Infoscience

Journal article

THE CORONA THEOREM FOR THE DRURY-ARVESON HARDY SPACE AND OTHER HOLOMORPHIC BESOV-SOBOLEV SPACES ON THE UNIT BALL IN C-n

We prove that the multiplier algebra of the Drury-Arveson Hardy space H-n(2) on the unit ball in C-n has no corona in its maximal ideal space, thus generalizing the corona theorem of L. Carleson to higher dimensions. This result is obtained as a corollary of the Toeplitz corona theorem and a new Banach space result: the Besov-Sobolev space B-p(sigma) has the "baby corona property" for all sigma >= 0 and 1 < p < infinity. In addition we obtain infinite generator and semi-infinite matrix versions of these theorems.

Fulltext

  • There is no available fulltext. Please contact the lab or the authors.

Related material