
Brief Announcement: Transaction Polymorphism

Vincent Gramoli
EPFL

Switzerland
vincent.gramoli@epfl.ch

Rachid Guerraoui
EPFL

Switzerland
rachid.guerraoui@epfl.ch

ABSTRACT
In this work, we present transaction polymorphism, a syn-
chronization technique that provides more control to the
programmer than traditional (i.e., monomorphic) transac-
tions to achieve comparable performance to generic lock-
based and lock-free solutions.

We prove the following results: (i) Lock-based synchro-
nization enables strictly higher concurrency than monor-
mophic transactions. (ii) Polymorphic transactions enable
strictly higher concurrency than monomorphic transactions.
The former result indicates that there exist some transac-
tional programs that will never perform as well as their lock-
based counterparts, whatever improvement could be made
at the hardware level to diminish the overhead associated
with transactional accesses. The latter result shows, how-
ever, that transaction polymorphism is a promising solution
to cope with this issue.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data
types, Concurrent programming structures; D.3.2 [Software
Engineering]: Reusable Software—Reusable libraries

General Terms
Algorithms, Theory, Languages, Performance

Keywords
Concurrency, Library

1. TRANSACTIONS FOR EXPERTS
Lock-based and lock-free concurrent implementations of

abstract data types are often highly tuned to support a fixed
set of efficient features, however, it is difficult to adapt them
as they are not generic. For example, a hash table synchro-
nizes efficiently concurrent insert, remove, and contains op-
erations, as long as the number of elements remains propor-
tional to the number of buckets [3]. Unfortunately, this data
structure does not support a resize, therefore it is preferable
to use a split ordered linked list [4] if one expect the struc-
ture to be unbalanced or overloaded.

Copyright is held by the author/owner(s).
SPAA’11, June 4–6, 2011, San Jose, California, USA.
ACM 978-1-4503-0743-7/11/06.

The transaction paradigm is an appealing programming
idiom for it guarantees to execute in isolation from the other
existing transactions. Provided that every operation of an
abstract data type is implemented as a transaction, any
new operation encapsulated within a transaction will also be
atomic. Hence, a novice programmer could reuse such a con-
current library straightforwardly to write other transaction-
based concurrent programs. Concurrent programming with
transactions is simple in part for this reason and because it
consists in delimiting regions of sequential code (e.g., start-
ing with a start delimiter). As a drawback, transactions
limits concurrency by preventing the programmer from giv-
ing hints on the semantics of any transaction. Instead, all
transactions execute the same safest semantics—we refer to
them as monomorphic.

We propose transaction polymorphism a novel synchro-
nization technique that allows multiple transactions, with
distinct semantics, to run concurrently. To support poly-
morphism, a transactional memory has simply to accept a
semantic parameter p when each transaction starts, e.g.,
start(p). The application programmer can either set p to
the desired semantics or omit it and the default semantics
def will be used for the corresponding transaction. Transac-
tional polymorphism has various applications in concurrent
programming ranging from providing one liveness guarantee
per transaction to distinguishing k-read-modify-write oper-
ations from operations whose read-write conflicts do not all
impact their linearizability. We illustrate how to use trans-
action polymorphism to enable greater concurrency.

2. EVALUATING CONCURRENCY
We consider a shared memory partitioned into shared reg-

isters, supporting atomic reads/writes, and metadata used
for synchronization of set of shared register accesses. A read
of shared register x that returns value v is denoted by r(x) : v
or more simply r(x); a write of v on x is denoted by w(x, v)
or more simply w(x). An operation π is a sequence of read
and write accesses to shared registers and a critical step γ
is a subsequence of an operation.

The semantics s of an operation π is an assignment of its
accesses to critical steps. For example, the semantics s of
a sorted linked list contains operation, π = r(x), r(y), r(z),
(Figure 1) assigns accesses to two critical steps γ1 and γ2
such that r(x) 7→ γ1, r(y) 7→ γ1 and r(y) 7→ γ2, r(z) 7→ γ2
indicating that there should exist a point in the execu-
tion where the value returned by r(x) and r(y) where both
present, and another point where the values returned by
r(y) and r(z) were both present, but not necessarily a point

311



p1 p2 p3

lock(x)
r(x)

lock(y) lock(z)
w(z)

r(y) unlock(z)
unlock(x)

lock(x)
w(x)

lock(z) unlock(x)
r(z)

unlock(y)
unlock(z)

p1 p2 p3

start(weak)
r(x)

start(def)
w(z)

r(y) commit

start(def)
w(x)

commit
r(z)

commit

Figure 1: Schedule that is accepted by lock-based

and polymorphic transactions but not by monomorphic

transactions.

at which both values from r(x) and r(z) were present. In-
tuitively, the semantics of an operation restricts the set of
possible schedules comprising its inner accesses by defining
its indivisible critical steps.

We consider three operation synchronizations: (i) lock-
based synchronization with lock(x) and unlock(x) functions
taking a shared register as a parameter, (ii) monomorphic
synchronization with start(⊥) and commit events delimit-
ing monomorphic transactions, and (iii) polymorphic syn-
chronization with start(p) and commit events, where p is
the semantic hint. A transactional operation (resp. lock-
based operation) is an operation whose set of accesses is ex-
tended with the events start(∗) and commit (resp. lock(x)
and unlock(x)). (i) A lock-based operation is well-formed
if for each shared register x every lock(x)i has a follow-
ing unlock(x)i event. (ii) A transactional operation is well-
formed if it starts with a start event and ends by a matching
commit event. A lock-based (resp. transactional) schedule
I is a sequence of events of well-formed lock-based (resp.
transactional) operations. Two critical steps γ1 and γ2 are
concurrent in schedule I if an event of γ1 is ordered in I
after the first event of γ2 but before the last event of γ2.

Intuitively, a history H is the result of the execution
of a schedule I by synchronization S. More formally, a
transactional history Htx is the result of the execution of
the transactional schedule Itx by a transactional memory
where: (i) start(∗)i events in Itx are start(def)i in Htx if
S is the monomorphic synchronization or unchanged other-
wise, (ii) one non-start event of πi in Itx may produce an
abort and in this case the schedule is consider invalid ; and
for the remaining events, (iii) for any object x, r(x)i in Itx is
replaced by its corresponding execution r(x) : v in Htx that
returns value v, and for any object x, w(x) in Itx is un-
changed in Htx. A lock-based history H` is the result of the
execution of the lock-based schedule I` where for any object
x, (i) r(x) in I` is replaced by its corresponding execution
r(x) : v that returns value v in H`, (ii) w(x) and unlock(x)
in I` are unchanged in H`. Note that the ordering of an
input schedule I is preserved in the resulting history H.

A sequential history is a history where no two critical steps
are concurrent. A transactional history is valid with respect
to synchronization S if it is equivalent to a sequential history
and if it does not result from the execution by S of an invalid
schedule (with abort events). (This notion generalizes the
input acceptance [2] to S.) A lock-based history is valid with
respect to synchronization S if it is equivalent to a sequential
history and for each object x, no lock(x)i occurs between a
lock(x)j and an unlock(x)j where i 6= i.

A schedule is accepted by synchronization S if its execu-
tion results in a valid history.

Definition 1 (Concurrency relation). A synchro-
nization S1 enables higher concurrency than synchronization
S2, denoted by S1 ⇒ S2, if there exists a schedule accepted
by S1 that is not accepted by S2.

Using this definition, we can strictly compare the concur-
rency of two synchronizations: S1 enables strictly higher
concurrency than another synchronization S2 if the follow-
ing properties are satisfied: S1 ⇒ S2 and S2 6⇒ S1.

Theorem 1. Lock-based synchronization enables strictly
higher concurrency than monomorphic synchronization.

The first part of the proof (⇒) relies on the fact that, unlike
lock and unlock events, well-formed transactions are open-
close blocks that cannot overlap as depicted by the schedule
of Figure 1. The second part (6⇔) relies on the fact that
fine-grained locks can implement 2-phase-locking.

Transaction polymorphism accepts the schedule of Fig-
ure 1 by simply using elastic transaction [1] each time a
transaction is parameterized with the weak keyword. Next
theorem relies on the fact that monomorphic transactions
cannot distinguish between semantics r(x), r(y), r(z) 7→ γ1
and semantics r(x)′, r(y)′ 7→ γ1′ and r(y)′, r(z)′ 7→ γ2′ for
the operation of p1 in Figure 1 implying the existence of
inconsistent operations or unaccepted schedules.

Theorem 2. Polymorphic synchronization enables
strictly higher concurrency than monomorphic synchroniza-
tion.

3. CONCLUDING REMARKS
Transaction polymorphism allows the programmer to con-

trol the semantics of transactional operations to avoid con-
currency limitations.

Transaction polymorphism raises important questions on
the composition of transaction semantics in a common TM
implementation. First, how to ensure that two transactions
with different semantics could run concurrently without im-
pacting each other semantics? For example, a multi ver-
sioned transaction could not return stale data if a singly
versioned transaction does not backup data when overwrit-
ting it. Second, what should be the semantics of a nested
transaction? the semantics indicated by its parameter as if
it was not nested, the parent transaction semantics, or the
strongest of the two?

4. ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers and Petr

Kuznetsov for their helpful comments. This work is sup-
ported in part by FP7 EU projects 216852 and 248465.

5. REFERENCES
[1] P. Felber, V. Gramoli, and R. Guerraoui. Elastic

transactions. In DISC, 2009.

[2] V. Gramoli, D. Harmanci, and P. Felber. On the input
acceptance of transactional memory. Parallel Processing
Letters, 20(1), 2010.

[3] M. M. Michael. High performance dynamic lock-free
hash tables and list-based sets. In SPAA, 2002.

[4] O. Shalev and N. Shavit. Split-ordered lists: Lock-free
extensible hash tables. J. ACM, 53(3), 2006.

312




