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Abstract: We have studied the transverse and axial equilibrium positions
of dielectric micro-spheres trapped in a single-beam gradient optical trap
and exposed to an increasing fluid flow transverse to the trapping beam
axis. It is demonstrated that the axial equilibrium position of a trapped
micro-sphere is a function of its transverse position in the trapping beam.
Moreover, although the applied drag-force acts perpendicularly to the beam
axis, reaching a certain distance r0 from the beam axis (r0/a � 0.6, a
being the sphere radius) the particle escapes the trap due to a breaking axial
equilibrium before the actual maximum transverse trapping force is reached.
The comparison between a theoretical model and the measurements shows
that neglecting these axial equilibrium considerations leads to a theoretical
overestimation in the maximal optical transverse trapping forces of up to
50%.
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1. Introduction

The use of optical forces for trapping, manipulating and sorting particles or living cells in mi-
crofluidic devices is a growing field of research, with potential applications in biotechnology
and gene technology [1, 2, 3, 4, 5, 6, 7]. The most widely applied technique for obtaining a 3D
optical trap for micron-sized dielectric particles consists in coupling a collimated laser beam
into a high numerical-aperture microscope objective. Provided that the numerical-aperture is
sufficiently high, the force due to the field-gradient can overcome the forces due to back-
scattered light, thus a three-dimensional optical trap is created. This optical trapping technique,
first reported by Ashkin et al. [8], is commonly referred as optical tweezers or single-beam
gradient optical trap.

When considering the combination of optical tweezers and microfluidic systems, the trapped
dielectric particle has to sustain flows in a direction perpendicular to the beam axis, hence in
these circumstances the most important characteristic of an optical tweezers is its maximal
transverse trapping force. Actual theoretical predictions for the maximal transverse trapping
forces of optical tweezers - that rely on ray-optics [9, 10] or on more rigorous calculations of
the electro-magnetic fields and the Maxwell stress-tensor at the particle boundaries [11, 12,
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Fig. 1. Focusing light with a high-NA microscope objective, through a planar interface of
mismatched index. The azimuth angle θ is not shown due to symmetry.

13, 14, 15, 16] - are commonly based on computing the radial force profile along the directions
orthogonal to the beam axis. It is thus implicitly assumed that the particle only displaces radially
(orthogonally to the beam axis) and stays in the focal plane of the focused laser beam. However,
as this was already observed by Sato et al. [17] and Ashkin [10], and theoretically proposed by
Mazolli et al. [18], this is not correct. When considering an optically trapped particle submitted
to an increasing transverse liquid flow, as the drag-force increases the microsphere displaces
from its resting equilibrium position - located somewhat above the focus - both in the radial
and the axial directions, before it finally escapes the trap.

In this article we report an experimental study of the escape trajectories of optically trapped
polystyrene microspheres exposed to an increasing transverse liquid flow by means of the stan-
dard drag-force technique [13, 19, 20, 21, 22]. A mathematical model which can predict optical
forces both for on-axis and off-axis positions of the microsphere was also used. The escape
trajectories deduced with this model are compared to the experimental measurements. It is
shown that, reaching a certain distance from the optical axis, the particle escapes the trap due
to a breaking axial equilibrium, before the actual maximum transverse force is reached, and
that this has to be taken into account for a reliable mathematical prediction of the maximal
transverse trapping forces.

2. Theory

The hybrid mathematical model we used combines the rigorous vectorial electromagnetic-field
model for the high numerical-aperture (NA) laser beam focusing proposed by Török et al.
[23, 24] - taking into account spherical aberrations due to the coverglass-water refractive in-
dex mismatch - and the simple ray-optics reflection-refraction model at the sphere boundary
developed by Roosen [9].

2.1. EM-field calculations

As described in Fig. 1, we consider a collimated Gaussian beam focused by an oil-immersion
high-NA microscope objective (MO) obeying the Abbe sine condition h = f sinφ 1, where f is
the focal length in oil (of refractive index n1). The origin O of the system of coordinates is
positioned at the focus, as if the beam were focused into the index-matching oil. The position
vector rP, pointing from O to P, is given in spherical coordinates by

rP = [xP,yP,zP] = rP[sinφPcosθP,sinφPsinθP,cosφP] (1)
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No refractive index change between the immersion oil and the coverglass is considered. The
interface between the coverglass and the water containing the dielectric particles to be trapped
is located at z = −d. The angle of incidence at the interface is denoted by φ 1 and the angle
of refraction by φ2. The time-independent components of the electric field e = (e x,ey,ez) at
any point P to the right of the interface (Fig. 1) are expressed as a linear combination of three

integral terms I(e)
n , n = 0,1,2

ex = −iK[I(e)
0 + I(e)

2 cos(2θP)]

ey = −iKI(e)
2 sin(2θP)

ez = −2KI(e)
1 cos(θP) (2)

where

K =
πn1 f

λ0

e0√
n1

(3)

and

I(e)
0 (rP,zP) =

∫ α

0
exp(−γ2sin2φ1)(cosφ1)1/2sinφ1exp[ik0ψ(φ1,φ2,−d)]

×(τs + τpcosφ2)J0(k1rPsinφ1)exp(ik2zPcosφ2)dφ1

I(e)
1 (rP,zP) =

∫ α

0
exp(−γ2sin2φ1)(cosφ1)1/2sinφ1exp[ik0ψ(φ1,φ2,−d)]

×τpsinφ2 × J1(k1rPsinφ1)exp(ik2zPcosφ2)dφ1

I(e)
2 (rP,zP) =

∫ α

0
exp(−γ2sin2φ1)(cosφ1)1/2sinφ1exp[ik0ψ(φ1,φ2,−d)]

×(τs − τpcosφ2)× J2(k1rPsinφ1)exp(ik2zPcosφ2)dφ1 (4)

The integral terms I(e)
n are modified from Török et al. [23] to accommodate for a Gaussian

profile at the MO back-pupil, adding an extra term exp(−γ 2sin2φ1) where γ = f/ω , ω being
the half Gaussian width of the incident collimated beam. α is the semi-aperture angle of the
lens (in media n1, NA = n1sinα), τp and τs are the Fresnel transmission coefficients at the glass-
water interface, and Jn are the Bessel functions of the first kind, order n. The wavenumbers read
k0 = k1/n1 = k2/n2 = 2π/λ0 and the focal length f = n1hmax/NA, where hmax is the effective
radius of the MO back-pupil. ψ is the aberration function defined by

ψ(φ1,φ2,−d) = −d(n1cosφ1 −n2cosφ2) (5)

Finally the constant e0 in (3) is the peak amplitude of the electric field incident onto the MO
back-pupil, which is in contact with air (n0 = 1). Similar expressions as (2-4) exist for the
magnetic-field vectors [23]. In the following, the time-averaged Poynting vector

I =< S >=
1
2
R{e×h∗} (6)

will be used to describe the local light intensity I, which is necessary for the computation of the
optical force on dielectric particles (next section 2.2).

It is well known that focusing light through a planar interface of mismatched refractive in-
dexes creates a focus shift relative to its position in a uniform medium [25, 26], in addition to
extending the axial point spread function of the lens. For small focusing depths the position of
the focus (defined as the position of highest intensity) in media n 2 shifts fairly linearly with the
position of the interface

z f ocus = −k f d (7)
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Fig. 2. Geometry for the calculation of the momentum transfer between the beam and the
dielectric sphere. The forces are calculated using a ray-optics approximation in the plane
of incidence defined by (y1,z1), and then projected onto the (y,z) axes.

where k f is the linearity constant for this focus shift. In the paraxial limit k f = 1− n2/n1, but
for high-NA systems a more precise estimation is to be done numerically.

For the sake of comparison, we will also use the ray-optics approach for the beam focusing,
which approximates the light intensity I by

I = I0exp{−2γ2sin2φ2} f 2cosφ2
1

r2
P

; (8)

in the same spherical coordinates. Note that in this case it is assumed that γ = f
ω with f be-

ing defined by f = n2hmax/NA neglecting thus the effect of the mismatched coverglass-water
interface.

2.2. Optical Force on a dielectric sphere

The force exerted by the focused laser beam on a dielectric sphere is calculated using a ray-
optics approximation. In order to obtain optical forces for both on-axis and off-axis sphere
positions, the momentum transfer corresponding to a pencil of light impinging on particular
surface element dA of the sphere is first obtained in a system of coordinates attached to the
plane of incidence, and then projected on the optical system of coordinates, following Roosen
[9].

As shown in Fig. 2, let z be the optical axis and S = (0,r0,z0) the center of the dielectric
sphere of radius a. M is the impact point of a particular ray and C is the center of curvature
corresponding to the wavefront impinging on the sphere surface at M. The plane of incidence is
then defined by CSM, whose orthogonal system of coordinates is (x 1,y1,z1), and has its center
in S (z1 being the unity vector in the direction CS, and y 1 lying in the plane of incidence and
being orthogonal to z1). In this second system of coordinates, a ray of intensity I impinging
in M at an angle of incidence αi on a surface element dA of the sphere induces an elementary
force dF1

dFz1 =
n2I
c

cosi
[
cos(αi −θ )+ Rcos(αi + θ )

−T 2 cos(2αr −αi −θ )+ Rcos(αi + θ )
1+ R2 +2Rcos(2αr)

]
dA
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dFy1 =
n2I
c

cosi
[
sin(αi −θ )+ Rsin(αi + θ )

−T 2 sin(2αr −αi −θ )+ Rsin(αi + θ )
1+ R2 +2Rcos(2αr)

]
dA (9)

where n2 is the index of refraction of the media surrounding the sphere, α r is the angle of re-
fraction of the ray entering the sphere, R and T are the intensity reflection and transmission
coefficients, and c is the speed of light in vacuum. Polarization effects are neglected by averag-
ing R and T over the two polarization states.

The optical forces Fz and Fy on the whole sphere are obtained by projecting the elementary
forces dFz1 and dFy1 along the y and z axis and by integration over the sphere surface, but only
rays characterized by αi < π/2 (thus entering the sphere) are to be considered. For symmetry
reasons, and since polarization effects are neglected, there is no difference between a displace-
ment along the x-axis and the y-axis. In the following sections the displacements of the sphere
center from the focus position will simply be given by its transverse (radial) and axial positions
r0 and z0.

The forces are calculated either by computing the intensity term I and the incident angles α i

in eq. (9) using the ray-optics (RO) beam focusing model described by eq. (8) or by combining
(9) to the vectorial diffraction (VD) focusing model, the local light intensity I and incident
angle αi being in this case found using (6).

Finally, since we are interested by the position of the sphere with respect to the effective
focus position, a coordinate translation z0 → z0 − k f d is necessary when using the VD model,
according to (7).

2.3. Special considerations for the drag-force technique

The drag-force technique consists in testing the optical force against a viscous drag force, cre-
ated by moving the fluid surrounding the trapped particle. Since a motorized x-y stage is used
the applied drag-force is purely transverse to the beam axis, whereas the gravitational force is
parallel to the beam axis. Thus the motion equations in the transverse and axial directions may
be written as

mr̈0 = Fr(r0,z0)+ β vr

mz̈0 = Fz(r0,z0)− (ρ −ρ f luid)Vg (10)

where r0 and z0 are the radial and axial coordinates of the sphere center with respect to the
focus, and m,ρ ,V are respectively the sphere mass, density and the immersed volume. v r is the
speed of the fluid surrounding the sphere, and β is the proportionality factor for the viscous drag
according to Faxen’s law [27], describing the laminar viscous drag for a spherical particle of
radius a which is displacing parallel to a very close planar surface (the microscope coverglass)

β =
6πaη

1− 9
16( a

b )+ 1
8 ( a

b )3 − 45
256 ( a

b )4 − 1
16( a

b )5
(11)

where a is the sphere radius, b is the distance between the sphere center and the planar surface
(the trapping depth) and η is the viscosity of the fluid.

Assuming that the transverse velocity vr of the fluid surrounding the sphere increases linearly
with time (ar being the constant acceleration) and provided that the acceleration terms mr̈ 0, mz̈0

and the gravitational force are small compared to the other terms in (10) the time-dependent
equilibrium of the trapped particle is described by the solutions of

Fr(r0(t),z0(t)) = −β ar(t − t0), t ≥ t0 (12)

Fz(r0,z0) = 0 (13)
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Given that the transverse flow velocity can be controlled as described in the righthand side of
(12), this equation provides a way for measuring the transverse optical forces. On the other
hand, equation (13) may be solved numerically to find the theoretical microsphere axial equi-
librium position zeq

0 as a unique function of its transverse position r0.

2.4. Trapping efficiency

The trapping efficiency Q is a non-dimensional form of the optical trapping force defined by

Q =
c

n2P
F (14)

c being the speed of light in vacuum, n2 the index of refraction of the media surrounding the
particle and P the beam power at the focus [10]. Q measures the momentum transfer efficiency
from the laser beam to the particle, and is of particular interest when desiring to characterize
the trap performance per unit power.

From an experimental point of view, the maximum transverse trapping efficiency, as meas-
ured using the drag-force technique, is related to the maximum flow velocity v max

r that the trap
can withstand through

Qmax
r =

c
n2P

β vmax
r (15)

This is the quantity that is usually reported in experimental studies of the maximal transverse
trapping force based on the drag-force technique.

3. Experimental

3.1. Set-Up

In our set-up, depicted on Fig. 3, the trapping light source is a cw (monomode) pigtailed laser
diode (Bookam UC9**) emitting at 974nm and having a maximal output power of 100mW . The
output beam is collimated to a Gaussian diameter of 3.2mm, and coupled into a high-NA oil-
immersion objective via the fluorescence port of an inverted microscope (Leica DMIL). The
focusing high-NA lens is a Leica C-PLAN 100X/1.25 oil-immersion microscope-objective
(MO). Its effective back-pupil radius and transmission were determined using two identical
confocused objectives.

Table 1. Experiment parameters

Parameter Description Symbol Value Units
MO num. aperture NA 1.25
MO back-pupil radius hmax 2.5 mm
MO power transm. TP 53.5 %
Power at the focus P 29-40 mW
Vacuum Wavelength λ0 974 nm
Focal shift k f 0.22
Inc. beam radius ω 3.2 mm
Bead radius a 2.5−3.5 μm
Bead refr. index n 1.59
Bead vol. mass ρ 1050 Kg/m3

Acceleration ar 60 μms−2

Trapping depth b 10 μm
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Fig. 3. Experimental set-up for optical trapping and video processing based measurement
of the polystyrene bead positions, built around an inverted microscope.

The 5 and 7 μm diameter polystyrene micro-beads to be trapped (Dynospheres, Dyno Par-
ticles AS) are diluted in water and the sample-cell, whose bottom consists in a microscope
coverglass, is mounted on a programmable x-y motorized stage (Märzhäuser) just above the
MO. The beads are observed through the microscope dicroı̈c mirror (reflective for infrared
and transparent for visible wavelengths) using a CCD camera connected to a video acquisition
board. All relevant experimental parameters are listed in Tab.1.

3.2. 3D position measurement

The position of the trapped bead with respect to the focus is video-tracked with the microscope
CCD camera. The axial position z0 of the particle is determined from the analysis of the video
sequences. Indeed, the microscope white-light illumination that is refracted (focused) by the
bead produces an intensity spot on the CCD whose area A is related to the axial position z 0 of
the bead with respect to the plane imaged on the CCD. This is illustrated in the two images of
Fig. 4(a) which correspond to the extreme situations where no drag-force is applied (above),
and where the drag-force is maximal and the bead is about to escape the trap (below). An
experimental relationship z0 = z0(A) was determined for both sphere sizes by observing a stuck
microbead on the sample-cell bottom at different (defined) axial positions of the MO (graph in
Fig. 4(b)), and fitted to a second order polynomial.

For this calibration, it must be taken into account that a given axial displacement of the MO
does not correspond to an identical axial displacement of the focal plane in water, because of
the coverglass-water refractive index mismatch [25, 26]. Indeed, an axial displacement Δz of the
MO can be regarded as a shift of the coverglass-water interface in Fig. 1, thus the displacement
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Fig. 4. r-z position tracking by video-processing. (a) The trapped bead in its equilibrium
position in still water (above) and when submitted to a transverse viscous force Fvis (be-
low). The video processing computes the distance r0 from the still position, and the axial
position was experimentally related to the area of bright spot (A0, A1) resulting from the
focusing of the white light apical illumination by the trapped bead. (b) Axial position cal-
ibration curves for both the 5 μm (diamonds �) and the 7 μm beads (circles ◦), measured
by observing a stuck microbead on the sample cell bottom and by stepwise displacing the
MO axially.

Δz′ of the effective focus position in water is given by

Δz′ = Δz− k f Δz ⇒ Δz′/Δz = 1− k f (16)

where k f is the focus-shift parameter defined in (7). We calculated a ratio of Δz ′/Δz � 0.78 for
our experimental parameters using the vectorial diffraction focusing model (according to the
value of k f given in Tab. 1).

With the bead-sizes we used (5 and 7 μm) the accuracy of the transverse position measure-
ment with respect to the beam axis was estimated to be better than 0.1μm. Concerning the axial
position measurement, we were not able to ensure an accurate identical position of the laser
focusing-plane and the plane imaged on the microscope CCD camera. The position of the laser
focusing-plane depending on its precise collimation at the microscope objective back-pupil, and
the plane imaged on the CCD relating to the accurate position of the CCD with respect to the
focal plane of the microscope field-lens, the absolute axial position of the beads with respect to
the laser focus could not be determined with an absolute precision greater than 1μm. However,
the relative precision of the axial position measurements is better than 0.3μm.

3.3. Drag force experiment

The drag velocity vr of a trapped bead was increased with a well-defined constant acceleration
ar with the help of the computer-controlled motorized x− y stage, thus the instantaneous drag-
force −β ar(t − t0) applied to the particle was known at any time. From the recorded videos the
x− y positions and the area A of the bright spot could be recorded as a function of time. The
experiment was repeated 5 times in each direction (+x,−x,+y,−y) using 5 and 7 μm beads,
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Fig. 5. (516 KB) - Movie of the drag-force experiment, showing the image analysis to
retrieve the transverse and axial bead positions r0 and z0. The resting equilibrium position
of the bead (no drag-force applied) is shown by the + marker.

and the data for each direction was averaged. We decided for a trapping depth of b � 10μm,
which could be ensured with an accuracy of ±2μm.

Figure 5 shows a movie of the drag-force experiment. There is no drag-force at the beginning
of the sequence. The transverse drag-force then increases linearly with time, until the bead
escapes the trap. The images were taken at a video-rate of 10Hz. At each time step the bead
transverse and axial positions r0(t) and z0(t) are retrieved by image processing.

4. Results

4.1. Numerical results

The numerical solution of (13), predicting the axial equilibrium position z eq
0 of a trapped mi-

crosphere as a function of its transverse position r0, is presented in Fig. 6(a) (solid line) for the
parameters given in Tab. 1 and in the pure ray-optics (RO) approximation. Note that the r 0 and
z0 positions of the sphere with respect to the beam focus are normalized by the sphere radius a.
The model predicts that, as the particle is displaced from the optical axis, its axial equilibrium
position shifts in the positive (beam propagation) direction. The curve breaks at r 0/a = 0.74
because beyond this limit there exists no stable axial equilibrium position.

On the underlying graph of Fig. 6(b) the solid line shows the transverse force - in its nor-
malized form Qr = cFr/(n2P) - calculated along the equilibrium trajectory zeq

0 (r0). It has to be
emphasized that the the maximal transverse trapping efficiency, predicted to be Q max

r = 0.31,
is limited by the breaking of the axial trapping at that transverse position (escape positions and
force are marked by stars �).

Not considering the axial equilibrium aspects described above leads to a higher estimation of
the maximal transverse force. Indeed, restricting the displacement of the particle to the focusing
plane (z0 = 0 for all r0 as depicted by the dashed line in Fig. 6(a)) the resulting transverse force
profile - shown by the dashed line of Fig. 6(b) - predicts a greater maximal transverse force
corresponding to Qmax

r = 0.41. This maximal transverse force would be reached at a transverse
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Fig. 6. Numerical results. (a) Pure ray-optics (RO) calculation of equilibrium trajectory
[r0,z

eq
0 (r0)] (continuous line). The dashed line represents a pure transverse displacement in

the focal plane. (b) Displacement-force curves in the RO approximation. Forces calculated
along the equilibrium trajectory [r0,z

eq
0 (r0)] (continuous line) and along [r0,z0 = 0] (dashed

line) are compared. (c) Equilibrium trajectory according to the vectorial diffraction (VD)
for the 7 μm beads at two different trapping depths (5μm and 15μm). (d) Displacement-
force curves using the VD. Forces on the equilibrium trajectory (continuous lines) and in
the focal plane (dashed lines) are compared.
The position axes are normalized by the sphere radius a and the force is given in the normal-
ized form Q of (14). Note that the trajectory plots and the corresponding displacement-force
plots have the same transverse axis scale. The stars (�) and diamonds (�) define the extreme
transverse trapping positions and forces according to the two different approaches.

position of r0/a = 0.97 (escape positions and force shown by diamonds �).
Figure 6(c) presents the equilibrium trajectories as calculated using the vectorial diffraction

(VD) model, for a 7μm diameter polystyrene bead at two different trapping depths (d = 5μm
and d = 15μm). Figure 6(d) shows the corresponding transverse forces calculated using the VD
model. As for the RO model, the forces computed along z 0 = 0 (dashed lines) are compared to
the transverse forces along the equilibrium trajectories zeq

0 (r0) (solid lines).
The VD model predicts that spherical aberrations (SA) strongly affect the equilibrium trajec-

tory. At shallow trapping depths (very close to the coverglass), as the particle displaces away
from the optical axis, the axial equilibrium position shifts monotonically in the positive direc-
tion. At a deeper trapping depth (bold solid line), the axial equilibrium position first shifts in
the negative z-axis direction, then at larger r0 it moves back in the positive z-direction.

SA are also predicted to further reduce the distance from the optical axis where the particle
escapes, and subsequently the maximal transverse forces (Fig. 6(d)). Oppositely, the restoring
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Fig. 7. Experimental results. (a) Measured trajectories in the 4 directions of the viscous
drag, for the 5μm beads, compared to the theoretical trajectory (solid line). (b) Measured
force-displacement curves corresponding to subfigure (a). Measurements are compared
both to the theoretical force along the equilibrium trajectory (solid line - almost hidden
by the measurements) and to the force calculated for a purely radial displacement (dashed
line). (c) Same as (a), but for the 7μm beads. (d) Same as (b), but for the 7μm beads.
Computed trajectories are for a trapping depth of 10μm. The stars (�) and diamonds (�)
define the extreme transverse trapping positions and forces according to the two different
theoretical approaches.

force close to the optical axis (trap stiffness) is predicted to be only slightly affected by the SA.
The optical forces were calculated on a 36x30 grid ranging r 0 = [0,1.2a] and z0 = [0,a] to

reduce the computation time. Intermediate values were linearly interpolated.

4.2. Experimental results

Figure 7(a) shows the observed escape trajectories of the 5μm beads. Escape trajectories have
been investigated in the four drag-force directions (+x,−x,+y,−y) in order to address the
inhomogeneity of the trapping beam, and to ensure that the axial displacement is not related to
a misalignment of the trapping beam with respect to the fluid flow. Note that each data point
is an average of 5 drag-force measurements. As the particle is displaced away from the optical
axis by the increasing drag-force, its axial equilibrium position z eq

0 shifts in the positive (beam
propagation) direction. Small differences in the trajectory are put into evidence. The +x and
−x plots are almost identical, while for the +y and −y plots a different axial displacement is
observed, suggesting that these differences are due to slight optical misalignments.

The theoretical trajectory (solid line), computed using the VD model for a corresponding
trapping depth of 10μm, is compared to the measurements. Although the overall theoretical
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escape trajectory is not in fair agreement with the observed trajectories, the theoretical escape
transverse position derived from this calculation is in agreement with the experimental mean
value of r0/a = 0.56±0.5 (standard deviation over the 20 drag-force experiments).

By contrast, the corresponding experimental transverse displacement-force curves in the four
drag-directions (Fig. 7(b)) are in very good agreement with the computed data and the observed
force plots corresponding to the four different drag-force directions are almost superposed. The
measurements are compared to the force predictions by the VD model, either assuming that
the particle follows the equilibrium trajectory zeq

0 (r0) (bold solid line, almost hidden by the
measurements) or assuming that the particle displaces in the laser focusing plane z 0 = 0 (dashed
line). In the first approach, the transverse escape position limits the theoretical maximal trans-
verse force to a value of Qmax

r � 0.2, in agreement with the experimental data. Using the second
approach, generally adopted in the literature, the escape transverse position, corresponding to
the absolute maximum of the restoring force, would be located at a distance close to r 0/a = 0.9,
and the maximal transverse trapping force is overestimated.

The results obtained for the 7μm beads can be found in Fig. 7(c) (trajectories) and (d)
(transverse displacement-force curves). The measured axial equilibrium position dependence
on the transverse position is qualitatively different from that of the 5μm beads. A smaller ab-
solute axial displacement is observed. Moreover, for small transverse displacements the axial
equilibrium position first shifts in the negative direction, then at larger transverse positions
moves back in the positive axial direction. The measured mean escape transverse position of
r0/a = 0.59± 0.6 is correctly predicted by the VD model. The computed axial equilibrium
position dependence on the transverse position reproduces the main observed characteristics,
including an oscillating behaviour as the distance from the optical axis is increased. Neverthe-
less, an offset between the measurements and the theoretical curve remains.
As for the 5μm beads, the corresponding experimental transverse displacement-force curves
(Fig. 7(d)) are in very good agreement with the computed data. The measurements are com-
pared to the force predictions by the VD model, either assuming that the particle follows the
equilibrium trajectory (bold solid line, almost hidden by the measurements) or assuming that
the particle displaces in the laser focusing plane (dashed line). Taking into account the axial
equilibrium failure, the observed maximal transverse force of Q max

r � 0.2 is correctly predicted.
Neglecting the axial equilibrium failure the maximal transverse trapping force is significantly
overestimated (Qmax

r = 0.32) as well as the escape distance from the optical axis (r0/a = 0.83).

5. Discussion

There are two main observations to be retained. The first observation is that a trapped particle
submitted to a purely transversal and increasing drag-force does not only displace transversally,
as commonly supposed in the literature, but also axially. This behavior reflects the axial equi-
librium position dependence on the transverse position in the trapping beam. To the best of
our knowledge, this is the the first quantitative measurement for this particle axial equilibrium
position dependence on the transverse position in the trapping beam. Both the experiments and
the theoretical models show the same qualitative behavior, namely that the particle axial equi-
librium position zeq

0 shifts in the positive direction as the particle is displaced away from the
optical axis by the growing transverse drag-force.

The second important observation is that the stability of the particle in the trap relies on the
simultaneous existence of a stable equilibrium in both the transverse and the axial directions.
As a consequence, the escape of the particle results from the first equilibrium to be broken, in
either one or the other direction. This has essential consequences on the maximal transverse
force of the optical trap.

In the common approach for the theoretical prediction of the maximum transverse trapping
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forces, the transverse forces are computed along the directions orthogonal to the beam axis. The
maximal transverse force then corresponds to the absolute maximum of the computed curve,
taking place at transverse positions close to r0/a � 0.8−0.9. However, no axial equilibrium is
theoretically possible at that distance from the optical axis. The appropriate way for predicting
the transverse forces - only been followed by Mazolli et al. [18] - consists in calculating the
transverse force along the equilibrium trajectory z eq

0 (r0). Consequently, the maximal transverse
force corresponds to the transverse force at the furthermost transverse position where an axial
equilibrium exists.

Our experimental measurements strongly sustain this theoretical approach because the meas-
ured escape transverse positions are not larger than r0/a � 0.6, in far better agreement with
the transverse escape positions predicted by the broken axial equilibrium approach (r 0/a �
0.5−0.65) than with the escape positions predicted by the absolute maximum transverse force
within the laser focusing plane (r0/a � 0.8− 0.9). Furthermore, the experimental maximal
transverse trapping efficiencies of Qmax

r � 0.2 are much closely predicted when simultaneously
considering the transverse and axial equilibrium of the particle.

It must be emphasized that the present results are a particularity of the single-beam gradient
optical trap and are due to the axial asymmetry of the force field. The gradient force field is
symmetrical with respect of the laser focusing plane in the non-aberrated case, but the scattering
force is not. Note that an optical trap based on two counter-propagating beams would not show
this kind of behaviour, since the scattering forces are symmetrized.

Two models were used for the theoretical force calculations. The pure ray-optics approach
(RO) was employed because it is the simplest and most widely applied model. This model
already predicts the axial equilibrium position dependence on the transverse position in a qual-
itative manner, and also predicts that the particle escapes the trap due to a breaking of the
axial equilibrium. However, its validity is limited to particle sizes far larger than the wave-
length (a >> λ ), it does not take into account spherical aberrations, and it is scale-invariant.
For the 5 and 7μm we used, the escape distance and the maximal transverse trapping forces are
overestimated, despite considering the axial trapping failure.

In order to take into consideration the particle size with respect to the beam focus size and
the spherical aberration introduced by the coverslip-water interface, a hybrid theoretical model
was used, combining the rigorous vectorial electromagnetic-field model for the high numerical-
aperture laser beam focusing and the ray-optics approach for the force calculation (VD model).
We computed the trajectories and forces for beads of 5 and 7 μm diameter.

When comparing the experimental trajectories zeq
0 to the trajectories predicted by the VD

model a good agreement is observed in the displacement of the axial equilibrium position as
a function of the transverse position for the 7μm beads. However, an offset of � 0.4μm is
observed between the mathematical prediction and the measurement. This offset is related to
the difficulties in determining the absolute position of the laser focusing plane with respect
to the plane imaged on the CCD (see section 3.2). Note that this divergence corresponds to
roughly 1/10 of the sphere radius. The confidence in the relative axial displacements is much
better.

The measured trajectories of the 5μm beads are not in good agreement with the theory, the
measurements showing a greater axial displacement than predicted. It is to be expected that for
smaller bead sizes the ray-optics approximation for the optical force computation we have used
may not be adapted any longer. Indeed, despite the use of a rigorous model for the incident
optical field computation, the diffraction and resonance effects at the sphere are neglected. As
argued by Ashkin [10] following comparisons by Hulst [28] between scattering predicted by
the ray-optics and the exact angular distribution of the Mie theory, the ray-optics approach can
give reasonable predictions for sphere size parameters 2πa/λ greater than 10 to 20. This cor-
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responds to a sphere diameter of more than 3 to 6 μm for a 1μm laser in water. Thus the model
is used at the limit sphere-sizes for its validity, which may explain why measurements on 7μm
beads are better reproduced by this theoretical model. Particle sizes of 5 and 7μm were cho-
sen because using larger particles the inertial terms in the motion equations (10) may become
significant. For smaller beads, on the other hand, the axial-position measurement technique we
used was not applicable anymore, in addition to the fact that the ray-optics model for the force
calculation may not be justified any longer.

For both sphere-sizes, the measured axial equilibrium position z eq
0 at increasing transverse

positions r0 is not monotonically increasing but rather shows oscillations. This effect may in
part be attributed to the spherical aberrations created by the coverglass-water interface, as pre-
dicted by the VD model (Fig. 6(c)), and we observed that this effect was more pronounced
at larger trapping depths. However, these oscillations are also very likely to be a signature of
geometrical resonance [12, 16, 18] not considered by the present model.

An interesting point concerns the effects of the spherical aberration (SA) induced by the
refractive index mismatch at the coverslip-water interface. SA are well known to be responsible
for a reduced axial trapping efficiency due to the degradation of the axial intensity gradients.
Nevertheless, the lateral degradation of the intensity gradients is less important, which could
suggest that lateral trapping forces are also less concerned. Our results, showing the interplay
between axial and transverse forces, clarify the reasons for the strong reduction in the maximal
transverse trapping efficiency due to SA. The correction of the SA may allow for stronger
maximal transverse forces when trapping deeper into the specimen chamber [29, 30, 31] mainly
because the escape would take place at larger transverse positions. On the other side, it is very
likely that the SA has less effect on the trap stiffness (restoring forces close to the optical axis),
as predicted by the theoretical model (see Fig. 6(d)). Thus equipartition-based force calibrations
would be less concerned by SA.

Finally, these results may suggest that optical tweezers based on Laguerre-Gaussian beams,
which were proven to provide an increased axial trapping efficiency for larger particle sizes
[20, 21], may also allow for an increased transverse trapping efficiency [17]. However, the
deduction is not straightforward since an increased axial trapping efficiency on-axis does not
imply that the axial trapping efficiency off-axis is increased, or that the transverse position area
presenting an axial equilibrium position is extended. Nevertheless, any precise mathematical
comparison between the maximal transverse forces obtained with focused Gaussian beams and
those obtained with other types of beams has to take these axial equilibrium conditions into
account.

6. Conclusion

The presented results clarify the interplay between the transverse and axial trapping forces. We
have demonstrated that the axial equilibrium position of a dielectric microsphere trapped by
optical tweezers and submitted to a purely transverse external force (e.g. fluid flow) depends
on the microsphere transverse position in the trapping beam. In particular, our results show that
the beads escape the trap at transverse positions close to r0/a � 0.6, indicating that the escape
is due to a failure in the axial trapping at that distance from the optical axis, and not because the
maximal transverse force is reached. We have proven by comparing a mathematical model to
experimental measurements that any reliable mathematical prediction of the maximal transverse
forces has to take these essential axial equilibrium issues into account.
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