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1. PROJECT DESCRIPTION
Nowadays, sensor data is generated in large amounts. Stor-

ing or transmitting all the sensor’s measurements might not
be the ideal choice because of the volume (and rate) at which
it is generated. But we also cannot easily discard it, since ev-
ery data might contain relevant information and be required
while processing queries.

One approach to avoid storing and transmitting large amounts
of data is to create a sufficiently accurate model over the
data and then store or transmit that model. Later, at the
time of query processing, the straight forward approach is to
regenerate the required data from the model(s) and proceed
with query processing, or answer the queries directly on the
model(s). We ask the question of how computationally ex-
pensive are various query processing techniques, given the
availability of the models only.

1.1 Project Aims
We are interested in comparing the computation costs of

query processing for the following approaches:

1. direct query processing on original data (baseline per-
formance);

2. data regeneration from the models, followed by query
processing on the regenerated data;

3. direct query processing on models;

4. utilising GPUs for parallelization of operations wher-
ever applicable. Specifically, using GPUs for model
based data regeneration and direct query processing
on models.

In this work we focus on evaluating these approaches for
exact and probabilistic queries having aggregate functions
[6]. For evaluation we plan to use multivariate time-series
data originating from sensor networks. On reading this
work, the interested reader will have an idea of the expected
performance benefits of using various types of data models.
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These benefits could be very useful for deciding which mod-
els to employ in order to solve the space problem created by
the large amount of data generated from sensors.

1.2 List of models
In this work we consider the following types of models:

• auto-regressive models

• moving average models

• interpolation polynomials

In our previous works, we have analyzed some of these
models to compare the achievable compression factors. Since
in a scenario of distributed storage of sensor readings, data
transmission is a costly operation, we are rightfully looking
for those models achieving highest compression ratio. In
this project, on the other hand, we intend to add an or-
thogonal segment to this work, by evaluating efficient data
regeneration and query processing techniques.

1.3 Measurement Metrics
We will measure the query execution time for some simple

aggregate queries, exact or probabilistic:

SELECT [PREDICTED] avg(*)/max(*)

WHERE time < UPPER_BOUND

AND time > LOWER_BOUND

2. RELATED WORK
Jampani et al. [9] have investigated Monte Carlo based

strategies to generate data while query processing. They
sample data from probability distribution(s) which the user
has to specify in the query. In contrast to ours, their ap-
proach is not model-based and only supports basic proba-
bility distributions.

Deshpande et al. [4] have used models to perform data
pre-selection in a wireless sensor network. They select which
data from a wireless sensor network is worth bringing in at
a consumer node. In their scenario query processing is per-
formed directly on the pre-selected data, without consider-
ing model representation of it.

Graefe et al. [7] studies the benefits of data compression.
They go beyond I/O performance, by adapting query pro-
cessing algorithms to work on directly on compressed data.
However, their compression scheme is rather different than
ours: they employ an individual attribute level compression
scheme, while we use models for column-wide data series.
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In [5] Deshpande and Madden have proposed the use of
model-based views. They construct database views esti-
mating simple interpolation and regression models over raw
data. Queries are then directly evaluated using these model-
based views. In our approach we also estimate and store
models but also consider evaluating queries on data regen-
erated from these models. We believe the latter approach
is more suitable since, in general, it may not be feasible
to directly evaluate queries over complex models. For ex-
ample, certain non-Gaussian distributions (like, hyperbolic
distributions) do not have closed formed expressions for their
parameters which makes model-based query processing dif-
ficult.

3. TIME SERIES MODELS
Sensors continuously generate values for the parameters

they monitor. Often the data at a given time could be mod-
elled as a function of data received at previous times. For
example, if a sensor is recording temperature values then the
value recorded at time t would not be significantly different
from the value at time (t − 1) since we know that temper-
ature cannot change very rapidly. We can exploit this fact
to build a time-series1 model for the recorded values. Later,
while query processing we use this model to regenerate the
data for query response evaluation. For fitting a time-series
model to data, we assume that a sensor records value rt
where t records the time and t = 1, 2, . . . , T . Then a moving
average model of order q for the time-series rt is given as,

rt = co + at − θ1at−1 − · · · − θqat−q, (1)

where at ∼ N(0, σ2
a), θ1 . . . θq are the model coefficients, and

c0 is a constant. We denote a moving average model of order
q as MA(q). Moreover, in a moving average model a value
at time t is an average of previous q values.

For estimating the model coefficients we could use either a
Maximum Likelihood Method (MLE) or a Conditional Least
Square (CLS) method [11]. Here, we use the CLS method
due to it’s relative simplicity and availability as standard
routines in packages like MATLAB 2. In the conditional
least squares method we start from the (q + 1)th observa-
tion. Now, the tth sample is given as in (1), this forms a
multiple linear regression problem whose coefficients are es-
timated using started objective function minimization tech-
niques (for ex. Newton-Raphson Method). Let θ̂i denote
the estimate of θ and ĉ0 be the estimate of co then the fitted
model is given as,

r̂t = ĉo + at − θ̂1at−1 − · · · − θ̂qat−q. (2)

Now the associated residual term ât could be computed as
ât = rt − r̂t, which leads us to the estimation of σ̂2

a as:

σ̂2
a =

PT
t=q+1 â

2
t

T − 2q − 1
. (3)

Next, during the query processing stage we need to regen-
erate data using the MA(q) model. This can be achieved as
follows. Suppose we are at time index h and are interested in
probabilistically regenerating the value at rh+` where ` ≥ 1,
then the time index h is the regeneration origin and ` is

1In this project we collectively refer moving average models
and auto-regressive models by time-series models.
2http://www.mathworks.com/

the regeneration horizon. For a MA(q) model a ` − step
regeneration is given as:

rh+` = co + ah − θ1ah+`−1 − · · · − θqah+`−q. (4)

The ` − step ahead regeneration actually gives us the ex-
pected value of rh+`, E(rh+`|Fh), where Fh is all the in-
formation available at the forecast origin h. Moreover, the
moving average model regenerates expected or most probable
values. This property makes them naturally robust against
erroneous values and intermittent sensor failures.

The second type of time-series models we studied are the
auto-regressive models. These models are similar to moving
average models, but in auto-regressive models rt is modelled
as a linear combination of it’s values at previous times. Thus
a auto-regressive model of order p is given as,

rt = φ0 + φ1rt−1 + · · ·+ φprt−p + at, (5)

where p is a non-negative integer, φ0, . . . , φp are model coef-
ficients, and at is as defined in (1). The model denotes that
the conditional expectation of the value rt given the past
data is determined by the past p values rt−i, (i = 1, . . . , p).
We denote an auto-regressive model with order p as AR(p).
The estimation of AR(p) model is done in a very similar way
to the moving average model. We simply use (5) to evaluate
r̂t and σ̂2

a in equations (2) and (3) respectively, which gives
us an AR(p) model.

Likewise, the auto-regressive model can be used for `−step
ahead regeneration similar to the moving average model.
Moreover, a ` − step regeneration for an AR(p) model is
given as,

rh+` = φo + φ1rh+`−1 + · · ·+ φpah+`−p. (6)

Another important aspect of time-series models is the
choice of the model parameters q and p. There are sev-
eral criterion and heuristics proposed in the literature for
making an optimal choice of model parameters for a given
time-series. The most popular ones are based on the prin-
ciples of entropy. These are known as the Akaike Informa-
tion Criteria (AIC) and the Bayesian Information Criteria
(BIC) [11]. For a given time-series these criterion output
a score over all models obtained from increasing values of
model parameters p and q for auto-regressive and moving
models respectively. Then the most optimal model is the
one which gives us the highest score for a given model or-
der p or q. Admittedly, as the main focus of this project is
not to estimate the optimal model order we choose a suffi-
ciently large q for the moving average model. On the other
hand, for auto-regressive models we compute the AIC for
all the models upto a maximum model order pmax and then
choose a p which gives the highest score. While performing
experimental evaluation we set pmax = 6.

3.1 Evaluating Probabilistic Maximum Queries
Another important class of queries which the time-series

could answer are the probabilistic min/max queries. This
is possible due to the predictive regeneration capability of
time-series models. Probabilistic maximum queries are queries
which return a probability distribution over a set of possible
value in a time-series. Suppose, for a time-series rt we are
at time h then a probabilistic maximum query could answer
questions like, “What is the most probable maximum value
between time h and h + `?”. For example, a probabilistic
maximum query could be,
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SELECT prob_max(*) WHERE stream_id = SID AND

horizon = TIME_HORIZON.

If in the above query TIME HORIZON is set to h + ` and SID

is set to rt, then the response is a probability distribution,

Fmax(v) =

h+Ỳ
i=h

Fri(v), (7)

where Fri(v) = Prob(ri < v), is the probability distribution
of ri. This assumes that ri, (i = h, h + 1, . . . , h + `) is con-
ditionally independent given the past p values. From (7),
the problem of answering such queries is narrowed down to
estimating Fri(·) for i = (h, . . . , h + `). We estimate these
distributions using a Monte-Carlo method.

We conduct τ trials by regenerating the values between h
and h + ` according to model given by (5) (or (1)). For a
given time i we denote the individual values obtained at var-
ious trials by r1i , . . . , r

τ
i . By using these τ values we obtain

an estimate of Fri(·) as,

F̂ri(v) =

Pτ
s=1 I{rs

i<v}(v)

τ
, (8)

where IA(x) = 1 if x ∈ A and IA(x) = 0 if x /∈ A. More-
over, a parallel execution of the above evaluation is possi-
ble, since we can execute all the τ trials in parallel form-
ing a matrix of size τ × `. Then, we can scan this matrix
column-wise to obtain F̂ri(·), (i = h, . . . , h + `) which are

used to evaluate F̂max(·). Actually, F̂max(·) is evaluated
at discrete intervals v = [v1, · · · , vw] and a list of tuples

〈v1, F̂max(v1)〉, . . . , 〈vs, F̂max(vw)〉 is returned as response
to the query. Generally, in any Monte-carlo evaluation the
number of trials which are required for obtaining consider-
able accuracy are very high since the estimation errors are
inversely proportional to

√
τ [8].

3.2 Sampling Rate Adjustment
In both the time-series models we assumed that the val-

ues that we receive from the sensors are equally spaced in
time. But, in practice this is not the case, which means that
values arrive at non-equal arrival intervals. i.e. tn+1 − tn 6=
tm+1−tm∀n,m ∈ T . Thus, to make the arrival interval equal
we should re-sample at a fixed sampling interval. Now, the
challenge is to choose a sampling interval such that a) infor-
mation is not lost by choosing a large sampling interval and
b) large number of samples are not generated by choosing a
small sampling interval. Intuitively, we should choose a sam-
pling interval such that the probability of having a value in
this interval is maximized. To achieve this, we model the
arrival times by a Poisson arrival process [10]. The Pois-
son process is characterized by a rate parameter (λ) which
defines the expected number of arrivals in per unit of time.
Thus, we choose 1

λ
as the sampling interval for re-sampling

our time-series data. Then we re-sample the original time-
series by using linear interpolation at the sampling interval
obtained from the method described above.

4. REGRESSION MODELS
The second major class of models we studied are regression

models. For a given stream s = 〈v1, v2, · · · , vk〉, regression
models describe how values vi ∈ s vary depending on the
passage of time ti, i ∈ [1, k]. The purpose of such a model is
to estimate a value v′k+1 using the regression models when

a new sensor reading vk+1 is streamed, so that a given ac-
curacy constraint is obeyed: |vk+1 − v′k+1| < ε

Given a degree p, polynomial regressions find the best-
fitting curve (or line when p = 1) that minimizes the total
difference between the curve and each value vi. They are
defined as:

vi = α0 + α1 · ti + · · ·+ αp · tpi + εi, i = 1, ..., k (9)

where αj are regression coefficients and εi is the difference
between the curve and vi.

On the one hand, polynomials with higher degree can ap-
proximate the given stream with more sophisticated curves,
rendering higher precision. On the other, higher-degree poly-
nomials may involve more expensive data regeneration cost,
longer construction time, and larger numbers of coefficients
to be used for model update by our framework.

In our previous works, our experimental evaluation of the
compression effectiveness of various degree polynomial re-
gression, we found that best rates were obtained for lin-
ear (n = 1) models. Higher degree models required more
space not only due to the additional coefficients that need
to be stored per polynomial, but also due the frequency at
which polynomial coefficients had to the updated, which was
higher for higher degrees. Therefore we can conclude that
the linear models will be the most effective also in terms of
performance at query processing time, because of (1) the
smaller size, which translates into less I/O, and (2) less
computation required to regenerate data, since a low de-
gree polynomial in cheaper to compute than a high degree
polynomial. Therefore we have focused evaluation of query
processing performance on linear models.

4.1 Query evaluation with data regeneration
In the context of our problem, we have the polynomial

models as input, i.e. their coefficients and the time intervals
for which a given polynomial fits properly the data stream.
Computing the data values from the model means evaluating
the polynomial at the required time instances. Given the
independence of evaluations, this type of model fits well to
parallelization using a programmable GPU.

4.2 Query evaluation on model
The query classes we have considered (aggregate queries)

can be answered directly on the model, without any data
regeneration required. Average over a collection of poly-
nomials can be computed by the following approach: (1)
computing the local average on each polynomial; (2) giving
it the right weight according to the time interval the polyno-
mial is meant to represent the actual data stream compared
to the other polynomials; (3) computing the weighted aver-
age of the local averages. Computing the local average for
a polynomial P (X) with X between a and b can be done

using the formula: AV G(P, a, b) =
R b
a
P (X)dX/(b− a)

5. INDEXED RAW DATA
For comparison purposes, we have considered evaluating

how less computationally expensive is to answer queries on
raw data if the raw data is indexed on the variables present
in the WHERE clause of the query, in our case, time. We have
created an index which permits direct random access to the
disk location which contains the value of interest, therefore
reducing I/O for low selectivity queries.
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6. EVALUATION FRAMEWORK
A relevant piece of our work was to design the software

framework that permits us to incrementally develop and in-
corporate various parameters of the project, such as

• modeling techniques of the data

• decompression methods (i.e: GPU-aided, index-optimized,
direct query answer on models)

• query types

• data sources

The above concepts form the skeleton of our framework,
and each of them represents a distinct replaceable compo-
nent, that eases future development. The current framework
is developed using Java 3.

Additional separate features were added to help in mea-
suring performance metrics.

7. EXPERIMENTAL RESULTS
Overview.
Experimental evaluation provides answers to the following
questions:

• How does query processing efficiency change when us-
ing models as input, rather than using the raw data,
without employing any other optimization technique
(i.e: we used data regeneration)?

• How much do additional optimization techniques im-
prove performance?

To answer these question we have defined the following
testing procedure:

1. Select a time-series corresponding to a stream that is
available to us from a real sensor-network deployment.

2. To ensure fairness in comparing raw data and models
query processing efficiency, we decided to store them
in similar formats: as files on disk. Therefore we dump
raw data in one file and corresponding model represen-
tation in another file.

3. Flush the disk’s and filesystem’s caches but after this
do a dry-run of our java code, to ensure we measure
only query processing time, and not JavaVM page-
faults when instantiating another object in the VM.

4. Run our code for various selectivity levels and query
processing approaches of the following query:

SELECT avg(*) WHERE time < UPPER_BOUND AND

time > LOWER_BOUND

5. Measure time spent in reading the required data from
disk and time spent in building the answer to the
query.

We run the test on 4 time-series: soil-moisture and air
temperature at 2 different physical locations in the Grand
St. Bernard area in Switzerland. Measurements were taken
for the duration of 6 months, but in our tests we reduced the
used time-period to 1 week. The configuration of CPU and
GPU used for experimental evaluation is given in Table (1).
3http://java.sun.com/

7.1 Polynomial Models
In the following paragraphs we evaluate and compare sev-

eral approaches for processing exact aggregate queries using
polynomial models.

Regeneration Based.
We have generated linear-models for the 4 time-series, using
an accuracy bound (ε) of 1 unit (in a range of values of
approx. 60 units).

We have aggregated our results in figure 1 (a). We make
several comments on the results to give insight into which
are the factors influencing performance of query evaluation
based on models.

First, different data-sets show different improvement fac-
tors. This is explainable by the differences in model sizes
and raw data sizes. The smaller a model is compared to the
raw data, the lower the I/O cost, and therefore smaller time
cost for processing query. Figure 2 shows how speed-up is
correlated to compression ratio, for the smallest selectivity
(0.05), which ensures that the I/O cost is the primordial
factor of influence (no index is used at this stage of our ex-
periments).

plot

Performance speed-up correlated to 
compression ratio
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5.2
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15.2

20.2

25.2

7.87 9.05 20.00 43.60
Model compression ratio
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d-
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Page 2

Figure 2: Speed-up correlation to compression ratio for lin-
ear regression models.

Second, the speed-up decreases as we increase selectiv-
ity. This is explained by the fact that increased selectivity
means an increase in the average computation time for both
the model-based processing and the raw data processing and
also an additional computation cost for the model-based pro-
cessing, as more data has to be generated (no optimization is
applied yet: data that is needed is regenerated, even tough,
as we will see further, the can compute the average without
regenerating).

Direct Query Answer.
We considered worth investigating if avoiding data regener-
ation would bring significant benefits to model-based query
processing. For the computationally simple polynomial mod-
els we found out that I/O cost is responsible for almost all
cost ( 99%) of a query processing, therefore optimizing the
CPU time (avoid regeneration) would have very little im-
pact. However we compared the efficiency of non-optimized
(w. data regeneration) and optimized (w/o data regener-
ation) of model-based query processing assuming no I/O.
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s1_n18
data-s1-n18

% Selected Time Time Range Raw Data stream Raw stream with index Moving average model Autoregressive Model Polynomial regression Optimized polynomial
speed-up 
index

5% 320040000 to 351115000 81553000 8251000 28894100 20101750 11579000 36452000 9.884014059
30% 235442000 to 442313000 84478000 9868000 15110100 15912000 12860000 36452000 8.560802594
70% 103794000 to 587215000 85239000 12991000 20662500 22170000 14363000 36452000 6.561388654

100% 0 to 690891000 86478000 15655000 23846100 25307625 15348000 36452000 5.523985947

data-s1-n7
% Selected Time Time Range Raw Data stream Moving average model Polynomial regression

5 331519000 to 365358000 70399000 16843000 27325900 34664625 10601000 36452000 4.179718577
30 244563000 to 441555000 72314000 19124000 14459600 14754625 11815000 36452000 3.781321899
70 105354000  to  586156000 73384000 13700000 20869300 22263250 13292000 36452000 5.35649635

100 0 to 690912000 75583000 16145000 23537800 24320750 14566000 18333000 4.681511304

data-s5-n19
% Selected Time Time Range Raw Data stream Moving average model Polynomial regression

5 334616000 to 365092000 70195000 7702000 11805000 20729000 5941000 36452000 9.113866528
30 244710000 to 453610000 70352000 9855000 15234700 18546250 7447000 36452000 7.138711314
70 99654000 to 592636000 72330000 13004000 20885800 25286250 8782000 36452000 5.562134728

100 0 to 690914000 73960000 14966000 24265000 27862375 9630000 12796000 4.941868235

data-s5-n7
% Selected Time Time Range Raw Data stream Moving average model Polynomial regression

5 331519000 to 365358000 74529000 7860000 11002800 18310750 3691000 36452000 9.482061069
30 244563000 to 441555000 75090000 9678000 14363100 18934625 5127000 36452000 7.75883447
70 105354000 to 586156000 76087000 13002000 21634900 26485375 6466000 36452000 5.851945854

100 0 to 690912000 76568000 15694000 23384300 28275875 7760000 10363000 4.878807187
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Page 1(a)

s1_n18

speed-up 
index

speed-up 
moving 
average

speed-up 
autoregressive speed-up poly speed-up poly-opt Raw data size P. Model size Div

2.778637138 2.82247933 4.057009962 7.043181622 6.09375 91439 11623 7.867073905
1.546508009 5.59082997 5.309074912 6.569051322 13.37931034
0.939034735 4.12529946 3.844790257 5.934623686 13.20100503
0.841569513 3.62650496 3.417072918 5.634480063 13.75362319

5.031734687 2.57627379 2.030859991 6.640788605 9.12 91190 10081 9.04572959
1.779292358 5.00110653 4.90110728 6.120524757 18.41818182
0.91666979 3.51636135 3.296194401 5.520914836 25.07368421
0.7239959 3.21113273 3.107757779 5.189001785 16.72767857

4.865867184 5.94620923 3.386318684 11.81535095 10.75 102125 5105 20.00489716
1.60021836 4.61787892 3.793327492 9.447025648 34.19354839

0.825176261 3.46311848 2.860447872 8.236164883 26.375
0.666246284 3.04801154 2.654475794 7.680166147 30.88793103

4.981219088 6.77363944 4.070231968 20.19208886 11.05882353 107301 2461 43.60056887
1.621043996 5.22798003 3.965750576 14.64599181 40.24
0.867879548 3.51686396 2.872793004 11.76724405 50.36170213
0.664606625 3.27433363 2.707891445 9.867010309 58.26984127

Auto-regressive model vs. raw data
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Page 3 (b)

s1_n18
data-s1-n18

% Selected Time Time Range Raw Data stream Raw stream with index Moving average model Autoregressive Model Polynomial regression Optimized polynomial
speed-up 
index

5% 320040000 to 351115000 81553000 8251000 28894100 20101750 11579000 36452000 9.884014059
30% 235442000 to 442313000 84478000 9868000 15110100 15912000 12860000 36452000 8.560802594
70% 103794000 to 587215000 85239000 12991000 20662500 22170000 14363000 36452000 6.561388654

100% 0 to 690891000 86478000 15655000 23846100 25307625 15348000 36452000 5.523985947

data-s1-n7
% Selected Time Time Range Raw Data stream Moving average model Polynomial regression

5 331519000 to 365358000 70399000 16843000 27325900 34664625 10601000 36452000 4.179718577
30 244563000 to 441555000 72314000 19124000 14459600 14754625 11815000 36452000 3.781321899
70 105354000  to  586156000 73384000 13700000 20869300 22263250 13292000 36452000 5.35649635

100 0 to 690912000 75583000 16145000 23537800 24320750 14566000 18333000 4.681511304

data-s5-n19
% Selected Time Time Range Raw Data stream Moving average model Polynomial regression

5 334616000 to 365092000 70195000 7702000 11805000 20729000 5941000 36452000 9.113866528
30 244710000 to 453610000 70352000 9855000 15234700 18546250 7447000 36452000 7.138711314
70 99654000 to 592636000 72330000 13004000 20885800 25286250 8782000 36452000 5.562134728

100 0 to 690914000 73960000 14966000 24265000 27862375 9630000 12796000 4.941868235

data-s5-n7
% Selected Time Time Range Raw Data stream Moving average model Polynomial regression

5 331519000 to 365358000 74529000 7860000 11002800 18310750 3691000 36452000 9.482061069
30 244563000 to 441555000 75090000 9678000 14363100 18934625 5127000 36452000 7.75883447
70 105354000 to 586156000 76087000 13002000 21634900 26485375 6466000 36452000 5.851945854

100 0 to 690912000 76568000 15694000 23384300 28275875 7760000 10363000 4.878807187

Polynomial model vs. raw data
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Page 1 (c)

s1_n18
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Figure 1: Comparing speedups of model based and raw data query processing: (a) polynomial model vs. raw data; (b)
optimized polynomial model; (c) moving average model; (d) auto-regressive model; (e) indexed raw data.

CPU GPU
Model Intel Xeon NVIDIA Tesla C870
Memory 16 GB 1.5 GB
Number of cores 8 128
Clock rate 2.66 GHz 1.35 GHz
Bandwidth – 2 GB/s

Table 1: CPU and GPU configuration used for experimental
evaluation.

Results are summarized in 1 (b). It’s worth pointing out
the reason for the differences in speed-up among data sets:
each dataset has a corresponding set of models. The amount
of data values regenerated in the non-optimized approach is
the same for all datasets, but the number of local average
computations in the optimized approach is proportional to
the number of models used for each dataset.

GPU parallelization.
The last tackled performance improvement approach was
making use of the parallelizable characteristic of the opti-
mized polynomial technique. Computing the local averages
for each polynomial part of the model for a given time-series
can be done in parallel for all polynomials. By using the
highly parallel programmable GPUs available on the mar-
ket, we measured the performance speed-up (or lack of), the
displayed the results in 3.

This graphs shows a beautiful non-linear system, caused
by the following components:

1. CPU, where for large number of models, compiler op-
timizations like loop unrolling increase cache perfor-

mance and therefore cost varies sub-linearly with the
size of the input.

2. Memory transfers between main memory and GPU
memory, were latency predominates up to a certain
point the transfer time, and is gradually replaced by
bandwidth, as data transfer size increases.

3. GPU, because of the large number of concurrent threads,
the full parallel processing capacity is reached only for
very large number of models.

But the answer we were looking for is that total GPU
time is smaller than total CPU time only between 2 values
for the number of models. As can be seen in the graph, the
predominant reason for which GPU is not faster than CPU
is that the code to be executed in parallel is fast, and there-
fore memory transfer dominates the total GPU computation
time.

Indexed Raw Data.
An additional interesting comparison is between the opti-
mized raw data access (index-based) and the non-optimized
model-based access. Results are present in 1(e) and show
that the speed-up obtained by using index is smaller than
that obtained by using models.

7.2 Time Series Models
In the following paragraphs we evaluate and compare re-

generation based approaches for answering exact and prob-
abilistic queries using time-series models.

Exact Queries.
For each time-series containingW values we estimate aMA(q)
model on a sliding window of H. Then we slide the window
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Figure 3: Query processing costs for CPU and various GPU
operations for exact queries on polynomial models.

by the number of values for which we intend to use the
model. Thus, for each time-series we estimate

¨
x
W

˝
models,

if we intend to use the model for generating x values. We
estimate the models using MATLAB and store them in a
CSV (comma separated values) file along with the time for
which the query processor should be using the model. In
our experiments, we set H = 200 and x = 100 for all the
time-series. The value H is selected such that we have suf-
ficient data for model estimation. The same procedure is
used for estimating an AR(p) model of suitable model order
as explained in Section (3).

Next, we use the estimated models to compare the per-
formance of evaluating the same queries on raw data with-
out using an index. Figure (1).c and Figure (1).d show the
speed-up obtained (w.r.t. processing queries on raw data
without index) from using moving average model and auto-
regressive model respectively for data regeneration. The
overall speed-up is less as compared to the linear regres-
sion models since the cost of data regeneration is high for
the time-series models (for example, at each regeneration
step we have to sample from a normal distribution). But,
on the other hand, time-series models are more robust to-
wards erroneous readings as they probabilistically track the
true value. As compared to the indexed raw stream the
time-series models exhibit higher speedup, which could make
them more useful especially when selectivity is high. Most
importantly, as discussed in Section (3.1), time-series models
can be effectively used for answering probabilistic queries,
this could be difficult to achieve by using other models.

Probabilistic Queries.
In the following paragraphs we discuss and compare the eval-
uation of probabilistic maximum queries on CPU and GPU
(graphics processing unit). The GPU implementation pos-
sess several challenges, we discuss some of them below:

Parallel random number generation: For conducting τ tri-
als we need parallel random numbers generators for the term
at (see equations (1) and (5)) which is present in both the
time-series models. If the same random number generator is
used for all the τ trials then the generated random numbers
could be correlated with high probability. Thus we imple-
ment a 32-bit parallel Multiply-With-Carry (MWC) random
number generator [3]. We choose the parameters and seeds
such that the random numbers generated are uncorrelated
[2].

Coalesced Accesses: While we simulated the τ × ` ma-

trix we always ensured that the accesses to global memory
are coalesced [1]. Since for NVIDIA C870 coalesced global
memory accesses are orders of magnitude faster than non-
coalesced ones, but they can only occur only when certain
requirements are satisfied by a group of threads (for details
see [1]).

Furthermore, we compare performance of CPU based query
evaluation to GPU based query evaluation for various values
of trials τ . For comparing performance we take an AR(p)
model and use it to evaluate probabilistic maximum queries
for a fixed value of ` and various values of τ . Recall, in
practice τ is large since the estimation errors are inversely
proportional to

√
τ . Thus we can expect the values of τ to

be much larger than `, making τ × ` a tall matrix. Fig-
ure (4) shows the speedup obtained by using a GPU based
implementation. Clearly, as the number of trials increase
the speedup obtained by the GPU based implementation in-
creases thus making it more suitable for Monte-Carlo based
probabilistic query evaluation. Furthermore, we expect the
same speedup for probabilistic minimum queries since they
incur the same computation as the probabilistic maximum
queries.

Sheet1

Query Response Steps 20
Time horizon 640

Trials CPU Evaluation (time) GPU Evaluation (with transfer time) Speedup

1 30917000 7371000 4.194410528
8 37732000 7371000 5.118979786

16 48800000 7371000 6.620539954
32 57479000 8170000 7.035373317

288 109068000 13702000 7.960005839
2880 558502000 80175000 6.966036795

28800 6001751000 665765000 9.014819043
288000 69096372000 7270455000 9.503720469
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Figure 4: Comparison of performance between CPU and
GPU for probabilistic maximum queries.

8. FUTURE WORK
Considering the range of queries that a data management

system supports, analyzing the applicability of our proposed
approaches and evaluating the computational cost for other
query classes is necessary. This would lead us to provid-
ing a metrics which helps in choosing a particular modeling
technique.

9. CONCLUSION
We answered the question of how computationally expen-

sive are various query processing techniques on compressed
data, and the benefits that can be gained by employing var-
ious optimized approaches. Our evaluation showed that the
smaller size of the models, compared to the raw data, gives
substantial performance benefits due to the lower I/O (5x-
20x). With all data in memory, direct model based query
for computationally simple models (polynomial) shows good
improvements compared to the data regeneration approach
(10x-50x). The use of a programmable GPU for parallel data
regeneration provides large improvements (4x-10x) for com-
putationally intensive queries (probabilistic min/max queries).
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This is mainly due to the memory transfer time from main
memory to GPU memory being less significant than actual
model computation time.
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