000178650 001__ 178650
000178650 005__ 20181203022748.0
000178650 022__ $$a0022-2518
000178650 02470 $$2ISI$$a000303134000015
000178650 037__ $$aARTICLE
000178650 245__ $$aDirac Lie Groups, Dirac Homogeneous Spaces and the Theorem of Drinfeld
000178650 269__ $$a2011
000178650 260__ $$c2011
000178650 336__ $$aJournal Articles
000178650 520__ $$aThe notions of Poisson Lie group and Poisson homogeneous space are extended to the Dirac category. The theorem of Drinfeld on the one-to-one correspondence between Poisson homogeneous spaces of a Poisson Lie group and a special class of Lagrangian subalgebras of the Lie bialgebra associated to the Poisson Lie group is proved to hold in this more general setting.
000178650 6531_ $$aPoisson Lie groups
000178650 6531_ $$aDirac manifolds
000178650 6531_ $$aLie algebras
000178650 6531_ $$aDressing Transformations
000178650 6531_ $$aPoisson Groupoids
000178650 6531_ $$aReduction
000178650 6531_ $$aSystems
000178650 700__ $$0243118$$aJotz, Madeleine$$g179197
000178650 773__ $$j60$$q319-366$$tIndiana University Mathematics Journal
000178650 909C0 $$0252609$$pCAG2
000178650 909CO $$ooai:infoscience.tind.io:178650$$particle
000178650 917Z8 $$x180122
000178650 937__ $$aEPFL-ARTICLE-178650
000178650 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000178650 980__ $$aARTICLE