–2249 (2009).

[16] A. Kyrillidis, V. C., “Recipes on hard thresholding methods,” in [CAMSAP], (2011).

[17] Beck, A. and Teboulle, M., “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,”
SIAM Journal on Imaging Sciences 2(1) (2009).

[18] Nesterov, Y., “A method of solving a convex programming problem with convergence rate O(1/k2),” in
[Soviet Mathematics Doklady], 27(2), 372–376 (1983).

[19] van den Berg, E. and Friedlander, M. P., “Probing the pareto frontier for basis pursuit solutions,” SIAM
Journal on Scientific Computing 31(2), 890–912 (2008).

[20] Fadili, M. and Starck, J., “Monotone operator splitting for fast sparse solutions of inverse problems,” SIAM
J. on Imaging Sciences , 2005–2006 (2009).

[21] Donoho, D. and Tanner, J., “Precise undersampling theorems,” Proceedings of the IEEE 98(6) (2010).

Proc. of SPIE Vol. 8138 813811-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms

