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Steroid hormones coordinate and control the development and function of many organs and are impli-
cated in many pathological processes. Progesterone signaling, in particular, is essential for several impor-
tant female reproductive functions. Physiological effects of progesterone are mediated by its cognate
receptor, expressed in a subset of cells in target tissues. Experimental evidence has accumulated that pro-
gesterone acts through both cell intrinsic as well as paracrine signaling mechanisms. By relegating the
hormonal stimulus to paracrine signaling cascades the systemic signal gets amplified locally and signal-
ing reaches different cell types that are devoid of hormone receptors. Interestingly, distinct biological
responses to progesterone in different target tissues rely on several tissue-specific and some common
paracrine factors that coordinate biological responses in different cell types. Evidence is forthcoming that
the intercellular signaling pathways that control development and physiological functions are important
in tumorigenesis.
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1. Introduction

The steroid hormone progesterone plays a prominent role in fe-
male reproductive tissues; its levels rise cyclically during men-
strual cycles and are high throughout pregnancy. The hormone
exerts its effects by binding to its cognate receptor, the progester-
one receptor (PR) that acts as a transcription factor and is ex-
pressed only in a subset of cells in the target organs. The major
functions of PR signaling are to trigger the release of the mature
oocytes from the ovaries, to prepare the uterus for implantation
of the blastocysts, and to increase the complexity of the milk duct
system in the mammary gland essential for the expansion of secre-
tory surface for milk production. Progesterone signaling also af-
fects non-reproductive organs like thymus, bone and blood
vessels, and impinges on the central nervous system. It exerts dis-
tinct biological functions in different target tissues that can be
quite opposed. For instance, in the adult mammary gland proges-
terone signaling is mitogenic whereas it is anti-proliferative in
the uterine epithelium. How can a single hormone elicit such
ig. 1. Paracrine signaling induced by progesterone in mouse mammary gland and hu
pithelial cells, and induces the expression of paracrine factors. In mouse mammary gland

induce stem cell activation, cell proliferation, and tissue remodeling thereby increasin
rogesterone, the hormone induces genes involved in Notch signaling pathway (shown
crease the complexity of the breast (for details see text).
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strong and diversified biological effects? Extensive studies
addressing how progesterone affects reproductive tissues using
in vitro and in vivo approaches, which include genetically engi-
neered-mouse models such as mice that lack PR and mice deficient
for either PR-A or PR-B isoforms have provided evidence that pro-
gesterone acts by paracrine signaling as reviewed below.
2. Mammary gland

The mammary gland is a branching organ that undergoes most
of its development postnatally under control of female reproduc-
tive hormones. Progesterone is a key player in the adult mammary
gland where it triggers the formation of side branches from the
preexisting mammary ducts during estrus cycles and early preg-
nancy (Brisken and O’Malley, 2010). Analysis of mutant mice that
lack either PR-A or PR-B isoform revealed that PR-B function is
essential for mammary gland development (Mulac-Jericevic et al.,
2003, 2000). The mammary ducts are composed of an inner layer
man breast. Progesterone binds to PR expressed in a subset of luminal mammary
, RANKL, CT and Wnt-4 are induced which in turn act on their respective target cells
g the complexity of the mammary gland. In human breast model that responds to

in dashed frame) and was suggested to communicate with bipotent progenitors to
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of luminal epithelium and an outer layer of myoepithelial cells that
are surrounded by a basal lamina and stromal fibroblasts and are
embedded within the fatty stroma (Fig. 1). In the adult mouse
mammary gland, PR is expressed in 25% of luminal epithelial cells
and distributed non-uniformly throughout the mammary ducts
(Ismail et al., 2002; Seagroves et al., 2000). This expression pattern
raises the question of how the PR positive (PR+) cells that are dis-
persed between PR negative (PR�) cells can elicit progesterone-
mediated functions such as cell proliferation, activation of stem/
progenitor cells and tissue remodeling all of which are required
for the formation of side branches.

In the normal human breast epithelium, 98% of the proliferating
cells are ER/PR� (Clarke et al., 1997). A similar segregation of PR�
expressing and proliferating cells was observed in mice, rats and
cows (Capuco et al., 2002; Russo et al., 1999; Seagroves et al.,
2000). Two scenarios can account for this observation. Either nu-
clear hormone receptor expression is down regulated when cells
proliferate or the effects of progesterone are mediated by paracrine
mechanisms. The former hypothesis was supported by the finding
that the estrogen receptor a (ERa) protein is rapidly degraded by
proteasomes after activation in MCF-7 cells (Reid et al., 2003)
and the observation that ERa expression was down modulated in
the cells that entered the cell cycle in the mammary epithelium
(Cheng et al., 2004). On the other hand, PR-deficient mammary epi-
thelial cells (MECs) mixed with wild-type (WT) MECs and used to
reconstitute fat pads cleared of endogenous epithelium were able
to contribute to side branch formation in the resulting chimeric
epithelium if they were in close proximity to WT cells (Brisken
et al., 1998). This demonstrated that progesterone can act by par-
acrine mechanisms. Subsequently, several important paracrine
mediators downstream of progesterone signaling have been
identified.

2.1. Role of Wnt signaling in mammary gland development

Wnt-4, member of Wnt family was the initial paracrine media-
tor of progesterone identified in mammary gland. The first Wnt
gene to be identified was cloned as a frequent integration site,
int-1, for mouse mammary tumor virus (MMTV), a retrovirus
responsible for mammary carcinomas. When it became apparent
that int-1 was related to the Drosophila segment polarity gene
wingless (Wg) it was renamed as Wnt-1 (Rijsewijk et al., 1987).
The observation that Wnt-1 (Tsukamoto et al., 1988) and Wnt-3
(Roelink et al., 1990) were activated by an MMTV provirus in
virus-induced mammary carcinomas suggested that Wnt signaling
is an important oncogenic pathway in mouse mammary epithelial
cells. Since then, studies using genetically modified mouse models
have revealed the importance of Wnt signaling in several aspects of
mammary gland development and carcinogenesis (Lindvall et al.,
2007). Ectopic expression of Wnt-1 in PR deficient epithelium res-
cued the side-branching defect characteristic of this mutant and
suggested that Wnt signaling acts downstream of the PR signaling.
In addition, when MECs from MMTV-Wnt-1 transgenic mice and
WT MECs were mixed and used to reconstitute cleared mammary
fat pads, the WT MECs, also showed increased side-branching char-
acteristic of MMTV-Wnt-1 mammary ducts, indicating that se-
creted Wnt-1 is sufficient to cause side branching (Brisken et al.,
2000). As Wnt-1 is not expressed in the mouse mammary gland,
it has been surmised that it mimics Wnt-4, which is expressed dur-
ing early pregnancy and which acts likewise when ectopically ex-
pressed in the mammary epithelium (Bradbury et al., 1995; Gavin
and McMahon, 1992; Weber-Hall et al., 1994). In line with Wnt-4
being the physiologically relevant Wnt, Wnt-4 mRNA is induced by
progesterone treatment, its expression during pregnancy requires
PR, and Wnt-4 deficient mammary epithelium fails to sidebranch
during early pregnancy (Brisken et al., 2000). Consistent with
Please cite this article in press as: Rajaram, R.D., Brisken, C. Paracrine signaling b
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Wnt-4 being a direct target of PR signaling, PR and Wnt-4 mRNAs
show a similar expression pattern in the luminal epithelial cells, as
assessed by in situ hybridization (Brisken et al., 2000). Recently,
evidence was provided that in the PR(+) breast cancer cell line
T47D, PR-B is recruited to a progesterone response element in
the Wnt-4 promoter by ChIP assay (Ramamoorthy et al., 2010).
Wnt-4 mRNA levels are not changed in progesterone receptor iso-
form-A knock out (PR-AKO) and progesterone receptor isoform-B
knock out (PR-BKO) mutant mammary glands but significantly less
in PRKO suggesting that both forms of the receptor can compen-
sate for loss of each other in the regulation of Wnt-4 transcription
(Mulac-Jericevic et al., 2003).

Whether the secreted Wnt-4 acts on neighboring PR� luminal
epithelial and/or myoepithelial cells and/or stromal cells and to
what extent the effects of Wnt-4 are mediated through canonical
versus noncanonical Wnt signaling both of which have been impli-
cated downstream of this ligand, remains to be determined (Fig. 1).

2.2. RANKL/RANK in mammary gland development

Recent studies have identified another paracrine mediator of PR,
Activator of NF-jB Ligand (RANKL) member of the tumor necrosis
factors (TNF) family. RANKL is required for osteoclast differentia-
tion and lymph node organogenesis (Kong et al., 1999). In the ab-
sence of RANKL signaling, mice fail to lactate (Fata et al., 2000) and
overexpression of RANKL in the mammary epithelium was suffi-
cient to trigger side branching in virgin mammary glands (Fernan-
dez-Valdivia et al., 2009). RANKL mRNA was induced in
ovariectomized mice stimulated with progesterone (Brisken
et al., 2002) and its expression was reduced in PR-B deficient mam-
mary glands indicating that RANKL is a PR-B specific target (Mulac-
Jericevic et al., 2003). The findings that ectopic expression of
RANKL using retroviral vectors (Beleut et al., 2010) as well as
expression of doxycycline-inducible RANKL in PR-deficient mam-
mary epithelium was sufficient to trigger sidebranching (Mukher-
jee et al., 2010) have identified RANKL as an important
downstream mediator of PR signaling. Immunohistochemistry on
PR� deficient MECs infected with a retrovirus coexpressing ectopic
RANKL and GFP revealed that proliferating cells were frequently
found next to RANKL expressing cells. Similarly, in mammary
glands of pregnant WT mice proliferating cells are often neighbors
of RANKL expressing cells indicating that RANKL elicits prolifera-
tion by a paracrine mechanism (Beleut et al., 2010) (Fig. 1).
Whether RANKL acts directly mitogenic or relies yet on other fac-
tors to elicit cell proliferation remains to be addressed.

The TNF family member, RANKL was also implicated in para-
crine control of mammary gland stems cells (Asselin-Labat et al.,
2010; Joshi et al., 2010). As they are located in basal epithelial com-
partment and are hormone receptor negative, endocrine stimula-
tion of stem cell activation requires a paracrine mechanism
(Asselin-Labat et al., 2006; Brisken and Duss, 2007; Tanos and Bris-
ken, 2008). Consistent with RANKL being important for this,
expression of mRNA of its cognate receptor, RANK was enriched
in mammary stem cell (MaSC) population as opposed to the more
differentiated cell populations isolated from mammary glands
based on the expression of distinct cell surface markers by Fluores-
cent activated cell sorting (FACS) (Asselin-Labat et al., 2010; Joshi
et al., 2010). Furthermore, in vitro assays demonstrated that
RANK-Fc inhibited the clonogenic activity of MaSCs enriched pop-
ulation but not of the similarly treated luminal epithelial cells.
Likewise, treatment of virgin or pregnant mice with anti-RANKL
monoclonal antibody and subsequent in vitro assays showed
impairment in clonogenicity of MaSCs enriched CD29hi cells com-
pared to their untreated counterpart (Asselin-Labat et al., 2010)
(Fig. 1). Therefore, it is likely that progesterone controls mammary
stem cells via RANKL mediated paracrine signaling.
y progesterone. Molecular and Cellular Endocrinology (2011), doi:10.1016/
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2.3. Calcitonin involvement in mammary gland development

Calcitonin (CT), a 32-amino acid polypeptide hormone pro-
duced by thyroid involved in calcium homeostasis has been impli-
cated as downstream target of progesterone signaling. The
observation that the hormone is detected in the early human milk
samples (Bucht et al., 1983) at levels that are independent of thy-
roid function first suggested that it might be produced locally (Buc-
ht et al., 1986). Studies using rats and mice have shown that indeed
CT and calcitonin receptor (CTR) are expressed in the mammary
gland during pregnancy (Ismail et al., 2004; Tverberg et al.,
2000). Based on the observation that progesterone induces CT in
the uterus (Ding et al., 1994), it was put forward that the hormone
may regulate CT expression in the mammary gland (Tverberg et al.,
2000). In line with such hypothesis, CT mRNA expression is in-
duced by progesterone treatment in adult WT mice but not in sim-
ilarly treated PR�/� mouse mammary glands indicating that CT
mRNA induction requires intact PR signaling. Immunohistochemis-
try revealed the expression of CTR in the myoepithelial cell layer
(Ismail et al., 2004) (Fig. 1). Thus, CT mRNA is induced by proges-
terone and the spatial separation of CT expression in the luminal
epithelium and CTR expression in the myoepithelium imply a par-
acrine mode of action for CT in mediating the luminal-myoepithe-
lial cross-talk to elucidate yet unknown progesterone’s function
(Ismail et al., 2004).
3. Mammary tumorigenesis

Excitingly, in the mammary gland recent evidence supports the
notion that deregulation of paracrine signaling pathways contrib-
utes to tumorigenesis. Deletion of the receptor for RANKL, RANK
in MECs was shown to impair dimethylbenz(a)anthracene (DMBA)
and medroxyprogesterone (MPA, synthetic progestin) induced
tumorigenesis (Schramek et al., 2010). Similarly, MMTV-RANK
transgenic mice showed accelerated tumor formation in response
to MPA and DMBA. Pharmacological inhibition of RANK signaling
reduced tumor formation in DMBA-MPA treated MMTV-RANK
transgenic mice as well as in the hormone independent mammary
tumor model, MMTV-neu/ErbB2 (Gonzalez-Suarez et al., 2010).
Furthermore, RANK signaling was implicated in pulmonary metas-
tasis in MMTV-neu transgenic mice (Guy et al., 1992). Metastatic
spread of Erbb2-transformed carcinoma cells required the pres-
ence of CD4+CD25+ T cells, implying that these cells produce
RANKL (Tan et al., 2011). These findings point to a more complex
role of RANKL mediated paracrine signaling involving immune
cells (Tan et al., 2011).
4. Human breast

4.1. Proliferation and stem/progenitor cell activation

Are the paracrine mediators identified in mouse mammary
gland conserved in the human breast? The observation that most
of the proliferating cells in human breast like in mouse, rat and
cow mammary epithelium are PR� (Capuco et al., 2002; Clarke
et al., 1997; Russo et al., 1999; Seagroves et al., 2000) suggests that
paracrine mechanism(s) for progesterone action on mammary epi-
thelial cells proliferation are evolutionarily conserved. Despite con-
siderable progress in understanding mechanisms of progesterone
action in the mouse mammary epithelium, little is known in the
human breast due to the lack of suitable models that retain respon-
siveness to progesterone.

Only recently, 3-dimensional cultures of human mammary epi-
thelial cells (HMECs) grown in matrigel were developed that retain
estrogen receptor and PR expression and respond to progesterone
Please cite this article in press as: Rajaram, R.D., Brisken, C. Paracrine signaling b
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stimulation. In this system, progesterone induces cell proliferation
and the majority of the proliferating cells are PR� negative (Gra-
ham et al., 2009). Furthermore, progesterone treatment of such
HMEC cultures, increased the number of progenitor cells as as-
sessed by number of mammosphere initiating cells (Dontu et al.,
2003) and aldefluor positivity (Ginestier et al., 2007) suggesting
that in human cells, at least in this model, progesterone activates
similar processes as in the mouse mammary epithelium (Graham
et al., 2009). However, important paracrine mediators of progester-
one signaling identified in the mouse mammary epithelium, Wnt-4
and RANKL were not induced by progesterone in this study.
Instead, the Notch signaling pathway was found to be positively
regulated by progesterone, with induction of the Notch ligands,
delta-like 1 and 3, as well as the notch signaling regulator preseni-
lin2 (Graham et al., 2009) (Fig. 1). Whether this indicates that the
paracrine circuitry induced by progesterone varies between mouse
and human or whether the dissimilarities can be attributed to dif-
ferences between in vitro and in vivo systems is unclear. It is con-
ceivable that the in vitro system lacks factors required for
progesterone regulation of these paracrine factors; this could be
attributed to differences in the microenvironment with important
cell types lacking such as fibroblasts, infiltrating immune cells,
variations in the biochemical composition of extra cellular matrix
components, ratio of luminal and basal cells, changes in physical
properties such as tissue tension and/or fluctuations in hormone
levels that fail to be reproduced.
5. Breast cancer

Epidemiologic studies have shown that a woman’s risk of get-
ting breast cancer is affected by her lifetime hormone exposure
(Kelsey et al., 1993). Early pregnancies provide a protective effect
(MacMahon et al., 1970) that, as established recently, applies spe-
cifically to progesterone receptor (PR) positive breast carcinomas
(Colditz et al., 2004). Independent of hormone receptor status,
breast cancer risk increases with early menarche and late meno-
pause both of which result in an increased number of menstrual
cycles during lifetime (Colditz et al., 2004). Mitotic activity in the
breast epithelium and changes in tissue structure are observed
during the luteal phase of menstrual cycles when progesterone lev-
els are high (Ramakrishnan et al., 2002) suggesting that in particu-
lar exposure to progesterone relates to breast cancer risk. A further
indication that PR signaling is related to the disease comes from
studies on postmenopausal women on combined hormone
replacement therapy (Pike et al., 1997; Pike and Ross, 2000). Wo-
men taking estrogen monotherapy had a relative risk of 1.3
whereas women using a combination of estrogens and progestin
had a relative risk of 2.0 to acquire breast cancer (Beral, 2003).

Because of common developmental and hormonal characteris-
tics, the mouse mammary gland has provided an important
in vivo model for the normal human breast development and
tumorigenesis (Lydon and Edwards, 2009). A question rises as to
what extent the paracrine signaling pathways identified in mouse
models are relevant in breast tumors that continue to express
estrogen and progesterone receptors and are responsive to
hormones?
5.1. Role of Wnts in breast cancer

Deregulation of the Wnt signaling pathway is linked to many
different human tumor types with mutations in Wnt signaling
pathway components reported (Lindvall et al., 2007). Importantly,
despite substantial efforts, no alterations in intracellular Wnt path-
way have been reported in breast cancer (Lindvall et al., 2007). Yet,
down regulation of secreted frizzled-related protein-1 (sFRP-1), an
y progesterone. Molecular and Cellular Endocrinology (2011), doi:10.1016/
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extracellular inhibitor of Wnt signaling is found in 80% of breast
carcinomas (Ugolini et al., 1999, 2001).Similarly, secreted inhibi-
tors of the Wnt signaling pathway, the Wnt inhibitory factor-1
(WIF1) and Dickkopf-3 (DKK-3) are targets of epigenetic silencing
in 67% and 61% of primary breast tumors, respectively (Ai et al.,
2006; Veeck et al., 2008). Upregulation of several Wnt ligands in
breast cancer cell lines and tumor samples have been reported
(Ayyanan et al., 2006; Benhaj et al., 2006; Milovanovic et al.,
2004). The expression of frizzled (Fzd) 1, 2 and 7 were found to
be upregulated in breast cancer (Milovanovic et al., 2004; Yang
et al., 2011a). Together, these findings indicate Wnt activation is
enhanced at the stage of Wnt ligand-Fzds interaction, via upregu-
lation of Wnts ligands, Fzds as well as through the down regulation
or epigenetic inactivation of secreted inhibitors.

It was not clear whether Wnts acts through paracrine mecha-
nism(s) in tumors like in the normal mammary epithelium. Analy-
sis of a panel of human breast cancer cell lines showed dishevelled
(dvl) phosphorylation and presence of transcriptionally active form
of b-catenin, as well as increased expression of several Wnt li-
gands; however no mutations in the Wnt pathway components
were identified implying an alternative mechanism. In line with
this, addition of FRP1 and DKK1, inhibitors of Wnt signaling at
the level of Wnt-receptor interactions, caused down regulation of
unphosphorylated b-catenin suggesting an autocrine mechanism
for Wnt signaling activation in breast tumor cell lines and imply
a switch from paracrine to autocrine mechanism for Wnt mediated
functions in breast carcinogenesis (Bafico et al., 2004; Schlange
et al., 2007).

5.2. RANKL/RANK in breast cancer

RANKL protein is expressed in 11% of human breast carcinomas
and associated stromal cells such as infiltrating mononuclear cells
or helper T cells (Gonzalez-Suarez et al., 2010; Tan et al., 2011). Be-
cause of the existence of an inhibitor of RANK signaling, a human-
ized antibody (Denosumab), a potential role of this pathway in
breast tumorigenesis is an area of intense investigation (Gonz-
alez-Suarez, 2011; Tanos and Brisken, 2011).

5.3. Calcitonin involvement in breast cancer

The receptor for calcitonin, is expressed both in human breast
cancer cell lines (Findlay et al., 1980) and primary breast cancers
(Gillespie et al., 1997). As most breast cancers are held to be of
luminal origin and expression of the CTR, a characteristic of myo-
epithelial cells in the normal mammary gland epithelium may be
connected to the neoplastic transformation. It is conceivable that
this acquired expression of CTR in the tumor cells reflects a switch
from paracrine to autocrine CT signaling (Ismail et al., 2004).
6. Ovaries

The ovaries support oogenesis and ovulation. These processes
are tightly coordinated by hormones of the hypothalamic–pitui-
tary–ovarian axis, in particular FSH (Follicle stimulating hormone)
and LH (luteinizing hormone) released from the pituitary. The pri-
mary follicles that stem from primordial follicle pool develop in re-
sponse to pituitary gonadotropins and mature into pre-ovulatory
follicles. The pre-ovulatory follicle is composed of oocyte, sur-
rounding cumulus cells, mural granulosa cells (MGCs), theca cells
and endothelial cells of the blood vessels (Conneely, 2010; Rich-
ards and Pangas, 2010; Russell and Robker, 2007) (Fig. 2). In re-
sponse to elevated levels of estrogens produced by the mature
pre-ovulatory follicles, LH hormone is released by the pituitary
gland. This pituitary LH surge ceases the follicular phase associated
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events while at the same time induces the expression of genes re-
quired for the cumulus expansion, release of oocyte and luteiniza-
tion (Conneely, 2010; Kim et al., 2009). LH, the key inducer of the
ovulation, exerts its effects by binding to LH receptors, which are
predominantly expressed in mural granulosa cells (Peng et al.,
1991). Cumulus cells and the oocytes themselves are devoid of
LH receptors, therefore LH-mediated cumulus expansion and oo-
cyte release depend on paracrine signaling (Conneely, 2010; Kim
et al., 2009; Park et al., 2004).

PR signaling is essential for ovulation, a complex process during
which a pore is generated in the apical surface of the follicle wall to
release the mature oocyte (Conneely, 2010; Russell and Robker,
2007). This is illustrated by the finding that treatment of mice with
progesterone antagonist mifepristone (RU486) inhibits ovulation
(Loutradis et al., 1991) and that PR� deficient mice are infertile be-
cause they fail to ovulate in response to exogenous gonadotropins
treatment (Lydon et al., 1995). Analysis of mutants that lack either
PR-A or PR-B isoform revealed that the PR-A isoform is specifically
required to mediate ovulation (Mulac-Jericevic et al., 2003, 2000).
Histological analysis of the ovaries of PR-deficient females showed
that the pre-ovulatory follicles sustained normal cumulus cell
expansion in response to pituitary LH surge; however, ovulation
was severely impaired due to the lack of pore formation in the api-
cal follicle wall, resulting in the entrapment of the oocytes inside
the follicles (Robker et al., 2000). An elegant PR-lacZ transcriptional
reporter mouse model and immunohistochemistry approaches re-
vealed that LH surge induces transient PR mRNA and protein
expression in mural granulosa cells (MGCs) of the pre-ovulatory
follicles whereas cumulus, thecal cells and the oocytes do not ex-
press the receptor (Ismail et al., 2002; Robker et al., 2000). Such re-
stricted expression of PR in MGCs suggests that effects of
progesterone on the other cell types of the follicle essential for oo-
cyte rupture rely on paracrine signaling.

Endothelin-2 (ET-2), potent vasoactive molecule was identi-
fied by global gene expression analysis as down regulated gene
in the ovaries upon treatment with CDB-2914, a novel synthetic
steroidal anti-progestin. Expression of ET-2 mRNA was undetect-
able in PR�/� mice treated with gonadotropins to induce super-
ovulation, indicating that intact PR signaling is essential for
induction of ET-2 expression (Palanisamy et al., 2006). The
observation that ET-2 mRNA expression, like PR expression, is
restricted to MGCs is compatible with ET-2 being a direct target
of PR signaling. ET-2 binds to endothelin receptor (ETR-B) ex-
pressed in mural and cumulus granulosa cells of pre-ovulatory
follicles as well as in endothelial cells of the capillaries present
in theca interna (Palanisamy et al., 2006). Hence, it was pro-
posed that ET-2 produced by MGCs acts in an autocrine manner
on MGCs and in a paracrine fashion on cumulus oocyte complex
(COC) and capillary endothelial cells to mediate vasodilatation
and increase vascular permeability, thereby promoting ovulation
(Fig. 2) (Palanisamy et al., 2006).

The LH surge induces expression of epidermal growth factor
family (EGF) members, such as amphiregulin, epiregulin, and beta-
cellulin in MGCs of pre-ovulatory follicles (Park et al., 2004). In a
follicle culture model, amphiregulin and epiregulin induce meiotic
maturation, as measured by germinal vesicle breakdown, to an ex-
tent comparable to that of LH suggesting that they are the central
mediators of this effect of LH (Park et al., 2004). These two factors
similarly regulate cumulus cell expansion through binding to epi-
dermal growth factor family receptor (EGFR) (Park et al., 2004).
Interestingly, both amphiregulin and epiregulin mRNA expression
are markedly reduced in granulosa cells isolated from pre-ovula-
tory follicles of PR-deficient females suggesting that their expres-
sion downstream of LH is coregulated by PR signaling (Shimada
et al., 2006). Reiterative as such, they present paracrine mediators
of LH/progesterone action (Park et al., 2004) (Fig. 2).
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Fig. 2. Schematic representation of pre-ovulatory follicle and the paracrine signaling involved in the control of PR and LH signaling. The LH surge induces PR expression in
mural granulosa cells of pre-ovulatory follicles in the ovaries that are otherwise devoid of PR expression. Subsequent progesterone signaling induces expression of secreted
factors such as amphiregulin, epiregulin and ET-2 that act as paracrine factors on cumulus cells that surround the oocyte to form the cumulus oocyte complex (COC) and
vascular endothelial cells. In addition, progesterone induces the expression of the extracellular proteases ADAM-8 that may affect release of growth factors from the MGCs
thereby further modulating intercellular cross talk and ADAMTS-1 initiates remodeling of cumulus oocyte complex associated extra cellular matrix as well as the follicular
basement membrane.
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In addition to the growth factors mentioned above, expression
of two secreted proteases, a disintegrin and metalloproteinase 8
(ADAM-8) and disintegrin and metalloproteinase with thrombo-
spondin motif-1 (ADAMTS-1) is regulated by PR signaling in MGCs
(Robker et al., 2000; Sriraman et al., 2008). ADAM-8 sheds extracel-
lular domains of transmembrane proteins by proteolytic cleavage
and may release yet unidentified signaling molecules from MGCs
that in turn act in a paracrine manner in other cell types of the fol-
licles (Sriraman et al., 2008; Kim et al., 2009). ADAMTS-1 expres-
sion is required for ovulation as indicated by the observation that
ADAMTS-1 deficient mice have reduced ovulation rates (Mittaz
et al., 2004; Shozu et al., 2005). An inactive precursor of ADAM-
TS-1 is synthesized in MGCs; the secreted mature form is concen-
trated in extra cellular matrix (ECM) of the cumulus oocyte
complex during matrix expansion and cleaves versican and impor-
tant in remodeling of thecal/vascular invaginations (Brown et al.,
2010; Russell et al., 2003) (Fig. 2).
7. Ovarian cancer

Ovarian cancer ranks fifth in cancer associated death in women
and occurs mostly in menopausal women. The growing incidence
of ovarian cancer has been linked to increased use of assisted
reproduction techniques and fertility drugs (Ahmad and Kumar,
2011). Full term pregnancy, in particular twin pregnancies, has
protective effects. This may be linked to the high levels of proges-
terone in maternal circulation during pregnancy, in particular, twin
pregnancy (Adami et al., 1994; Ji et al., 2007; Lambe et al., 1999;
Salazar-Martinez et al., 1999). Progesterone treatment induced
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apoptosis in normal and malignant human ovarian surface epithe-
lial cells in vitro (Syed and Ho, 2003) and in Macaque ovarian epi-
thelium in vivo (Rodriguez et al., 1998). These findings suggest that
progesterone signaling may be involved in ovarian carcinogenesis.
The underlying mechanisms including the nature of potential par-
acrine mediators of progesterone tumor suppressive functions in
tumor context have yet to be characterized. The ongoing debate
that some of the ovarian cancer might originate from fallopian
tubes which is also known to express PR further complicates our
understanding how progesterone signaling is protective against
ovarian cancer (Kurman and Shih Ie, 2010; Tone et al., 2011; Tuma,
2010).
8. Uterus

The endometrium, inner lining of the uterine cavity is com-
posed of luminal epithelium, the glands attached to it, and the
underlying stroma, which reciprocally cooperate to harmonize
the functions of the uterus (Matsumoto et al., 2002). Progesterone
signaling in the uterus is necessary to establish and maintain preg-
nancy (Lydon et al., 1995). In interaction with ovarian estrogens,
progesterone prepares the uterine epithelium for blastocysts
implantation and induces differentiation of endometrial stromal
cells (Conneely et al., 2003). Implantation of the embryo occurs
on day 4.5 in mice; the embryo attaches and invades the uterine
epithelium while the stromal cells undergoes decidualization
(Franco et al., 2008).

PR is expressed in epithelial as well as stromal cells of the endo-
metrium (Ismail et al., 2002; Mote et al., 1999; Tibbetts et al.,
y progesterone. Molecular and Cellular Endocrinology (2011), doi:10.1016/
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Fig. 3. Schematic representation of direct and paracrine signaling of progesterone mediated by epithelial and stromal PR respectively in the uterine endometrium (for details
see text).
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1998). In the periimplantation uterus, PR mRNA is undetectable by
in situ hybridization on day 1 of pregnancy; but detected in the epi-
thelium on day 2 of gestation (Tan et al., 1999). PR expression is
further upregulated in both epithelium and stroma on days 3 and
4 of pregnancy. Uterine epithelial cells show decreases in PR
expression before implantation while the stromal PR expression
is strongly induced (Bazer and Slayden, 2008; Tan et al., 1999). It
was suggested that progesterone signals either through stromal
PR via paracrine signaling and/or through PR expressed in the epi-
thelium which is under the current detection limit but sufficient to
mediate progesterone function (Bazer and Slayden, 2008). Yet, evi-
dence has accumulated that speaks to many of progesterone’s
function on the uterus being mediated by stromal PR.

Progesterone opposes estrogen-induced proliferation in the
uterine epithelium (Das and Martin, 1973; Martin et al., 1973;
Martin and Finn, 1968). Consistently, PR deletion results in epithe-
lial hyperplasia (Lydon et al., 1995). The PR-A isoform was shown
to be sufficient to mediate the anti-proliferative functions of pro-
gesterone (Mulac-Jericevic et al., 2003). Elegant tissue recombina-
tion experiments combining neonatal uterine stroma and
epithelium from WT and PR-deficient mice under the kidney cap-
sule demonstrated that the inhibitory effects of progesterone on
uterine epithelial cell proliferation are mediated by stromal PR
(Kurita et al., 1998). Estrogens similarly exert its proliferative ef-
fects in the epithelium through stromal ERa (Cooke et al., 1997).
It was suggested that progesterone might exert its anti-mitogenic
function by counteracting ERa-mediated signals directly in the
stromal cells and/or indirectly acting on the epithelium via para-
crine mechanisms (Kurita et al., 1998). Indeed, in vitro, treatment
of endometrial epithelial cells with conditioned medium harvested
from progestin-treated endometrial stromal cells induced the
mRNA expression of 17-b-hydroxysteroid dehydrogenase type 2
(HSD17B2) that catalyzes the conversion of biologically potent
estradiol to weakly estrogenic estrone whereas progestin failed
to do so, implicating paracrine mechanism mediated through
stromal PR (Yang et al., 2001). Yet unidentified factors secreted
from endometrial stromal cells impinge on the downstream
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transcription factors SP1 and SP3 in the epithelium to regulate
HSD17B2 transcription (Cheng et al., 2006) (Fig. 3).

Indian hedgehog (IHH) was identified as essential mediator of
progesterone involved in the epithelial–stromal cross-talk. Proges-
terone stimulates expression of IHH in the uterine epithelium
which in turn induces patched homolog1 (patch1) and nuclear
receptor super family 2 (NR2F2) in uterine stroma (Lee et al.,
2006; Matsumoto et al., 2002; Takamoto et al., 2002). The func-
tional significance of IHH in the uterus was demonstrated by con-
ditional deletion using PR-Cre knock in mouse model that resulted
in infertility due to the defect in implantation (Lee et al., 2006). Tis-
sue recombination experiments demonstrated that stromal PR
expression is required and sufficient for stimulation of IHH in the
epithelium (Simon et al., 2009). Yet the nature of the paracrine fac-
tors released by the stroma that induce expression of IHH in the
epithelium is unclear (Fig. 3).

Although the majority of progesterone functions in the uterus
are mediated by stromal PR, evidence suggests that some of them
require epithelial PR or both. Lactoferrin, for instance, is a protein
secreted by epithelial cells whose expression is inhibited by pro-
gesterone (McMaster et al., 1992; Buchanan et al., 1999). Tissue
recombination experiments demonstrated that progesterone can
partially inhibit E2-induced lactoferrin expression via stromal PR,
but both epithelial and stromal PR were required for complete
abrogation of lactoferrin expression (Kurita et al., 2000) (Fig. 3).
This illustrates that paracrine signaling can cooperate with cell
intrinsic mechanisms of action of progesterone signaling to regu-
late uterine function. Progesterone-induced expression of the basic
helix–loop–helix transcription factor Hand2 in the uterine stroma
suppresses the production of several fibroblast growth factors
(FGFs) induced by estrogens that can have mitogenic effects of
estrogens on the epithelium (Li et al., 2011) (Fig. 3).

CT is upregulated by progesterone in uterine glandular epithelial
cells, prior to implantation; its expression decreases as pregnancy
progress (Ding et al., 1994; Wang et al., 1998). Such induction of
CT mRNA was inhibited upon treatment with progesterone
antagonist RU486 (Ding et al., 1994). In utero administration of CT
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antisense oligodeoxynucleotides abolished implantation revealing a
role for CT in this process (Zhu et al., 1998). Interestingly, CTR mRNA
was detected in blastocyst (Wang et al., 1998) suggesting that CT in-
duced by progesterone acts in a paracrine fashion to mediate mater-
nal-embryonic cross talk (Wang et al., 1998). Whether stromal or
epithelial PR mediates CT expression in the uterine epithelium is
not known (Fig. 3).

As it emerges that stromal PR is important for uterine functions
the identity of the paracrine signals released by the stroma down-
stream of progesterone that communicate with uterine epithelium
comes into focus. In situ hybridization on uterine sections prepared
from pregnant ewes revealed that hepatocyte growth factor (HGF)
and fibroblast growth factor (FGF-10) mRNA were expressed in the
stroma and their respective receptors c-met and FGFR2IIIb in the
epithelium. Expression of HGF, FGF-10 and c-met was high in early
pregnancy. Therefore, it was put forward that progesterone may
play a role in regulation of HGF and FGF-10 expression in uterine
stromal cells that express PR and c-met in uterine epithelial cells
(Bazer and Slayden, 2008; Chen et al., 2000a,b). However, to what
extent the stromal–epithelial crosstalk relies on these two factors
is not clear. It is likely that additional paracrine signaling mole-
cules downstream of PR will have essential roles in stromal–epi-
thelial crosstalk in mediating progesterone’s function in the uterus.
9. Endometrial cancer

Endometrial cancer is the fourth most common malignancy in
women with most tumors originating from the glandular epithe-
lium (Yang et al., 2011b). The inhibitory effect of progesterone on
uterine epithelial proliferation has been the basis for treating
endometrial hyperplasia and adenocarcinomas with progestins
(Gambrell, 1986; Yang et al., 2011b). To what extent this therapeu-
tic approach affects paracrine signaling identified in rodent uterus
remains to be determined. Exposure to progesterone in meno-
pausal combined hormone replacement therapy is known to in-
crease the overall risk factor for breast cancer. Therefore, it is
essential to identify downstream mediators of progesterone that
are unique to different target tissues.
10. Progesterone signaling in non-reproductive tissues

PR is also expressed in non-reproductive tissues including thy-
mus, bone, blood vessels and the central nervous system. In the
thymus, PR is expressed by stromal cells. PR signaling is required
for thymic involution during pregnancy and plays an essential role
in blocking T-cell development early on which is important to
maintain pregnancy. As PR is expressed in non-lymphocyte popu-
lation but ultimately acts on T-cells, it was proposed that proges-
terone receptor blocks T-cell development by paracrine
mechanisms (Tibbetts et al., 1999). Identification of the paracrine
mediators will give new insights into how progesterone regulates
pregnancy induced immunotolerance.

In the bone, PR is detected in osteoblasts and osteoclasts
(MacNamara et al., 1995; Pensler et al., 1990; Yao et al., 2010).
Histomorphometric and microcomputed tomographic studies on
PR-deficient mice showed no gross abnormalities in bone growth
suggesting that PR signaling is not absolutely required for bone
growth and turnover. However, loss of PR signaling resulted in in-
creased accumulation of cortical and cancellous bone mass
(Rickard et al., 2008; Yao et al., 2010). Similarly, pharmacological
inhibition of PR with RU486 in wt mice moderately increased bone
mass, a finding of potential relevance for patients with osteoporo-
sis (Yao et al., 2010).

PR expression has also been detected in the smooth muscle cells
of the uterine arteries in rabbits and humans (Perrot-Applanat
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et al., 1988) and in 25–30% of endothelial cells in human arteries
(Vazquez et al., 1999). Progesterone treatment inhibits endothelial
cells proliferation in vitro and reduces aorta re-endotheliazation in
response to experimentally induced injury pointing to potential
biological functions in these cells (Vazquez et al., 1999). A carotid
artery injury model in wt and PR-deficient animals established an
important role for PR (Karas et al., 2001). For review see (Simoncini
et al., 2003).

PR is also expressed by variety cell types in different regions of
the central nervous system. Growing evidence suggest that the
hormone controls reproductive behavior and several other non-
reproductive functions in the central nervous system as reviewed
in (Brinton et al., 2008; Mani, 2008).

Understanding the paracrine signaling elicited by progesterone
to mediate non-reproductive functions has substantial clinical
implications in light of the importance of hormone replacement
therapy (HRT).
11. Conclusions

Progesterone induces a multitude of biological effects in differ-
ent organs by acting on a subset of cells in distinct target tissues.
Most of PR’s functions are mediated indirectly via secreted para-
crine factors. In this way the hormonal stimulus is amplified and
the signal communicated to multiple cell types, an important as-
pect in order to coordinate the function of different cells. To date,
several important paracrine factors downstream of progesterone
signaling have been identified in mammary gland, ovaries and
uterus. Evidence suggests that these mediators relegate paracrine
signaling between similar cell types, for example RANKL synthe-
sized in the PR(+) luminal epithelium acts on PR(�) luminal epithe-
lial cells and/or paracrine communication involving different cell
types such as epithelial–stromal cross talk, engaging endothelial
cells and immune cells, thus progesterone orchestrates several cell
types to execute its function. The diversity of progesterone’s func-
tion in these tissues can be attributed partly to distinct paracrine
mediators, which is also of relevance in understanding carcinogen-
esis and treatment. For example, the combined HRT replacement
therapy with progestins seems to protect women against uterine
cancer while increases the breast cancer risk. This may be ex-
plained by the fact that progesterone receptor signaling in the
uterus is anti-proliferative whereas it is mitogenic in the mam-
mary gland. This in turn may be attributed to distinct paracrine
mediators that are induced by progesterone in specific tissues.
Therefore, understanding the cross-talk between the PR expressing
cells and target cells will shed new insights about the effects of
progesterone and may help to identify novel downstream path-
ways for therapeutic applications that could specifically target
the tissue type than having a global impact on all the progesterone
target tissues and thereby avoiding adverse consequences.
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