Abstract

Understanding mechanisms that affect degradation and durability of solid oxide fuel cell (SOFC) stacks and systems is becoming increasingly important as systems are being deployed around the world. A novel simulation approach accounting for state-of-the-art understanding of degradation mechanisms in the context of an operating SOFC system has been developed. Investigative tools simulating lifetime degradation have been applied to a physical SOFC system model designed and controlled to allow dynamic dispatch. The system was operated in two modes (a) constant power output mode, and (b) diurnal dynamic dispatch mode. Results show that on a time basis the SOFC system with dynamic dispatch proved more durable and less degraded than the system operated in constant full-power output. The net energy production was roughly equivalent between the two modes, with the dynamically dispatched fuel cell degrading slightly less and producing a greater portion of power during peak demand.

Details