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Abstract
The collective behavior of systems consisting of interacting dipoles is a subject of

considerable studies. The anisotropic nature of such interactions opens an arena to

explore fundamental questions in correlated electron physics, ranging from quantum

entanglement, phase transitions, spin glass states to disorder and fluctuations. LiHoF4

is a textbook example of a ferromagnetic Ising-dipolar model, offering a simple and

well-understood Hamiltonian. The system undergoes a quantum phase transition

(QPT) in a field transverse to the easy axis, which induces quantum fluctuations

between the ground state doublet. Dilution of Ho sites with non–magnetic Yttrium

ions lowers only the transition temperature (Tc ), and eventually lead to spin–glass

state. While Tc decreases in a linear fashion, as expected from simple mean–field (MF)

calculation, critical field decreases much faster. The behavior upon dilution has been

pointed out to be related to randomness and off–diagonal dipolar interactions. In

chapter 5 of this thesis I quantify the deviation of experimental results from neutron

scattering studies from MF prediction, with the aim that this analysis can be used in

future theoretical efforts towards a quantitative description.

The aim of this thesis, however, deals with LiErF4 which is an unexplored planar

dipolar antiferromagnetic member of LiReF4 family, with TN ' 370 mK. The system

undergoes a QPT in an applied field H∥c = 4.0±0.1 kOe, confirmed by a softening of

the characteristic excitations at Hc . A combined neutron scattering, specific heat, and

magnetic susceptibility study reveals a novel non–MF critical scaling of the classical

phase transition, belonging to the 2D X Y /h4 universality class. In accord with this, the

quantum phase transition at Hc exhibits a three-dimensional classical behavior. The

effective dimensional reduction may be a consequence of the intrinsic anisotropic

nature of the dipolar interaction. Four-fold anisotropy and degeneracy breaking could

be due to the "order-by-disorder" phenomena, which could open a gap in dispersion

of the magnetic excitations.
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keywords: magnetism, neutron scattering, universality class, quantum phase transi-
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Résumé

Les comportements collectifs des systèmes contenant des dipoles interagissant entre

eux sont sujets à de nombreuses études. La nature anisotrope de ces intéractions

ouvre un vaste champ d’investigation sur les questions fondamentales concernant

la physique des systèmes d’électrons corrélés, tels que l’intrication quantique, les

transitions de phase, les verres de spin ,etc.. Le LiHoF4 est un exemple typique de

système ferromagnétique de type Ising, possédant un Hamiltonien simple et bien

compris. Le système subit une transition de phase quantique (QPT) dans un champ

transverse à l’axe facile, ce qui induit des fluctuations quantiques entre les doublets

de l’état fondamental. La dilution des sites d’Ho par de l’Yttrium non magnétique

diminue la température de transition Tc , et peut amener à un état de verre de spin.

Alors que Tc décroît linéairement, suivant les prédictions de calculs de champ moyen,

le champ critique décroît beaucoup plus rapidement. Le comportement en fonction

de la dilution se révèle avoir pour origines le caractère aléatoire de la distribution des

sites d’Y et les termes non diagonaux des intéractions dipolaires. Dans le chapitre 5

de cette thèse, je quantifie la déviation entre les résultats expérimentaux obtenus par

diffusion de neutrons et les prédictions des calculs de champ moyen, afin que cette

analyse puisse être utile pour de futurs travaux théoriques permettant une description

quantitative.

Cependant, le principal objet de cette thèse est le LiErF4, membre de la famille des

LiReF4, qui est un système antiferromagnétique dipolaire planaire encore inexploré,

dont la température de transition est TN =370 mK. Le système subit une QPT sous un

champ magnétique H∥c = 4.0±0.1 kOe, caratérisé par une atténuation des excitations

caractéristiques à Hc . Les études combinées de diffusion de neutrons, de chaleur spé-

cifique et de susceptibilité magnétique revèlent dans la transition de phase classique

une nouvelle dimensionnalité critique n’ayant pas pour origine le champ moyen, qui

appartient à la classe d’universalité 2D X Y /h4. Le comportement de la transition de

phase quantique est tridimentsionnel, ce qui est le résultat attendu, compte tenu de

la bidimensionalité de la transition classique. Cette réduction de dimensionnalité
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Abstract

pourrait être une conséquence de la nature intrinsèquement isotrope de l’interac-

tion dipolaire. L’anisotropie h4 et la levée de dégénérescence peuvent être dues à un

phénomène d’order-by-disorder, qui pourrait ouvrir un gap dans la dispersion des

excitations magnétiques.

mots-clefs : magnétisme, diffusion de neutrons, classes d’universalité, transition de

phase quantique, transition de phase classique, modèles d’Ising et X Y , phénomènes

d’order-by-disorder.
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1 Introduction

Magnetic behavior of a macroscopic system is a collective phenomenon, which arises

from the cooperation of many microscopic particles the system has been composed

of. Within the last decades, magnetism has attracted enormous theoretical and ex-

perimental investigations, where the concerns in understanding the fundamental

questions is seconded by technological interests in finding new materials for use

as permanent magnets, and information storage devices [1, 2]. Although the most

fundamental interaction in electromagnetism, dipolar systems have been less studied

mostly due to the lack of enough material realizations with such dominant forces.

In the context of phase transitions and order-disorder phenomena, where great efforts

have been made to understand the basic mechanics driving the nature of the tran-

sition, dipolar systems are excellent materials to test the concept; e.g. LiHoF4, with

simple and well-understood Ising Hamiltonian, is a realization of a quantum phase

transition (QPT) in transverse field to the easy axis [3, 4, 5, 6].

Rare earth (Re) lithium fluorides, LiReF4, where tightly localized 4f electrons are far

enough apart for the dipolar interactions to dominate exchange interactions, are

rich candidates to study the physics governing dipolar-coupled systems. To date, the

LiHoF4 ferromagnetic model and its diluted series with non magnetic Yttrium (Y) ions

(to test the effect of disorder and randomness in the behavior of the real systems) have

been the center of many investigations [7, 8, 9, 10, 11, 12].

With the development of renormalization group (RG) theory, the critical exponents of

various systems could be investigated in the vicinity of the phase transitions. Systems

with similar macroscopical symmetries, but very different in microscopical properties,

1



Chapter 1. Introduction

were found to lie in the same universality class. Therefore, high-precision experimen-

tal studies of the critical behavior around critical points classify the system into the

corresponding category, and open the avenue to distinguish the observed properties.

To this regard, LiReF4, whose 3D long–ranged dipolar interactions place them at the

upper marginal dimension for the applicability of the mean-field theory, are interest-

ing subjects to test the role of anisotropy and critical fluctuations on the nature of the

magnetic systems.

This research project has focused on LiErF4, an antiferromagnetic (AFM) member of

the LiReF4 family, which has not received much attention except from few studies

mostly in 1970s and 1980s [13, 14, 15, 16, 17]. With the advantage of the weak nuclear-

electronic sub-system couplings [18, 19], that can be even canceled by replacing the

nuclear-spin free 168 Er isotopes, the material highlights a QPT in a magnetic field of

40 kOe applied transverse to the easy plane.

This PhD thesis is organized as follows:

• Chapter 2 presents a brief collection of the theoretical background on QPT and

mean-field (MF) theory. The Hamiltonian of the LiReF4 system is derived, and

the generalized susceptibility and MF/RPA calculations are explained.

• Chapter 3 outlines methods used within this work. Neutron scattering, as the

primary experimental method, and its instrumentation depending on the sub-

ject of study are introduced. A few complementary methods e.g. specific heat,

AC-susceptibility and muon spin rotation are presented. Sample environment,

dilution refrigerator and split-coil magnets extensively used in this research are

discussed, following a brief introduction to LiReF4 system.

Results are divided into two chapters: The relevant background is given in the begin-

ning of each chapter, and the results are compared with earlier studies, being referred

to the related literature.

• In chapter 4, LiErF4, the core of this project has been introduced. Magnetic

structure and the classical and quantum phase transitions are described. A set

of critical exponents classifying the system into the 2DXY/h4 universality class

2



are derived. Energy excitations and dynamics of the system, which could be

modeled by MF/RPA picture, have been studied.

• In chapter 5, LiHoxY1−xF4 (0.25 ≤ x ≤ 1), an example of a random field quan-

tum Ising magnet in a transverse field has been investigated briefly. The phase

diagram mapped by means of neutron scattering is compared with MF calcula-

tions.

3





2 General theory

2.1 Quantum phase transition

In classical phase transitions that occur at finite temperatures, critical properties are

determined by thermal fluctuations. There exist another type of transitions taking

place at "zero temperature", driven by quantum fluctuations, called quantum phase

transitions (QPT). In the systems exhibiting QPT, the order–disorder transition be-

tween two different quantum ground states is due to an external applied magnetic

field, pressure or variation in chemical composition. Although both quantum and

classical (T > 0) phase transitions might happen in the same system, they are of differ-

ent nature, since in the latter thermal fluctuations are the control parameter.

Because the distances (l) and timescales (τ∝ 1/ω) over which the order parameter

fluctuates coherently increase towards the transition, the correlation length (ξl ) and

the correlation time (ξτ) diverge. In the quantum mechanical picture τ–divergence

corresponds to a vanishing energy (E =ħω), according to the energy-time uncertainty

principle (∆E∆t ∼ħ). Within this characteristic time there is a correlation between

the sites and their neighbors, which leads to an additional dimension to the system

[20]. The time scale and length scale divergences are connected through the dynamic

exponent z [21]:

ξτ = ξl
z . (2.1)

5



Chapter 2. General theory

Therefore, a classical d–dimensional system maps into d + z at QPT. In the simple

Ising-like compounds, z = 1, whereas in strongly correlated or disordered systems it

can show higher values [22]. A schematic phase diagram of a system exhibiting QPT is

illustrated in Fig. 2.1. On the other hand, at finite temperatures where kB Tc Àħω, the

time divergence is cut off, as a consequence of thermal fluctuations [23].

A textbook example of a QPT is the Ising ferromagnet in the presence of a transverse

applied magnetic field. In the basis of the uniaxial axis the Hamiltonian of the system

has the form:

H=−J
N∑
i , j
σi

zσ j
z −Γ

N∑
i
σi

x , (2.2)

where σi ’s are the Pauli matrices, J represents the coupling strength, and Γ is the

transverse field, which introduces off-diagonal terms into the Hamiltonian.

Figure 2.1: Schematic phase diagram of a system exhibiting quantum phase transition
as a function of a control parameter p.

2.2 Magnetism in rare-earth fluorides

Magnetism is basically the collective response of the magnetic units of a magnetic

material, induced by the spin and angular momentum motion of the electrons. Within

the last decades, magnetism is the subject of many experimental tests in many body

6



2.2. Magnetism in rare-earth fluorides

physics and correlated electron systems. However, the quantitative understanding is

often not trivial in complex magnetic systems. Therefore, pure compounds with well

characterized Hamiltonian have attracted great interest. LiReF4 where Re=rare earth,

provide an ideal example to study dipolar interactions, and have been investigated

both theoretically and experimentally [24, 16, 17, 14, 13, 15, 4].

The strong spin–orbit coupling in 4 f valance electrons of Re3+ dominates the crystal

field effect of the surrounding F− ions. Therefore, the ground state can preserve its

degeneracy, having the maximum angular momentum J . Due to the small radius

of the 4 f shell, the electrons in this layer are tightly bound to the nucleus, causing

Hyperfine interactions. The lack of orbital overlap leads to very small nearest neighbor

exchange interactions compared to the long-range dipolar interactions. The total

Hamiltonian describing the magnetic model of LiReF4 is given by:

H=Hcf+A
∑

i
Ii · Ji − gµB

∑
i

H · Ji −
∑
i , j

∑
α,β

Dαβ

i , j Ji
α J j

β−J
∑
i , j

Ji · J j , (2.3)

where the first three terms are due to the single ion interactions, called crystal field,

hyperfine coupling (with coupling strength A), and Zeeman term in an applied field

H , respectively. The two latter items describe the the dipolar and exchange inter-ion

interactions.

In LiReF4 the nearest-neighbor exchange interactions, J ∑
i , j Ji · J j , are much smaller

than the long range dipole-dipole couplings of the 4 f electron moments:

HD
i j =

∑
α,β

Dαβ

i , j Ji
α J j

β = (µB g )2

[
Ji · J j

r3
i j

− 3(Ji · ri j )(J j · ri j )

r5
i j

]
. (2.4)

g is the Landé factor:

g = 3

2
+ S(S +1)−L(L+1)

2J (J +1)
. (2.5)

The hyperfine interactions between the 4 f moments and the nuclear spins I,

Hh f =A
∑

i
Ii · Ji (2.6)

with the coupling constant A in the order of few µeV can influence the low tempera-

ture behavior of the system, e.g. when the electronic energy scale is reduced close to a

7



Chapter 2. General theory

QPT.

2.2.1 Crystal field

The electric field produced by charge distribution around F− ions in the lattice interact

with the rare earths’ 4 f electron shell via Coulomb repulsion. As mentioned, in LiReF4

the spin-orbit coupling (∼ L ·S) is stronger than the crystal field energy. Therefore, the

ground state can appear as a multiplet of degenerate states. The electrical potential

felt by 4 f electrons arising from the neighboring ions with the charge density ρ(r) is

given by:

Vc f (r) =
∫

eρ(r)

|R− r|dr. (2.7)

In the frame of spherical harmonics the crystal field potential can be written in terms

of multipole expansion:

Vc f (r) =∑
l m

Al
mrl Ylm(r̂). (2.8)

According to Stevens [25], the matrix elements of Vc f (r) are proportional to the op-

erator equivalents in terms of the J operators [26]. Therefore, the crystal field can be

described by Stevens factors (α) depending on the electronic charge distribution of

orbitals’ angular momentum:

Hc f =
∑

i

∑
lm

Al
mαl 〈rl 〉

(
2l +1

4π

) 1
2

Õlm(Ji ). (2.9)

Õlm(J) operators are obtained from spherical harmonics transformed into Cartesian

basis in terms of J operators. It is more convenient to write Eq. 2.9 in terms of

Stevens operators, where the real combination of the spherical harmonics is taken into

account:

Hc f =
∑

i

∑
lm

Bl
mOl

m(Ji ). (2.10)

8



2.2. Magnetism in rare-earth fluorides

Bl
m are crystal field parameters, and Ol

m the Stevens operators. Because the electronic

charge distribution around the ions is usually not accurately known, crystal field

parameter calculation is not a trivial task. One way to calculate them is the point charge

calculation, replacing all atoms inside the unit cell with point charges. Neglecting the

electron cloud in favor of a simple point charge is a crude approximation, which is

the reason for the little success of point charge calculation at the quantitative levels

[26]. However, experiment is the most accurate way to get the crystal field set of

parameters. Neutron and optical spectroscopy are in fact powerful techniques in

crystal field energy level determinations [24, 18].

Crystal field parameters are symmetry restricted, and in the case of LiReF4 (with S4

point-group symmetry) they have the following form:

Hc f =
∑

l=2,4,6
Bl

0Ol
0

∑
l=4,6

Bl
4(c)Ol

4(c)+B6
4(s)O6

4(s). (2.11)

The x-axis is in the ab plane, resulting in B4
4(s) = 0. In this representation, the Stevens

operators are expressed by:

O0
2 = 3J2

z −X

O0
4 = 35J4

z − (30X−25)J2
z +3X2 −6X

O4
4(c) = 1

2
(J4
++ J4

−)

O0
6 = 231J6

z − (315X−735)J4
z + (105X2 −525X+294)J2

z (2.12)

−5X3 +40X2 −60X

O4
6(c) = 1

4

[
(11J2

z −X−38)(J4
++ J4

−)+ (J4
++ J4

−(11J2
z −X−38)

]
O4

6(s) = 1

4i

[
(11J2

z −X−38)(J4
+− J4

−)+ (J4
+− J4

−)(11J2
z −X−38)

]
,

where X ≡ J(J+1). Diagonalizing the crystal field Hamiltonian gives the crystal field

energy levels and eigenfunctions.

9



Chapter 2. General theory

2.3 Introduction to mean-field theory

Mean field (MF) theory basically approximates the two-ion interactions as a single ion

interaction with a bath including surrounding ions. This mean interaction is the same

at each site, therefore the solution of the Hamiltonian. In the case of a ferromagnetic

interaction, the average response is proportional to the magnetization of the system.

Let us assume a simple form of the Hamiltonian for a magnetic system in a constant

applied magnetic field H:

H=∑
i
Hc f (i )− gµB

∑
i

Ji ·H− 1

2

∑
i j
Ji j Ji · J j , (2.13)

Ji · J j in the Hamiltonian can be replaced by:

Ji · J j = (Ji−< Ji >) · (J j−< J j >
)+ Ji · < J j >+J j · < Ji >−< Ji > · < J j > . (2.14)

Since in the mean-field approximation the fluctuations of the magnetic moments

around their equilibrium value are neglected, the first term in the right hand side of

the Eq. 2.14 disappears. J is the coupling term and < J > stands for thermal average

of J operators of the neighboring ions. Rewriting the Hamiltonian in the mean-field

(MF) gives:

HMF =∑
i
Hc f (i )−∑

i
Ji ·h −∑

i

∑
j
Ji j

(
Ji − 1

2
< Ji >

)
· < J j >, (2.15)

Where, h = gµB H, and an effective field can be introduced by:

he f f
i = h +∑

j
Ji j < J j > . (2.16)

Therefore, the mean field Hamiltonian can be written in form of an effective field,

he f f
i :

HMF =∑
i
Hc f (i )−∑

i
Ji .he f f

i + 1

2

∑
i
< Ji > ·(he f f

i −h). (2.17)

10



2.3. Introduction to mean-field theory

With a starting point for < J j >, the effective field and hence the HMF for the ith

site can be calculated. Diagonalizing the Hamiltonian gives the < Ji > at each site,

which can be an input for the new mean-field Hamiltonian. This process continues

until the self-consistency is attained, which for a ferromagnetic case is a non zero

magnetization even at zero field, describing the spontaneous magnetic ordering. In

the presence of an antiferromagnetic ordering, a finite staggered magnetization is

characteristic for the solution of the mean field Hamiltonian.

From < Ji > extracted through diagonalizing the MF Hamiltonian, the susceptibility

can be calculated. Let us denote the (2J +1) eigenstates and energies by |m > and

Em , respectively. A small change in the effective field (δhe f f
β

), introduces a new set of

energies and eigenstates, which in the first order perturbation is given by:

E ′
m = Em −〈m|Jiβ|m〉δhe f f

β
(2.18)

|m′ > = |m >−δhe f f
β

∑
n
|n >< n|Jiβ|m > /(Em −En). (2.19)

Hence, to first order in δhe f f
β

, < J ′iα > would be:

< J ′iα >=∑
m

< m′|Jiα|m′ > N ′
m =∑

m
< m|Jiα|m > N ′

m

−δhe f f
β

∑
mn

< m|Jiα|n >< n|Jiβ|m > Nm/(Em −En) (2.20)

−δhe f f
β

∑
mn

< m|Jiβ|n >< n|Jiα|m > Nm/(Em −En).

Nm and N ′
m are the population factors for δhe f f

β
= 0 and δhe f f

β
6= 0, respectively.

Therefore, the susceptibility is calculated from:

χ0
αβ(i ) = ∂< Jiα >

∂he f f
β

=
Em 6=En∑

mn

< m|Jiα|n >< n|Jiβ|m >
En −Em

(Nm −Nn) (2.21)

+β
Em=En∑

mn
< m|Jiα|n >< n|Jiβ|m > Nm −β< Jiα >< Jiβ > .

The first term is called the Van Vleck susceptibly – which is constant at zero tem-

11



Chapter 2. General theory

perature – and the second term is the Curie susceptibility, which diverges at low

temperatures. The Eq. 2.21 is obtained by varying the effective field. It is interesting,

at least from an experimental point of view, to calculate the susceptibility when the

external applied field varies slightly, δhqexp(i q ·Ri ). Hence, according to Eq. 2.16:

δhe f f
i = δhq exp(i q ·Ri )+∑

j
Ji j χ

0
( j ) δhe f f

j . (2.22)

Assuming χ and < J > to be site independent, the susceptibility can be deduced from:

χ(q) =
{

1−χ0
J (q)

}−1
χ

0
. (2.23)

If the crystal field ground state is degenerate, the second term in Eq. 2.21 is not zero

and diverges at zero temperature. If B 0
2 parameter of the crystal field is negative,

the z component of χ(q) is the largest component, whereas if B 0
2 > 0 the xy planar

components are larger.

2.4 The generalized susceptibility

For analysis of the excitation spectra obtained by neutron scattering experiments, a

more detailed theoretical understanding is required. In this section a brief collection of

some important and related identities is presented. More comprehensive information

can be found in Ref. [26]. In a scattering event the so-called dynamic correlation

function or, in other words, the scattering function is being measured. It is defined as

SGF(t ) ≡< G(t )F >−< G >< F >, (2.24)

where G and F are physical observables, for instance angular momentum or magneti-

zation. Using statistical mechanics and the Heisenberg notation for the time evolution

of an operator

G(t ) = e iHt/ħGe−iHt/ħ, (2.25)

one can define

12



2.4. The generalized susceptibility

< G(t )F > = 1

Z
Tr

{
e−βHe iHt/ħGe−iHt/ħF

}
(2.26)

= 1

Z
Tr

{
e−βHFG(t + iβħ)

}
=< FG(t + iβħ) > .

H is the Hamiltonian, Z is the partition function and β = 1/kB T . Therefore, the

relation

SGF(t ) = SFG(−t − iβħ) (2.27)

is satisfied. The generalized susceptibility is the response of the system to a pertur-

bation, i.e. a small applied field, varying in space and time, and can be expressed by

Kubo formula:

KGF(t ) = i

ħ < [G(t ),F] >= i

ħ < [G,F(−t )] > (2.28)

The Fourier transform of Eq. 2.28 results in the generalized susceptibility, whose

imaginary part can be simply described by

χ′′GF(z) = 1

2i
KGF(z), (2.29)

where z =ω+ iε is a complex number, and ε is a positive infinitesimal value ensuring

that χ′′ is an analytical function. It should be noticed that the above equation is valid

under the casual assumption that the perturbation term vanishes when t → −∞.

On the other hand, the relation between the correlation function and the response

function follows:

KGF(t ) = i

ħ {SGF(t )−SFG(−t )} . (2.30)

Hence, the fluctuation-dissipation theorem – which connects the spontaneous fluctu-

ations of the system to a response from a perturbation – described by the susceptibility

can be extracted from Eq. 2.29 and 2.30

13



Chapter 2. General theory

SGF(ω) = 2ħ 1

1−eβħω
χ′′GF(ω), (2.31)

where SGF(ω) is the Fourier transform of SGF(t ).

If the eigenvalues (Em) and eigenstates (|m >) of the Hamiltonian are known, an

explicit equation for χFG(ω) can be extracted according to Eq. 2.28:

KGF(t ) = i

ħ
∑
m,n

< m|G|n >< n|F|m > (Nm −Nn)e i (Em−En )t/ħ. (2.32)

Nm and Nn are the population factors of states m and n respectively, which in thermal

equilibrium follow the Boltzmann distribution:

Nm = 1

Z
e−βEm ; Z = Tr e−βEm (2.33)

Where, β= 1/(kB T ). As mentioned, the frequency dependent generalized susceptibil-

ity can be calculated by the Fourier transform of the response function

χGF(w) = lim
ε→0+

∫ ∞

0
KGF(t )e i (w+iε)t d t (2.34)

= lim
ε→0+

∑
m,n

< m|G|n >< n|F|m >
En −Em −ħω− iħε (Nm −Nn)

It should be noticed that, at zero frequency the obtained real part of the susceptibility

(χ0
GF) is similar to the results extracted by MF calculations (Eq. 2.21).

2.5 The random phase approximation

Random phase approximation (RPA) defines a simple way of investigating the dynam-

ics of the system, and therefore provides a qualitative comparison with experimental

observations of inelastic scattering. The scattering function measured by neutron

experiments can be calculated within the framework of the two particle correlations.

14



2.5. The random phase approximation

Starting from the effective Hamiltonian:

H=∑
i
HMF (i )− 1

2

∑
i 6= j

J (i j )(Ji−< Ji >) · (J j−< J j >), (2.35)

the first term includes the mean field sum of the single ions plus the non correlating

terms. In analogy to the previous section, the aim is to calculate the linear response of

the < Ji (t) > operator to a small perturbative field h j (t) = gµB H j (t). Therefore, the

time-dependent effective Hamiltonian can be written as follows

Hi (t ) =HMF (i , t )− (Ji (t )−< Ji >) · (
∑

j
J (i j )(J j (t )−< J j >)+hi (t )). (2.36)

At low temperatures when the fluctuations are small and in the limit of long-range

interactions summing over many sites, the fluctuating terms can be neglected. Hence,

Ji (t ) could be approximated by < Ji (t ) >. This so-called random phase approximation

is valid at T = 0, but when the temperature increases, thermally populated magnetic

excitations with short life time interact with each other, which invalidate the approxi-

mation. According to Eq. 2.34, by introducing RPA into Eq. 2.36, < Ji (ω) > (the Fourier

transform of < Ji (t ) >−< Ji >) can be calculated through the single ion interaction

< Ji (ω) > = χ
0
i (ω)he f f

i (ω) (2.37)

he f f
i (ω) = hi (ω)+∑

j
J (i , j ) < J j (ω) >,

which should coincide with its obtained value via the two ion interaction

< Ji (ω) >=∑
j
χ(i j ,ω)h j (ω) (2.38)
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Chapter 2. General theory

Therefore, within RPA model the self-consistent generalized susceptibility obeys

χ(i j ,ω) =χ0
i (w)

(
δi j +

∑
j ′
J (i , j ′)χ( j ′ j ,ω)

)
. (2.39)

It should be noticed that single ion susceptibility, χ
0
i (w) is extracted from mean field

approximation. Hence, the approach mentioned above is considered as MF-RPA

model.

2.6 Virtual Crystal Mean Field / RPA in LiReF4

In the LiReF4 structure there are 4 sites per unit cell. Therefore, 4 single ion Hamil-

tonians retained for MF calculation:
∑

i , j Ji · J j ' ∑
i , j Ji · 〈J j 〉. One can re-write the

Hamiltonian under MF approximation as follows:

HMF
i =−Ji ·Hi +HC F + AJi · Ii − glµB Ji ·H. (2.40)

where i indexes the sites within the unit cell, HC F is the crystal field, A the hyperfine

coupling to the Ii nuclear magnetic moment, and Hi the site i mean field:

Hi =
∑
j (i )

Jex〈J j 〉+
∑

j
(gLµB)2D i j (q = 0)〈J j 〉 (2.41)

with j(i) running on nearest neighbors NN. D i j (q = 0) is a 3×3 matrix defined as:

D i j (q = 0) = N

V

(
4π

3
+

[
D i j (q = 0)

]
L
−N i j

)
(2.42)

where 4π
3 is the Lorentz factor,

[
D i j (q = 0)

]
L

the lattice sum of the dipole-dipole

interaction and N i j the demagnetization term [5]. D i j (q = 0) is calculated by a direct

summation. To extract the Lorentz factor, the summation was split up into two terms

including a sum over a sphere and an integral term from the sphere to the sample:

∑
j

D i j (q = 0) = ∑
spher e

D i j (q = 0)(i j )+ 1

V

∫ sample

spher e

3rαrβ−δαβr2

r5
dr, (2.43)
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2.6. Virtual Crystal Mean Field / RPA in LiReF4

where V is the volume per ion in the lattice. Since there are four Re sites within the

unit cell, the coupling term is:

J (0) = 4Jex +JD ,Dαα(0). (2.44)

Because of the small exchange interactions in LiReF4, the first term is negligible. For

Re=Ho the second term has been reported as [5]:

JDDaa(q = 0) = (µB g )2N

(
−0.83225+ 4π

3

)
= 3.912 µeV (2.45)

JDDcc (q = 0) = (µB g )2N

(
1.66451+ 4π

3

)
= 6.821 µeV.

N = 1.39 ·1022 cm−3 is the number of magnetic ions per unit unit cell.

The MF Hamiltonians form 4 coupled self-consistence equations.

The numerical algorithm utilized to solve the self-consistence equations, takes a unit

cell and performs the following:

1. First the mean moment 〈Ji 〉 within the unit cell is initialized e.g. to random

values.

(a) From the configuration of the given moments, the mean-fields Hi are

computed.

(b) The Hamiltonians HMF
i are diagonalized and the mean moments 〈Ji 〉 are

updated.

2. The system is then going through several loops from 1 until the change between

the old mean moments and the updated ones falls below a given threshold. The

algorithm always converges.

In the case of LiErF4, where only 23% of naturally occurring Er nuclei carry spin, or

LiHoxY1−x where non magnetic Y ions are substituted for Ho, simple Virtual Crystal

Mean-Field (VCMF) approximation – that is widely used to solve the MF Hamiltonians

of composites – is performed [27]. If one labels Ho and Y /(Er nuclei with and without
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Chapter 2. General theory

the spins) as A and B respectively, the magnetic moment operator can be written as:

Ji = ni JA
i ⊕ (1−ni )JB

i , (2.46)

where ni = 1 if the (i ) ion is A and ni = 0 if it is B. The virtual crystal method uses

a homogeneous approximation with a composite moment where ni = x with x the

proportion of ions A. The composite MF Hamiltonian can be written as:

HVCMF
i ,t = Jt

i ·
(
xHA

i + (1−x)HB
i

)+HC F + At Jt
i · It

i (2.47)

where t indexes A and B type ion and Ht
i is the site i and ion type t self-consistent

mean field. The numerical algorithm is essentially as presented above, with the differ-

ence that VCMF not only mixes site-specific mean-fields, but also the ion type specific

mean-fields. This mean field procedure is exactly the same as the one previously

applied to LiHoF4 [5]. The only difference being to replace the parameters for LiErF4

as shown in Table 2.1. Crystal field parameters are compared in Table 4.1.

g Jex(µeV) A(µeV)

LiHoF4 [5] 1.25 0.1 ± 0.1 3.361

LiErF4 1.2 0 ± 0.1 0.434

Table 2.1: The parameters used for mean-field calculations on LiHoF4 and LiErF4.

If there exist only one kind of Re ion in the system, VCMF is equivalent to the MF

treatment. Fig. 2.2 depicts the T-H phase diagram obtained for LiHoF4 mapped by the

VCMF calculation.

The generalized susceptibility in RPA within q space, is obtained by a Fourier transfor-

mation of Eq. 2.39:

χ(q,ω) = 1

4

∑
i , j

[
δi j 1−χ0

i (ω) ·J i j (q)
]−1

·χ0
j (ω). (2.48)

1 is the unity matrix, and J i j (q) is the Fourier transform of the coupling tensor for

18



2.6. Virtual Crystal Mean Field / RPA in LiReF4

Figure 2.2: T-H phase diagram predicted by MF theory for LiHoF4. The white dashed
line is the calculation neglecting the hyperfine effect.
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ions at sites α and β. χ
0
i stands for the single ion susceptibility:

χ
0,αβ
i (ω) = lim

ε→0+

∑
n,m

〈n|Jαi |m〉〈m|Jβi |n〉
Em −En −ω− iε

(Nn −Nm). (2.49)

Figure 2.3 presents the dispersion of magnetic excitations in LiErF4. The comparison

with experimental data – which is presented in the following chapter – exhibits the

qualitatively correct prediction of RPA treatment in LiReF4. However, the method

has its own limitations. Overestimation of the critical temperature and critical field,

and underestimation of the characteristic excitations are most probably due to the

absence of fluctuations in the approximation.

Figure 2.3: RPA prediction for the dispersion of magnetic excitations in LiErF4 at H=0.
The white points are the energy of the excitations obtained by the fits to a damped
harmonic oscillator model.
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3 Methods and Material

3.1 Methods

Most of experiments presented in this project were carried out by neutron scattering.

However, a few other were used as complementary methods such as specific heat (cp ),

AC-susceptibility and muon spin rotation (µSR). For a comprehensive understanding

of each technique there are many available references, which some are mentioned in

the following.

3.1.1 Neutron Scattering

In large scale facilities for scientific research, neutrons are produced either from fis-

sion reactors or spallation sources. Often "hot" (higher energy, shorter wavelength) or

"cold" (lower energy or longer wavelengths) neutrons are needed for various studies.

To obtain such distributions, neutrons are passed through moderators to obtain wave-

lengths similar to inter–atomic distances. Thermal neutrons have similar energies

(1–100 meV) as lattice vibrations (phonons).

Since neutrons carry spin, they interact with the unpaired electron spins in the solids.

On the other hand, because they are uncharged particles, they can penetrate deeply

inside the materials without introducing defects. This is one of the advantages of

neutron scattering comparing to for instance, X-ray technique. Neutrons interact

with matter elastically or inelastically, where in the latter case the energy of the target

alters through interaction process. Hence, neutrons are a powerful tool to reveal
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Chapter 3. Methods and Material

the magnetic characteristics of the materials – through measuring time and space

dependent correlation functions. For those who are not familiar with the theory of

neutron scattering, the technique is explained in detail in Refs. [28, 29, 30].

Scattering cross section

The fundamental quantity, being measured by neutron scattering is the so–called

cross section (σ); which is the ratio of the scattered particles in all directions per

second per unit of incident flux (Ψ0). In most experiments, the incident beam is

monochromatic. That means the energy of the incoming beam (Ei ) is well defined.

Where, scattered neutrons with final energy between E f and E f +dE f are detected in

a solid angle dΩ. The intensity of the scattered beam can be obtained from:

I =Ψ0
d 2σ

dΩdE f
∆Ω∆E f , (3.1)

where d 2σ
dΩdE f

is the partial differential cross section and, since the interaction between

neutrons and matter is weak, can be calculated using the combination of Fermi’s

Golden rule and first Born approximation, which assumes that both incident and

scattered functions are plane waves:

d 2σ

dΩdE f
= k f

ki

( mn

2πħ2

) ∑
λiλ f

pλi

∣∣〈λ f |V (Q)|λi 〉
∣∣2
δ

(ħω− (
Ei −E f

))
. (3.2)

ki (Ei ) and k f (E f ) are initial and final wave vectors (energy) of neutrons, respectively.

ħω0 is the transferred energy, Q is the scattering vector (Q = ki −k f ) and V the inter-

action potential. |λi 〉 and
∣∣λ f 〉 stand for the initial and final states of the target. The

parameter pλi is the occupation probability for the λi state. There are two types of

interactions between neutrons and the target:

1. Neutron–nuclei interaction — This interaction is not momentum dependent,

because the nucleus is much smaller than the neutron wavelength. In this type

of interaction, the potential depends on the isotope and the nuclear spin (if

exists). This so–called Fermi pseudo–potential between a neutron at position r
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3.1. Methods

and nuclei at distance R j is:

V̂(r) = 2πħ2

mn

∑
j

b jδ
(
r−R j

)
. (3.3)

b j is called scattering length and demonstrates the strength of the scattering

by each atom inside the sample. This value varies from isotope to isotope and

is sensitive to the direction of the nuclear spin (if present) with respect to the

spin direction of the incoming beam. b j can be a complex quantity, where its

imaginary part is related to the absorption of neutrons by nucleus. However, in

the majority of nuclei the imaginary part is small. Writing the delta function

in the integral form for energy, and representing the position operator in time

dependent Heisenberg picture, gives the master formula for nuclear scattering

as:
d 2σ

dΩdE f
= k f

ki

1

2πħ
∑
j , j ′

b j b j ′

∫ ∞

−∞
〈e−i Q̂R̂ j ′ (0)e−i Q̂R̂ j (t )〉e−iωt d t . (3.4)

There exists a tabulated average scattering length, called bcoh , which is weighted

over isotopes and nuclear spins. b2
coh is equal to b j b′

j if j 6= j ′, and is b j
2 if j = j ′.

Therefore, the coherent cross section would be σcoh = 4π(bcoh)2. Incoherent

cross section due to the fluctuations around the mean value is given by σi nc =
4π< b2 >−< b >2 = 4π(bi nc )2. In the case of elastic scattering, the incoherent

part contributes to the background.

In a periodic structure, for the momentum transfer Q = τ (τ is a reciprocal lattice

vector) Bragg peaks appear in the coherent elastic part of the cross section

according to the Bragg law:

nλ= 2d sinθ = 4π

|τ| sinθ (3.5)

and the coherent differential cross section can be written as:(
dσ

dΩ

)
el ,coh

= N0
(2π)3

v0

∑
τ

|Fτ|2δ(Q−τ) (3.6)

N0 is the number of unit cells, v0 the volume of the nuclear unit cell, and

Fτ = ∑
j b j e iτ·r j e−W j the nuclear structure factor. The term e−W j is called the

Debye-Waller factor related to thermal fluctuations of the lattice around its
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equilibrium position.

2. Neutron-electron interaction — This interaction is often called magnetic inter-

action as it presents the electromagnetic relation between the neutron spin and

generated magnetization from the matter with the interaction potential:

V̂m(r) =−γµN σ̂ ·B(r) (3.7)

Here, γ= 1.913 is the gyromagnetic ratio of neutron, and µN the nuclear mag-

neton. B(r) represents the generated magnetic field from the sample due to

electronic orbital motion and their dipolar moments at position r. Inserting

magnetic pseudopotential V̂m(r) in Eq. 3.2 gives the following master formula

for magnetic differential cross section in case of unpolarized beam – neglecting

the orbital contribution to the magnetic moments for simplicity:

d 2σ

dΩdE f
= (

γr0
)2 k f

ki
F 2(Q)e−2W (Q)

∑
αβ

(
δαβ−

QαQβ

Q2

)
Sαβ (Q,ω) , (3.8)

where r0 = 0.28×10−12 cm is the classical neutron radius. The magnetic scat-

tering function
(
Sαβ (Q,ω)

)
introduces Fourier transform of the pair correlation

function:

Sαβ (Q,ω) =
∑
j , j ′

e i Q(R j−R j ′ )
∑
λi ,λ f

pλ 〈λi |S j
α|λ f 〉〈λ f |S j ′

β|λi 〉δ
(ħω− (

Ei −E f
))

.

(3.9)

Several points should be noticed in Eq. 3.8:

• The magnetic scattering cross section is proportional to the magnetic

form factor F (Q), which is related to the spatial distribution of unpaired

electrons around the magnetic ions. This term decreases with increasing

scattering vector (Q).

• The polarization factor
(
δαβ− QαQβ

Q2

)
dictates neutrons to observe the com-

ponents of the magnetic moments that are perpendicular to Q. This will

help to distinguish between different polarizations of the magnetic mo-

ments.

Through the fluctuation–dissipation theorem [28, 31, 32], the scattering function
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is related to the imaginary part of the generalized magnetic susceptibility:

Sαβ (Q,ω) = Nħ
π

(
1−e

−ħω
kB T

)−1

χ′′(Q,ω), (3.10)

where N is the number of magnetic ions. This is one of the elegant properties

of magnetic neutron scattering, which can give comprehensive microscopic

information on the magnetic systems.

In diffraction measurements, we are mostly interested in the relationship be-

tween different particles at positions j and j ′ in the magnetic material, where

there is no energy transfer. Hence, the correlation function (Sαβ (Q,ω)) is being

integrated over ω and Eq. 3.9 would be simplified into terms including only the

momentum transfer:

Sαβ (Q) = 1

2π

∫ ∞

−∞
Sαβ (Q,ω)dω

= ∑
j , j ′

e i Q(R j−R j ′ )
(
〈Sαj 〉〈Sβj ′〉+

〈
(Sαj −〈Sαj 〉)(Sβj ′ −〈Sβj ′〉)

〉)
(3.11)

The first term is related to the Bragg scattering, whereas the second term in-

herits the spin correlations of the scattering material. Diffuse scattering gains

importance close to the critical regime, where the correlation length studies are

considered.

Elastic magnetic cross section in a long range ordered magnetic probe reads:

(
dσ

dΩ

)
el ,mag

= (γr0)2Nm
(2π)3

vm

∑
τm

δ(Q−τm)|Q̂× (
FM (Q)× Q̂

) |2. (3.12)

Magnetic reflections appear at Q = τm , and FM (Q) is the magnetic structure

factor:

FM (Q) =∑
j

(
g j F j (Q)

2

)〈
S j

〉
e−W j (Q) (3.13)

Neutron scattering facilities

There are two ways of producing neutrons at research facilities. At the reactor based

sources, neutrons are mostly obtained via fission of U 235 by thermal neutrons. During

this procedure, energy and neutrons are released. The produced neutrons then are
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guided to the instruments through shielding. An alternative way is to bombard a

target of some heavy elements with highly accelerated particles, which results in many

particles’ creation, including neutrons. The second strategy is called "spallation".

After production, the high energy neutrons are passed through so–called moderators

to reach the desired energy ranges. The outcome is a scattered beam with a broad

distribution of energies. Therefore, the beam needs to be monochromatized and

collimated to the required energy and direction. In reality, these constrains are relaxed

in order to obtain sufficient statistics, which means there is always a finite distribu-

tion in both divergence and energy. Due to this fact, the measured intensity at the

experiments is the scattering cross section folded with the instrumental resolution:

I (Q0,ω0) =
∫

R(Q0,ω0;Q0 −Q,ω0 −ω) ·
(

d 2σ

dΩdE f

)
Q,ω

dQdω. (3.14)

R0 =
∫

R(Q0,ω0;Q0−Q,ω0−ω)dQdω determines the probability of detecting neutrons

within ∆Q and ∆ω away from Q0 , ω0.

Neutron scattering techniques

Neutron scattering is a wide and versatile field depending on the subject of study. In

the following some of the techniques used in this project are explained briefly:

The triple–axis spectroscopy (TAS)

The triple–axis spectrometer is probably the most versatile apparatus among other

neutron instruments [33]. In this technique, one can determine the energy/wavevec-

tor of the incoming (Ei /ki ) and outgoing (E f /k f ) beam by inserting the "monochro-

mators" and "analyzers" before and after the sample. Monochromators and analyzers

are in principle well defined crystals with d spacing between the reflecting planes at

the angle θ, satisfying the Bragg condition for the neutrons traveling with the wave-

length of λ= 2d sinθ. The scattered neutrons leave the crystals at an angle of 2θ with

respect to the incoming beam. During this procedure, an energy selection of E = h2

2mλ2

is performed. Due to the beam divergence and the mosaicity of the crystals, the

energy selection is never perfect, and it is in fact distributed around a mean value. In
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order to reduce the beam divergence, "collimators", which are a collection of neutron

absorbing sheets, are used at several places in the path. It should be noticed that tight

collimation reduces the statistics. Hence, an optimum configuration which satisfies

the resolution to intensity ratio is usually desired. Fig. 3.1 represents a schematic

diagram of a triple–axis spectrometer. Since monochromatizer and analyzer crystals

and the sample each have an axis of rotation, the instrument is called a triple-axis

spectrometer. Neutrons with wavevector ki scattered from the monochromator inter-

act elastically or inelastically with the sample, where from the later process they might

gain or lose energy. The desired outgoing energy will be selected by the analyzer and

finally reach to the detector. Hence, TAS is ideally suited to study a selected (Q,ω) in

phase space:

Q = ki −k f (3.15)

ħω= ħ2

2mn

(
ki

2 −k f
2) (3.16)

Therefore, each desired point in (Q,ω) space introduces a specified orientation to the

monochromator, sample and analyzer. An advanced sample environment usually is

available at TAS facilities, providing the high magnetic field and dilution temperature

studies.

k i

kf
Q

monochromator

sample

analyser

detector

Figure 3.1: Schematic drawing of a triple-axis spectrometer. The scattering triangle is
shown in the inset.
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Time of flight spectroscopy (TOF)

The time of flight (TOF) technique complements the TAS method. Due to the pres-

ence of many detectors – which simultaneously collect neutrons over a wide solid

angle – TOF instruments are very useful to explore a rather large area in (Q,ω)–space.

The method is specifically useful at pulsed spallation sources, where neutrons are

produced in well defined time pulses. The reactor–based facilities can also provide

TOF instruments via chopping the incoming flux into pulses with the desired intervals.

By knowing the travel time of neutrons to the detector, the velocity and therefore

the energy transfer/gain during scattering process can be calculated. In contrary

to the TAS method, where both incident and outgoing energies are selected, at TOF

instruments there is just one energy constraint, either at the incident beam shining at

the sample (direct geometry) or at the outgoing beam (indirect geometry). The energy

filtering is performed through several choppers, and sometimes monochromator

crystals are placed in the path of neutrons. The advantage of the TOF technique is

the fast and parallel data acquisition within relatively large region in reciprocal space,

recorded simultaneously by detector banks. Fig. 3.2 presents a schematic diagram of

the LET multi-chopper direct geometry time of flight instrument at ISIS, where most

of inelastic results presented in this thesis have been obtained from. Neutrons travel

the distance of 25 m from the moderator to the sample within a straight super-mirror

guide. There exist 5 choppers in the path to allow moderator pulse shaping, contami-

nant removal, pulse removal and fast time slicing of the incident neutrons. The latest,

which can be rotated up to 300 Hz, produce energy resolution of about δE
Ei

' 0.8%.

The sample is placed in a 110 m3 vacuum tank, 3.5 m away from the detectors, which

are 4 m long position sensitive detectors. High incident neutron flux together with

wide accessible range of 0.6−20 meV , result in a unique setup to study low energy

dynamics. Fig. 3.3 presents the position of the magnetic reflections in LiErF4 within

the white beam on the detector banks of LET.

Neutron diffraction

In principle, the neutron diffraction technique is very close to the TAS method, but the

third axis of rotation at the analyzer is removed. Hence, the scattered beam from the
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Figure 3.2: Schematic drawing of the LET time of flight spectrometer at ISIS. The
figure is reproduced from [34].

Figure 3.3: The position of the magnetic reflections in a white beam on the detector
banks of LET.
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sample is directly collected in the detector. In the present work, most of the diffraction

measurements are performed for the purpose of order parameter investigations on

the single crystals. Since no analyzer is placed after the sample, the Q resolution and

signal-to-background ratio are not perfect in diffraction. Therefore, materials having

weak and broad diffraction signals eg. diffuse scattering should be measured on TAS.

Backscattering spectroscopy

Very high energy resolutions (in the order of µeV) are achieved via backscattering

technique. The monochromatizer and analyzer crystals (usually out of Silicon crystals)

are made with the least possible mosaicity, each with fixed Bragg angle of ∼ 90◦.

∆λ

λ
= ∆d

d
+cotθ∆θ, (3.17)

where ∆θ is the beam divergence. The angular dependence vanishes when θ→ 0.

Under such condition the Bragg–reflected wavelength band (∆λ), and therefore ∆E

becomes very narrow. In backscattering measurements, since the scans in energy

are not possible – as the angle of the crystals are fixed – usually the energy can be

tuned by a doppler drive attached to the monochromator. Energy scans can be also

performed by varying the temperature of the crystals, so changing the lattice spacing

while keeping the same scattering angle. The price for such high energy resolution

is the relatively poor Q resolution and low flux at the sample position. On the other

hand, the method is particularly efficient to study the very low energy excitations,

and incoherent scattering. Fig. 3.4 demonstrates the SPHERES backscatterometer at

FRMII, where an experiment in this project was performed.

3.1.2 Complementary measurements

Available laboratory facilities, for instance magnetometers (DC/AC) and specific heat

cp setups provide the first insight on bulk characterization, and their information

is complementary and essential for further studies at large scale facilities for micro-

scopic investigations.

The heat capacity of a system is directly connected to the entropy. In classical defi-
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Figure 3.4: Schematic drawing of SPHERES backscatterometer at FRMII.

nition it is described by ∆Q
δT (∆Q and δT , being heat transfer and the corresponding

temperature change, respectively). Cp measurements reveal many information about

the lattice and electronic structure of materials. In addition, the cp technique is very

useful to study phase transitions. An appropriate way to measure small samples

with relatively poor thermal conductivity, which is the case in LiReF4 family, is called

time–constant or relaxation–method. Here, cp is determined as:

cp = Kτ, (3.18)

where K is the thermal conductivity of the supporting wires and τ is the time constant:

T = T0 +∆Te
−t
τ (3.19)

In the relaxation method, a small heat pulse (∆Q) transfers to the object in a certain

time period. Therefore, the temperature of the system alters slightly (∆T ) from the

equilibrated bath temperature (T0). The heater is turned off afterwards and the

temperature relaxes exponentially, going back to T0. The heat capacity (cp ) of the

system is then calculated for each temperature interval. More information about the

heat capacity measurements are provided in Refs. [35, 36].

AC-susceptibility measurements reveal the frequency dependance of the systems

relaxation, particularly when spin glass materials and dynamics are under investiga-

tion. The technique is sensitive to the magnetic response to an applied oscillating
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field. In this work the AC-susceptibility measurements performed with the help of

three coils on on top of the other. The outermost one is called primary coil, and the

two inner ones are secondary coils. The secondary coils are connected in such a way

that the generated signal inside them from the primary coil cancels out. Therefore,

they should give zero response when there is no sample. On the other hand, when a

sample is inserted inside one of them, due to a different filling factor of the two coils,

they exhibit different current. Hence, the outcome read by the lock–in amplifier is the

response of the sample.

Muon spin rotation/relaxation Muons can be used as microscopic probes to inves-

tigate interesting phenomena in condensed matter physics, including magnetism.

In the presence of internal local magnetic fields, muons’ precession and relaxation

reveals information about the static and dynamic characteristics of the system they

are implanted into. Since the muon beam is 100% polarized, the experiments can be

performed even in zero field. Nevertheless, measurements in the presence of static or

oscillating external fields – where the field direction can be parallel or perpendicular

to the muons’ polarization – are also possible. In µSR facilities the produced pions

from proton–target collision, decay into muons and neutrinos:

π+ =µ++ν (3.20)

Pions have no spin. Therefore, muon and neutrino spins are opposite and are antipar-

allel to muon’s and neutrino’s momentum, respectively. As a consequence, a 100%

polarized muon beam is produced by pions implantation inside the target. Penetra-

tion depth of muons inside the matter is few µm. After the production, muons decay

to positrons (e+) and neutrinos. Positrons are the only detectable particles in µSR

experiments and are mostly emitted along the muon spin’s direction. The probability

of positron emission within the angle θ to the spin direction is approximately:

W +(θ,ε) ∝ 1+a cosθ, (3.21)

a is a constant which depends on the energy of the emitted positron. In the muon

experiments where millions of muons are implanted into the sample, the quantity

called asymmetry which contains information of the records on the forward–backward
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detectors is of interest:

A = n f (t )−nb(t )

n f (t )+nb(t )
. (3.22)

n f and nb are the number of the positrons on the forward and backward detectors,

respectively. Hence, detected positrons give information about the polarization of

precessing muons inside the material. Through the time–evolution analysis of the

muon polarization, a distribution of local static fields and/or dynamics related to the

fluctuation fields are tractable.

In the presence of a field perpendicular to the initial muon spins (H⊥), muons precess

at ωµ = γµH angular frequency, where γµ = 85.1 kH z G−1 is the muon gyromagnetic

ratio. On the other hand, a longitudinal field allows to probe spin relaxation due to the

probable inhomogeneous internal field distribution. The local field is mostly produced

by dipolar interactions with neighboring electronic and nuclear spins. The so-called

Kubo-Toyabe function is usually used to analyze the zero field and longitudinal field

measurements. Within this approximation, the probability distribution of the internal

field components is defined by a Gaussian function of width ∆/γµ . Assuming the

initial beam in ẑ–direction, 1/3 of muons sense a field along ẑ. Averaging the three

components over the Gaussian distributions, the Kubo-Toyabe relaxation function is

given by [37]:

GK T = 1

3
+ 2

3
(1−∆2t 2) exp(−1

2
∆2t 2). (3.23)

At longer times, the function reaches back to the 1/3 average along the initial polariza-

tion. Longitudinal applied fields (H∥) enhance the effect of internal fields. Therefore,

the long term 1/3 tail increases to higher values.

If the internal field fluctuates, the change in the local field direction with frequency of

ν in a time t is predicted to obey the probability distribution p(t ) = e−νt . The randomly

selected field obeying the probability function usually has a Gaussian distribution. In

the fast fluctuation limit, the dynamic Kubo-Toyabe results:

GDK T (t ,ν) = exp(
−2∆2t

ν
) = exp(−λt ). (3.24)

There remains no 1/3 tail within this limit. On the other hand, the intermediate

fluctuating regime can be studied by a series of exponential functions. In the slow

fluctuation case the effect is more obvious on the 1/3 tail which shifts to lower values

in zero field, or higher values in the presence of a longitudinal field.
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3.2 The LiReF4 system

The LiReF4 family, where Re is a rare earth ion, provides a series of compounds that

are interesting both from experimental and theoretical point of view. These structures

have a practical use as efficient laser materials (Chick and Naiman 1972) and can

be used for frequency conversion in the infrared-visible region (Watts and Holton

1971). This group of compounds crystalize in the tetragonal Scheelite structure I 41/a

(Thoma et.al 1961), where there are four rare earth ions per unit cell at magnetically

equivalent sites, having the high point group symmetry S4. The unit cell is shown

in Fig. 3.5, and complete crystallographic details are presented in International

Tables for Crystallography [38]. The symmetries are rather simple and crystal field

models can be compared with measurements (i.e. susceptibility, neutron diffraction,

electron paramagnetic resonance (EPR)). From various low temperature investigations

[13, 39, 40], the couplings between the rare earth ions are known to be predominated

by the anisotropic long-range dipole–dipole interaction of the rare earth electronic

magnetic moments.

Several ingredients make this family very suited for studies:

• In these compounds, the crystal field level scheme gives effective low energy

models of specific spin dimensionality such as Ising for Re=Ho, Tb; and XY

planar in the case of eg. Re=Er, Dy.

• Albeit the dominant interaction is dipolar, which is fundamental in magnetic

systems, there have not been comprehensive expanded studies on this system,

except for LiHoF4. Therefore, many theoretical investigations are still untested.

• The ability to dilute the rare earth sites with nonmagnetic ions like Yttrium (Y),

where the structure survives without a major change except for slight differences

in the lattice constants, opens an arena to explore disorder and randomness

effects [3].

The materials are electrical insulators, and optically transparent. The large single

crystals of LiReF4 are available commercially. In addition, compounds with desired

isotopes can be synthesized in laboratories.
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Figure 3.5: LiReF4 unit cell. For better visualization the fluorine ions are only shown
around the central Re atom.

The core of this research project is LiErF4, a representation of the dipolar coupled

planar antiferromagnet (AFM). In addition, a brief study on the phase diagram of

LiHoxY1−xF4 (0.25 ≤ x ≤ 1) was performed, where the experimental results are com-

pared to MF predictions.

3.2.1 Sample preparation

In experimental physics the sample preparation is very important. In single crystal

experiments when a magnetic field along a specific crystallographic axis is required,

the sample alignment is crucial, since slight misalignment can sometimes obscure the

real physics. The simple tetragonal crystallographic structure of LiReF4 family results

in quick and relatively accurate alignment of the single crystals with the laboratory

X-ray Laue diffraction camera. Nevertheless, for the special cases when less than 1

degree accuracy in alignment is required, the usual 2-axis neutron diffractometers are

suggested. In addition, since rare-earth fluorides have low thermal conductivity, they

might have thermalization issue below 1K. A correct sample temperature is essential

35



Chapter 3. Methods and Material

for studying i.e. order parameter or specific heat, where accurate critical exponent

extraction is desired. In this project, the strategy used to improve the thermalization

was to cut the big crystals into thin blades of 1-1.2 mm. The blades were then sputtered

by few µm of gold, and squeezed together with copper foils between them inside a

gold covered sample holder made of copper. This way, waiting time for thermalization

reduced by almost a factor of 6 close to the transition temperature, where the heat

capacity diverges.

Figure 3.6: Selection of some images presenting initial sample preparations for the
experiments. From left to right: A typical Laue image from the tetragonal structure
of LiReF4 – a,b are in the scattering plane. An example presenting the LiReF4 blades
inside a sample holder made of copper, Two LiErF4 gold sputtered plates with a,c
in-plane for LET experiment at ISIS, Setup for the µSR experiment on LTF at SINQ.
Crystallographic c–axis is perpendicular to the big flat surface of the crystals.

3.2.2 Optimal sample thickness for neutron experiments

For the neutron experiments it is important to calculate the optimum sample diame-

ter, which gives the best signal. Considering a rather high absorption cross sections

in rare earths –particularly in Re=Er, Ho in this work – a diameter estimation helps

when weak inelastic signals at low energy scales are under investigation. Scattered

intensity is proportional to the sample diameter squared, and transmission is re-

lated to the absorption coefficient. Hence, the maximum signal is obtained when

d 2 e(−µd) is maximum, where µ is the attenuation factor. For a given composition µ
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3.2. The LiReF4 system

can be computed through http://www.ncnr.nist.gov/instruments/bt1/neutron.html,

supported by NIST Center for Neutron Research. Fig. 3.7 presents an example of

a calculation on LiErF4 and LiHoF4 to choose the proper sample diameter for the

neutron backscattering experiment at SPHERES/FRMII.
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Figure 3.7: Optimal sample diameter calculation for back scattering experiment on
LiErF4 and LiHoF4 with λ= 6.271Å.

3.2.3 Sample environment

The measurements on LiReF4 was performed at dilution temperatures and in magnetic

fields. The magnetic field direction was usually perpendicular to the scattering plane,

although in some cases horizontal magnet was utilized. – The majority of neutron

experiments were performed with split-pair solenoid superconducting magnets, where

the windings are symmetric but split into two parts in an axial direction with a gap

in between. The solenoids are mainly produced from superconducting Niobium-

Titanium (NbTi) commercial superconductors, which can carry large currents. There

are several compromises building such magnets to produce homogenous flux and

leave enough space for the beam access. The required window transparent to neutrons

is usually made of aluminium rings between the two splits or wedge shaped openings
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between the solenoids. The maximum field produced by split–pair coils is about 15T.

– Studies of quantum criticality at low energy scales require temperatures close to

zero, where thermal fluctuations are negligible. Temperatures down to ∼ 20 mK are

achievable with dilution refrigerators. Below ' 0.86 K, the mixture undergoes a phase

separation to produce a 3He–rich phase and 3He–poor phase in the so–called mixing

chamber – to which the sample is attached through pure copper rod ensuring good

thermal anchoring. The cooling power is provided by pumping 3He from 3He–rich

phase to 3He-poor phase. Continuous operation is achieved via circulating flow of 3He

from the diluted regime to the concentrated phase. The apparatus is rather complex

and more information can be found in Ref. [41].

Figure 3.8: Left: A representative image of a dilution stick. The figure is adapted from
[41]. Right: 9T cryomagnet at ISIS.
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4 LiErF4 – a novel planar dipolar antifer-

romagnet (AFM)

The dipolar force between magnetic moments is present in all magnetic systems, from

classical to quantum magnets, from bulk materials to nano–particles. However, while

there exist many studies of systems with short range forces, like the exchange-coupled

Heisenberg antiferromagnet RbMnF3, the dipolar-coupled systems, especially antifer-

romagnetic (AFM) ones, have received less attention mainly due to a lack of physical

realizations. An excellent subject to test the physics of dipolar-coupled systems are the

rare earth (Re) lithium tetrafluorides, LiReF4, where the tightly bound 4 f electrons

are far enough apart for the dipolar interactions to dominate exchange interactions.

In this chapter, the experimental results on the magnetic order, the classical and quan-

tum phase transitions, excitations, magnetic correlations and fluctuations about the

critical points for LiErF4, an antiferromagnetic (AFM) member of the LiReF4 family,

are presented. The structure is organized as follows:

• The existing information and previous studies on the LiErF4 system are summa-

rized in the introduction.

The results obtained from this work are:

• The specific heat measurements presented in 4.2.

• AC-susceptibility measurements of both natural and isotopic samples presented

in 4.3.

• Order parameter studies of natural and isotopic samples of LiErF4 shown in 4.4.

• Complementary techniques to study order parameter presented in 4.5.
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• Critical scattering and correlation length measurements in the vicinity of the

phase transitions shown in 4.6.

• Excitations and dynamics modeled by MF/RPA presented in 4.7.

4.1 Introduction

Two members of the LiReF4 family, LiHoF4 and LiTbF4 – with magnetic orderings at

1.53 K and 2.87 K, respectively – owing uniaxial dipolar ferromagnetism due to a large

effective g –factor along the local symmetry (g∥) while the planar factor (g⊥) is almost

zero, have been mostly considered [15]. Their low temperature ferromagnetic ordering

is in agreement with the predictions [42] obtained by generalization of Luttinger-

Tisza theory ([43]). Hansen et. al studied the magnetic susceptibility of the LiErF4

compound in the range of 1.3−300 K, where no transition to a magnetically ordered

state was observed due to not having access to lower temperatures [13]. Nevertheless,

they found the largest susceptibility along the crystallographic a axis, with χa
χc

' 2 in

the 10−300 K temperature range. The slope of the inverse (reciprocal) susceptibility

versus temperature (dχ−1/dT = 1/C ) was the same for both in-plane and out-of-

plane components all the way down to 10 K, where below that 1/Cc = 110 g/cm3 K and

1/Ca = 36 g/cm3 K (C is the Curie constant). Furthermore, magnetic susceptibility

measurements from Beauvillain et.al at 3He temperature could reveal a transition

in LiErF4 at 0.38 K [14], with g∥/g⊥ ≈ 0.39. EPR studies by Magariño et.al. provided

more information, proving the XY nature of LiErF4 magnetic moments, and a planar

anisotropy with the periodicity of 90◦ [17].

The above statements confirm the lack of existing information on LiErF4 until 2009,

when the magnetic structure and the nature of the phase transitions were determined

for the first time via neutron diffraction studies [19]. The Hamiltonian magnetic model

for LiReF4 contains crystal field, external field and hyperfine coupling to the nuclear

spins, as well as dipolar and exchange interactions (eq.2.3):

H=∑
i

[
Hc f (Ji )− gµB Ji ·H+ AJi · Ii

]
(4.1)
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−1

2

∑
i j

∑
αβ

JD Dαβ

i j Jiα J jβ−
1

2

∑
i j ,n.n.

Jex Ji · J j

The dipole interaction follows the classical dipole tensor:

Dαβ

i j = 3(riα− r jα)(riβ− r jβ)−|ri − r j |2δαβ
|ri − r j |5

. (4.2)

Its peculiar spatial anisotropy is illustrated in Fig.4.1. In LiHoF4, the moments point

along z, and nearest neighbors (NN) are coupled ferromagnetically. In LiErF4, half the

NN couplings are AFM, the other half FM, and rotating the moments by 90 degrees

switches between FM and AFM interactions. In LiHoF4 the exchange interaction is

small [5], which given the similar wavefunctions for Ho and Er, is also expected for

LiErF4. The hyperfine coupling A = 0.5(1) µeV for 167Er [44] is weaker than in LiHoF4

[5] and, importantly, is tunable. The ground state of Er3+ is 4 f 11, and based on Hunds’

rules have the 4I15/2 configuration . The first excited state lies at about 2.2 meV above

the ground state doublet [19]. Therefore, at low temperatures the state mixing is

negligible.

An effective Hamiltonian for low temperature studies can be written as:

He f f =
∑

i jαβ
J αβ

i j σαi σ
β

j + g⊥(σx
i B x +σy

i B y )+ g∥σz
i B z , (4.3)

where σi denotes the Pauli operators, and J αβ

i j = (µB g )2CαCβDαβ

i j the magnetic

coupling tensor between the effective S = 1/2 spins Sα =Cασ
α with Cx =Cy = 3.48,

Cz = 0.94, calculated by the crystal field refinement. g⊥ = 2gCx = 8.35 and g∥ = 2gCz =
2.25, which directly reflect the pronounced XY-anisotropy of the system.

The electric field from neighboring ions act differently on the orbital wave-functions,

and, restricted by the local symmetry, gives

Hc f =
∑

l=2,4,6
B 0

l O0
l +

∑
l=4,6

B 4
l (c)O4

l (c)+B 4
6 (s)O4

6(s), (4.4)

where Om
l are the Stevens operators [45], with e.g. O0

2 = 3J2
z − J(J+1). In LiHoF4, a
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dominant negative B 0
2 leads to a strong z-axis Ising anisotropy, while a positive B 0

2

leads to planar XY anisotropy in LiErF4.

Figure 4.1: Magnetic structures of LiReF4: The ferromagnetic c-axis order in LiHoF4,
and bi-layered antiferromagnetic (BLAFM) order with moments along x- or y-axis
in LiErF4. The dipole field from the central moment yields FM (red-scale) and AFM
(blue-scale) couplings. Sign and strengths of the coupling depend on the direction
of the moments. In the BLAFM structure, nearest and next-nearest couplings are
vDxx

1 =−5.5 (AFM), vDxx
1′ = 2.5 (FM) and vDxx

2 = 4.2, v = a2c. The crystal structure is
tetragonal, space group I41/a with a = b = 5.162Å and c = 10.70Å.

A detailed and comprehensive crystal field study is performed in [19], where the full

set of cf parameters, obtained through neutron spectroscopy, is presented. Tables 4.1

and 4.2 represent the obtained cf parameters and energy levels of LiErF4 from neutron

scattering compared to the previous studies.

The magnetic structure was determined by single-crystal and powder neutron diffrac-

tion [19]. Magnetic Bragg peaks at (h +k + l =odd), distinct from the structural peaks

(h +k + l =even), proved explicitly antiferromagnetic order. Intensity inspection lead

to the bilayered antiferromagnetic (BLAFM) structure, which was verified by powder

diffraction. The BLAFM has 2 equivalent configurations with moments along the

a-axis or b-axis, respectively. A very small field of 300 Oe along the b-axis suppressed

the (100) reflection, thus populating a single a-axis domain. Hence, the zero-field

structure is a distribution of spatially separated domains with moments along the
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103B 0
2 103B 0

4 103B 4
4 (c) 105B 0

6 106B 4
6 (c) 106B 4

6 (s)

neutron 60.2258 -0.1164 -4.3280 -0.19 -85 -22.7

pointcharge [19] 26.9 -0.12 -1.74 -0.04 -11.5 -2.4

Ref. [13] 67.7 -0.68 -6.82 -0.08 -133.0 -24.3

LiHoF4 [5] -60.0 0.35 3.6 0.04 70 9.8

Table 4.1: Crystal field parameters of LiErF4 in meV. The parameters refined from
inelastic neutron scattering are compared to a point-charge calculation and values
found in literature [13].

measured calculated Ref. [17] Ref. [13] Ref. [24]

2.23 ± 0.05 2.23 2.30 2.30 2.20

3.52 ± 0.05 3.52 2.90 3.80 2.50

7.00 ± 0.05 7.01 - 8.20 7.40

Table 4.2: Crystal field levels of LiErF4 in meV with respect to the ground state. All
states are Kramers degenerate doublets. The measured energies are compared with
the values from a calculation which uses the refined set of crystal field parameters
and with values from literature.

a-axis and the b-axis, respectively.

The phase diagram as function of temperature and field along the c- and b-axes is

summarized in Fig. 4.2. The transition temperature TN = 373±5 mK agrees with

the previous reports [14]. For fields along the c-axis, the intensity at Q=(010), cor-

responding to the order parameter squared, disappears at a sharp quantum phase

transition at Hc|| = 4.0±0.1 kOe. For fields along the b-axis, the Q=(100) Bragg peak

disappears due to mono-domain formation. The (003) peak, which is independent

of ab-domains, decreases towards Hc⊥ ' 2.1 kOe, but a long tail remains up to 4 kOe.

The (103) peak, measuring the uniform FM component, grows towards a kink at Hc⊥,

corresponding to maximal polarization of the ground-state doublet. Above Hc⊥ a

weak linear increase, coming from mixing-in higher lying crystal field levels, is well

reproduced by the MF prediction.

A mean-field (MF) calculation yields a qualitatively correct phase diagram. In LiHoF4,
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the MF treatment accounts for most of the phase diagram except close to TC , which

is overestimated by 37% [3, 5]. In LiErF4, T MF
N = 728 mK, H MF

c|| = 5.25 kOe and

H MF
c⊥ = 3.25 kOe are all dramatically overestimated. Unlike LiHoF4, any NN exchange

interaction cancels in the BLAFM and cannot fine-tune the phase boundary. Including

hyperfine coupling has little effect: Hc|| = 5.75 kOe and TN = 735 mK.

Figure 4.2: a-c) Field–temperature phase-diagrams from the intensity of magnetic
Bragg peaks: (010) with H ||c, (003) and (100) with H ||b. d,e) Field dependence of
intensities at T = 100 mK for field along c: (010) and along b: (100), (103), (003). f)
Temperature dependence of the (003) intensity. In d-f), dashed lines are mean-field
predictions. Solid lines are the same with temperature and field axes scaled by 0.52
and 0.76, respectively, to match the measured TN and Hc .
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4.2 Specific heat measurements

Specific heat (Cp ) studies provide information on the magnetic energy of the system.

In fact, integration of the Cp curves gives the energy and entropy of the ordered state.

In addition, because of the low ordering temperatures of LiReF4 family, the phonon

contributions to specific heat are negligible or less pronounced and Cp measurements

shed light on the magnetic characteristics of the systems. Mennenga et. al considered

the heat capacity of several members of the family, including Re=Er [15]. By comparing

the measured and calculated entropy and energy values, they established the layered

antiferromegnetic (LAFM) as the favorable magnetic structure of LiErF4, under the

assumption that the exchange coupling is small. There, for instance, the quality of

the data was not sufficient to track the behavior of the Cp curve close enough to the

transition temperature to investigate the universality class of the system.

In this work, the specific heat measurements were performed at the Helmholtz Center

in Berlin (Laboratory for Magnetic Measurements LaMMB - MagLab) using a cryogenic

system consisting of an Oxford Instruments 14.5 T cryomagnet and a Heliox 3He insert.

This experimental setup is mainly dedicated to high-resolution caloric measurements

at temperatures between 260 mK and 20 K. The heat capacity data were obtained

using the standard pulse relaxation method. A single crystal of LiErF4 with dimension

3x5x0.2 mm3 (m = 7.3 mg) was attached onto the sapphire chip calorimeter with a

small amount of (Apiezon N) grease (Fig. 4.3). Temperatures were measured using

Lakeshore Cernox thermometers with an rms noise of 3 µK at 300 mK. The large

contact area to the very thin sample ensured a fast sample–chip thermalization (≈ 5 s),

completely separated from the long (≈ 1000 s) relaxation time to the thermal bath.

This separation of relaxation times together with the very low noise in the temperature

measurement, allowed measurements with relative temperature increments down

to 0.05 %. Most data were collected with temperature increments of 0.2 %, which

was verified to give identical results to the 0.05 % data, but with better statistical

quality. A typical time-scan of the thermometer on the calorimeter chip during a

heat pulse is depicted in Fig. 4.4. The heat capacity of the sample, Cp , was obtained

from the total heat capacity by subtracting the contributions of the sapphire chip and

grease, which constituted < 0.2% of the total at TN . In addition, the shape of the Cp

curves obtained from natural sample revealed a rounding of the thermal transition
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on the order or 1% in reduced temperature. There was the idea this to be due to

the hyperfine coupling in the 23% of naturally occurring Er-nuclei that carry spin.

However, the measurements on a crystal grown using isotopically pure 168Er, which

has no nuclear moment, result in no significant differences that could be observed

within the accuracy of the measurement.

Figure 4.3: Photo of the 3x5x0.2 mm3 crystal of LiErF4 mounted on the sapphire chip
calorimeter, suspended from a copper heat bath.

Fig. 4.5 summarizes the specific heat measurements on LiErF4, with the method

mentioned above. The pronounced peak at T ' 0.37 K establishing the magnetic

phase transition [15] is in agreement with the previous studies [15] and the neutron

scattering measurements in this work. Panel a of the figure shows the heat capacity

measurements at several fields. The transition temperature (TN ) decreases in field and

the long tail above TN , which continues to high temperatures, is more significant than

in the ferromagnetic LiHoF4 and LiTbF4 [46, 47, 48]. At high temperatures, the specific

heat is dominated by the magnetic interactions (following T −2 in leading order [15]),

crystal field and phononic contributions. The latter with the tendency of ρT 3, where

ρ = (6.6±0.1 ·10−7)J/g K4, is less pronounced after cf subtraction at high temperature

around 11 K. This is in contrast with the results in [15], where, by mistake, the higher

level cf part was assumed to be phonon contribution. Around TN , the specific heat
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follows the universal power law

Cp = A |τ|−α +B , τ= T /TN −1, (4.5)

for T < TN and T > TN around the critical regime. As indicated in the c panel of

Fig. 4.5, the fit to the data in reduced temperature satisfies equal exponent values

(α=−0.28 ±0.04) below and above TN within the window t ≤ 0.03, while A+/A− =
1.68 ±0.04. Subtracting B reveals a crossover to α = −0.07 ±0.05 for τ > 0.03. The

extracted critical parameters are far from the mean field predictions and the 3D

models. In panel d, the Cp (T ) curves at different fields are scaled to the peak heights

in reduced temperature. Below TN the curves collapse to a single unique curve.
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Figure 4.4: Typical time–scan of the thermometer on the calorimeter chip during a
heat pulse. In the initial state (up to t = 400 s), the chip is in equilibrium with the
thermal bath, to which it is weakly coupled. During the 30 second long heat pulse,
there is a steep rise in temperature. The 5 s long, sharp drop in temperature marks
equilibrium between chip and sample. Thereafter a slow equilibration back towards
the thermal bath temperature is observed with the exponential relaxation time of
1060±10 sec.
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Figure 4.5: a) Specific heat versus temperature for several fields along the c-axis. b)
Above 2K, specific heat is described by the crystal field Shottky anomaly (cf) and very
weak T 3 phonon contribution (red line). c) Power law behavior of specific heat at H =
0 T determines critical exponents. d) Curves measured at different field values shifted
to the same peak center and normalized by peak height to compare the evolution of
peak shape. Below TN the data collapse onto a unique curve.
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4.3 AC susceptibility measurements

The AC susceptibility technique measures the local flux density (B), induced inside

a sample through an external excitation HAc = HAc0 cos(ωt) generated by a coil. The

sample response is then collected by a second inductive coil, where its real and

imaginary parts are [49]:

χ′ =
(

ω

πµ0HAc0

∫ 2π/ω

0
< B > cos(ωt )d t

)
−1, (4.6)

χ" =
(

ω

πµ0HAc0

∫ 2π/ω

0
< B > sin(ωt )d t

)
(4.7)

χ′ measures the elastic in-phase component of the susceptibility, whereas χ" indicates

the dissipation in the system.

The AC susceptibility measurements on LiHoF4 revealed the MF behavior of the

system around both thermal and quantum phase transitions [50]. χ′ diverges at the

transition temperature, and a power law fit results in a critical exponent γ= 1±0.09,

in agreement with the MF predictions [51]. The same behavior is observed at QPT,

confirming the fact that the system retains its MF character, while entering quantum

ferromagnetic transition. Below 400 mK, the phase diagram revealed a sudden upturn

in Hc , reflecting the Ho nuclear moments’ alignment by the hyperfine interaction [3].

The AC susceptibility measurements on LiErF4 were performed on a 1×1×10 mm3

piece of natural single crystal, and a 1×1×1 mm3 piece of the (168Er) isotopic single

crystal. The AC field was set to ≈ 42 Oe and the crystallographic c-axis of the samples

was aligned with the direction of the DC field. Thermalization was carried out using

1200 µm diameter copper wires, which from one end anchored to the copper plate of

the weak link and from the other end attached to the sample using Stycast W 19. Due to

the fact that the two samples had different geometries, the demagnetization was taken

into account simply by scaling the magnetic field data by a constant, so that the bulk of

the measured phase diagrams overlap. The measured T-H phase diagram of the natural

sample is shown in Fig. 4.6, in agreement with neutron scattering results. Above 2 kOe,
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TN (H) scales as a power law with exponent 0.34±0.01. At Hc , χ(T ) exhibits quantum

critical scaling following a power-law exponent 0.70±0.03 up to 250 mK, above which

it crosses over to the classical Curie-Weiss behavior. This behavior around the QCP is

in stark contrast to the MF behavior observed in ferromagnetic LiHoF4 [50].
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Figure 4.6: Susceptibility along the c-axis in LiErF4. a) Susceptibility χ(T ) normalised
for each field. Peak positions are marked by crosses (χ(T )) and diamonds (Cp (T )).
Black line is power law fit to TN (H). b) χ(T ) just below, at and just above Hc . At Hc ,
χ(T ) displays quantum critical scaling with exponent 0.70±0.03 (solid line), up to a
crossover around 250 mK, above which, regular Curie-Weiss behaviour C /(T −θCW )
with θCW =−0.55±0.01 K describes the data (dashed line).

In Li168ErF4 (fig. 4.7), the AC response from the sample is clearly more rounded than

in the case of the natural sample. This could be due to a lower quality of the isotopic

sample. Indeed, the sample is less optically transparent. At the base temperature (T ∼
35 mK) the critical field (Hc ) of the isotopic sample is lower than the natural sample.

This tendency continues until T ∼ 260 mK, where both curves show similar response.

Fig. 4.7 exhibits this behavior at different temperatures. Furthermore, the phase

diagram could be mapped out by performing field scans at different temperatures

(Fig. 4.8). The Hc values were determined from the position of the χ′ peak. An

alternative way to extract the critical field is the minimum of the second derivative

of χ′ (d 2χ′/d H 2) curve. The comparison between the phase diagrams obtained for

both samples shows that the upturn around the quantum critical point in the natural
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sample is due to the hyperfine interaction between the nuclear and electronic spins,

which vanishes in the nuclear spin free isotopic Li168Er F4 case. This result gives the

first experimental demonstration of the importance of hyperfine effect on the low

temperature part of the phase diagram.
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Figure 4.7: Real response of the AC-susceptibility (χ′) comparison of natural (blue)
and isotopic LiErF4 (red) samples versus field at three different temperatures. At the
base temperature, the Hc value of the isotopic sample is lower. The curves move closer
to each other until T ∼ 260 mK, where they overlap.
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states. It vanishes in the isotopic sample due to the absence of nuclear spin in the 168
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4.4 Order parameter studies of LiErF4 by neutron scat-

tering

In this section, order parameter investigations performed on both natural and isotopic

samples, and the related critical exponents (revealing interesting possibilities for the

universality class of the system) are discussed. Further separation of the system

from the expected 3D behavior is supported by the critical scattering and spin-spin

correlation length studies presented in the next section.

4.4.1 Order parameter studies of the natural sample

As mentioned, rare earth fluorides are insulators with rather high heat capacities. In

the critical experiments like order parameter or correlation length studies – where

knowing the exact temperature of the sample is important for subtle analysis – one

should make sure that the sample is well thermalized with the the temperature of the
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thermometer attached or close to it. To improve the thermalization of the samples,

a 10×10×30 mm3 single crystal of LiErF4 was cut into blades of 10×1.5×30 mm3.

The blades were then gold plated and squeezed together (with 150 µm of copper foils

between them) inside a holder out of copper, covered with a few µm of gold.

Because the specific heat of the sample (Fig.4.5) is maximal at the transition tempera-

ture, the waiting time for thermalization increases close to TN . Figure 4.9 compares the

time scan of the Q=(100) magnetic Bragg peak intensity at two different temperatures.

The thermalization was tracked by setting the sample temperature to the desired value

and counting the intensity of the Bragg peak (BP) as a function of time. The required

thermalization is achieved when the intensity is constant in time – confirmed by a

simple exponential fit of the obtained curve.
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Figure 4.9: Intensity versus time scan of the (100) magnetic Bragg peak at base
temperature (left) and transition temperature (right). The maximum waiting time for
thermalization is ∼ 100 min.

Order parameter experiments of both natural and isotopic samples were carried on

the E4 2-axis diffractometer and V2 (FLEX) cold triple axis spectrometer at Helmholtz-

Zentrum in Berlin. The sample was aligned with ab in the scattering plane and the

magnetic field was applied along the c axis. At the elastic line, ∼ 110 µeV resolution

was achieved at FLEX with ki = k f = 1.55 Å−1. Because the relevant energy scale of the

system is below this value (<0.1 meV), the measurements are effectively integrated

over the relevant energy range. Therefore, with proper selection of collimators critical

scattering (correlation function (s(q)) integrated over energy) could be investigated on
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TAS with the advantage of the low background. The analyzer was fixed at the elastic

position during the whole time. The advantage of the analyzer is an improvement of

the signal to background ratio, compared to normal diffractometers. A Beryllium filter

was placed in front of the analyzer to prevent the contamination by higher harmonics.

There are two ways of measuring the order parameter: either to measure the intensity

of the magnetic BP as function of temperature/field, or to perform reciprocal space

scans (Q) at each value of temperature/field. The advantage of the first choice is the

fast data acquisition. Besides, the uncertainties from the movement of the sample/in-

strument and the possible misalignment is prevented in this method. On the other

hand, the second choice is more time consuming, but provides information on the the

overall change of the signal distribution in Q space. The method is more appropriate

for the case of correlation length studies, where diffuse scattering around the intense

Bragg peak is being investigated. In the presented data, several scans are performed

for each value of field/temperature. The quality of the measurements were tested by

comparing the Q scans. Therefore, any sudden change in the background/intensity

of the signal could be observed. These information could not be obtained from the

simple temperature/field ramp at the BP.

At zero field, the onset of the order parameter appears at TN = 370 mK. An applied

magnetic field of H ∼ 4 kOe along the crystallographic c-axis at base temperature (∼
80 mK), destroys the ordered state through QPT. The reciprocal space scans (obtained

by the rotation of the sample by ±15◦ away from the magnetic BP), were fitted with

a Lorentzian line shape – which can describe the critical correlations on the sides

of the BP – folded with a Gaussian function with the fixed width corresponding to

the finite instrumental resolution. Figures 4.11 and 4.10 demonstrate the intensity

of the Q=(010) magnetic BP versus field and temperature. Order parameter obeys a

universal power–low behavior close to the transitions. The critical exponents extracted

in the vicinity of both thermal (βT = 0.15±0.02) and quantum phase transition (βH =
0.31± 0.02) are depicted in the Fig. 4.11. These values significantly deviate from

β= 1/2 predicted by the mean-field theory. Critical scattering, which diverges at the

critical points, provides an independent way of TN and Hc determination, and thus

ensures the accuracy of the fits.
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the c–axis at T = 80 mK (blue circles) and critical scattering (red squares) extracted
by fitting a resolution–corrected sum of a delta function and a Lorentzian to Q scans.
The red line is the power law–fit.
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4.4.2 Discussion

Here, the nature of the phase transitions is discussed. With respect to the classical

phase transition, the extracted order parameter exponent (βT = 0.15± 0.02) is far

from β= 0.3−0.35 of the standard 3D universality classes [51]. It instead satisfies the

window 0.125−0.23 reported for 2D-XY criticality [52]. In addition, the specific heat

exponent α = −0.28±0.04 is more negative than α = −0.13 to −0.198 predicted for

classical, dipolar and quantum 3D Heisenberg models. Both exponents are consistent

with recent Monte-Carlo studies on a dipolar 2D bi-layer square lattice, reporting β=
0.18±0.02 and α'−0.4 [53]. It is important to consider the other critical exponents

for more subtle explanations of the observed behavior. The four additional exponents

are specified by γ,ν,δ and η notations. γ and ν are related to the susceptibility and

correlation length of the system, respectively. δ describes the variation of the order

parameter in field (M ≈ H 1/δ), and η is the anomalous scaling dimension of the

spatial correlation function (< S0Sr >= |r |d−2+η). The latter two are valid exactly at the

transition points. The renormalization group introduced by Wilson in 1970 provides

a method to calculate the critical exponents. In fact, the value of the exponents

depend on the spatial dimension, symmetry and range of the interactions, but not

on their form and magnitude. Therefore, there exist universality classes, where the

transitions belonging to the same universality class have the same critical exponents.

A remarkable feature is that not all of the exponents are independent. For instance:

α+2β+γ= 2 (4.8)

γ=β(δ−1). (4.9)

Combining these relations with the hyperscaling relations γ= (2−η)ν and α= 2−dν,

δ= 2−α
β

−1 (4.10)

η= 2−d
δ−1

δ+1
(4.11)

could be obtained, which are believed to be the super universal exponents, depending

only on the spatial dimensions. Inserting the extracted thermal critical exponents from

specific heat (α=−0.28±0.04) and order parameter (βT = 0.15±0.02) into Eq. 4.10
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results in δ' 14.2. In addition, injecting δ into Eq. 4.11 gives η= 0.26 for d = 2. This

value of η (which is different from zero predicted by MF) signals strong fluctuations

in the system, and is consistent with the large deviation in transition temperature

from the mean-field prediction (723 mK). For 3D (Ising, XY and Heisenberg) δ= 4.7,

η= 0.03 are expected [51], whereas δ= 15 and η= 0.25 are known for the 2D (Ising and

XY/h4) systems [54, 52]. Therefore, exponent δ= 14.2 for LiErF4 matches very closely

the reported 2D values. 2D behavior of the thermal phase transition, which is not

expected from the long-ranged 3D nature of the dipolar interactions, is very surprising.

The observed effective dimensional reduction of the system could have been arisen

from quantum fluctuations and the anisotropic nature of the dipolar interactions

Based on Mermin-Wagner theorem the long-range order in pure 2D XY models is not

possible, but even infinitesimal 4-fold (h4) anisotropy leads to conventional order

slightly above the Kosterlitz-Thouless transition. It is reported that weak h4 anisotropy

results in the effective exponents η' 0.35 and β' 0.23 [52], which on increasing h4

approach η= 0.25 and β= 0.125 [55]. The estimated h4 anisotropy in LiErF4, provided

below, is roughly close to the predicted value by Taroni. et.al. for β= 0.15 (obtained

for LiErF4) on a square lattice nearest neighbor.

Regarding the quantum phase transition, the βH = 0.31±0.02 extracted for the critical

exponent of the order parameter close to the quantum critical point is in agreement

with the classical 3D systems, further confirming the Hertz result that a QPT in a

d-dimensional system (2D XY/h4 in this case) scales as a classical system in d+1

dimensions [56].

4.4.3 Order by disorder phenomena

In the previous section, "order by disorder" was mentioned as a possible explanation

for the nature of the spin space dimensional reduction in LiErF4. The concept of

order by disorder was first introduced by Villain et.al. in 1980 [57], when studying

a frustrated Ising model on a square lattice. At T = 0 the system is disordered. At

higher temperatures where thermal fluctuations are present, a true transition to a

ferrimagnetic state is observed. In addition, the ordered state could be preserved

by site dilution with nonmagnetic ions, so the idea of "order by disorder" came out

for the first time. Similar phenomena exist in quantum systems. There, quantum
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fluctuations induce symmetry breaking in a degenerate ground–state manifold. At

low temperatures some particular collinear states are entropically selected. Such a

selection of order by quantum fluctuations was presented by Henley [58].

In LiErF4, there is a continuously degenerate ground state manifold at the mean-field

level, which is obtained by rotating the spins in the adjacent layers of the BLAFM

system alternatively clockwise and anti–clockwise by an angle θ. But in reality when

the fluctuations are present in the system, the symmetry is broken and the structure

with spins pointing along a or b directions is preferred. Therefore, the spins only

adopt angles of θ = 0,π/2,π,3π/2. In fact, with RPA the initial slope of the dispersions,

and therefore the low energy density of states, as a function of θ can be calculated.

The slope is minimal and the density of nearby low–energy states are maximal when

moments are along a or b–axis. Hence, a reduction to the four–fold h4 degeneracy

could be explained via order by disorder mechanism.

4.4.4 h4 anisotropy and universality class

There are two possible sources of the proposed h4 anisotropy in LiErF4: 1) One has

its origin in crystal field. In LiErF4, the crystal field parameters B 4
4 ,B 4

6 (s) and B 4
6 (c)

induce planar anisotropy to the system. 2) The second anisotropy comes from order

by disorder phenomena, discussed earlier. In order to understand the strength of the

anisotropy induced from each source, the corresponding h4 terms should be evaluated.

According to the Monte Carlo simulations by Taroni. et.al on a nearest neighbor square

lattice clock model [55], the value of h4/J ' 1 yield effectiveβT = 0.15 (J is the coupling

strength). This is the value obtained in the classical regime for LiErF4. To relate their

results to LiErF4 with long ranged dipolar couplings, the calculations can be compared

within the MF approximation. The nearest neighbor square lattice has 4 neighbors

(hMF = 4J), which gives h4/4J ≈ 1/4 for the case of β = 0.15. Considering the MF

ground state dipolar energy, the h4 terms introduced by each source of anisotropy

could be evaluated (see Appendix B for more details):

hMF = ∑
i , j ,α,β

JD J2
x y D(i , j ,α,β) = 60.25 µeV. (4.12)
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1. Clock model was implied in LiErF4 by calculating the classical energy of the

crystal field while rotating the magnetic moment of length Jx y = 3.28 (being one

of the states from the lowest-energy crystal-field doublet) in the plane. This

results in h4(c f ) = 0.11 µeV, and therefore, h4(c f )/hMF = 0.0018 ∼ 0.18%. Hence,

the h4(c f ) anisotropy originating from the crystal field is nearly negligible, and

insufficient to explain the observed β= 0.15 in LiErF4.

2. For dipoles on a diamond-lattice, Henley addressed the quantum fluctuations as

the source of order by disorder (obdo) at 0 K [59, 60]. LiErF4 is in fact a distorted

version of the diamond lattice. Therefore, Henley’s argument can be used to

calculate the size of the anisotropy induced by dipolar interactions in LiErF4.

Following their expression, obtained by second order perturbation theory, the

energy correction to the ground state is h4(obdo) = 5.26 µeV for LiErF4. This

gives h4(obdo)/hMF = 0.09, roughly of the same order of magnitude predicted

by Taroni et.al [55]. Hence, the anisotropy induced from order-by-disorder

may play role in the observed βT = 0.15 (signalig a 2D universality class) at the

thermal phase transition. Of course, this agreement should only be taken as an

order of magnitude, because the comparison is done to a nearest neighbor clock-

model on a 2D square lattice and not to a 3D dipolar coupled lattice. Secondly,

Henley calculates quantum fluctuations, whereas it might be necessary to also

include the thermal fluctuations around TN .

4.4.5 Order parameter studies of the Isotopic sample

Order parameter studies on the isotopic sample were performed at E4 two-axis diffrac-

tometer at HZB in Berlin, on a 2×2×20 mm3 single crystal covered with a few µm of

gold. The sample was aligned with c-axis perpendicular to the scattering plane. The

aim of the experiment, was to investigate the effect of the hyperfine interaction on the

phase diagram; especially in the vicinity of the QCP – where quantum fluctuations

compete with low energy scale interactions so the hyperfine effect is expected to be

more severe [61]. Below T ∼ 370mK, the Q = (100) magnetic reflection exhibited

the best signal-to-noise ratio. The BP intensity was obtained by fitting a resolution–

corrected sum of a Gaussian and Lorentzian functions to crystal rotation (ω) scans.

Due to the poor q resolution of the instrument, the intense BP separation from the
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weak wide diffuse scattering, and therefore the proper critical scattering studies were

difficult. Figure 4.12 demonstrates an example of a typical ω scan around the BP.
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Figure 4.12: Typical ω scans transverse to Q=(100) reflection at different temperatures.
The scans are have been fitted to a resolution–corrected sum of a Gaussian and
Lorentzian functions.

The order parameter curve of the classical phase transition is similar to the result

obtained from the natural sample. Close to TN , the thermal fluctuations are strong,

therefore a proper fit to the scans is difficult. The exponent β could vary between

0.16−0.24, and βI
T = 0.16±0.03 gave the best fit. Fixing the exponent to 0.3, to test the

probability of a 3D value, increased the uncertainty of the fit. Figure 4.13 shows the

behavior of the two samples’ classical order parameter, where the curves have been

scaled to ease the comparison.

Surprisingly, in the presence of an applied magnetic field (H ∥ c) – at base temperature

– the order parameter of the isotopic system behaves very differently from the natural

sample. The critical exponent (βI
H = 0.5±0.01) is MF-like, and is far off from βN

H =
0.31±0.02, obtained from the previous measurements on the natural sample (Fig.

4.14). This odd behavior could in principle come from three sources: (1) the absence of

the hyperfine effect in Li168ErF4, which could re-scale the quantum fluctuations close
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Figure 4.13: Intensity (order parameter squared) of Q=(100) BP versus temperature
for natural (red squares) and isotopic (blue circles) samples. The curves have been
scaled for better comparison. As the power–law fits around the critical region indicate
(inset), both curves have the same critical exponents.

to Hc . Its effect on the phase diagram was already observed from AC-susceptibility

measurements (Fig.4.8). On the other hand, the hyperfine coupling in natural Er is

very small (∼ 0.5 µeV). Therefore, it is difficult to believe such a dramatic effect to

be just the result of hyperfine–free interaction in the isotopic sample. (2) Another

possibility for the observed discrepancy could be the sample quality. Growing an

isotopic sample is more difficult than the one with natural abundancy. Optically, the

Li168ErF4 sample is porous and is not as perfect as the natural sample. Therefore, it

is possible that the existence of some amount of impurities could have changed the

sample characteristics. But given the same values for both TN and Hc and similar

classical exponent, this probability is weakened. (3) One more reason could be the

demagnetization effect due to the different shape of the measured samples. LiErF4

(natural) sample is a rectangle with the long (∼ 30mm) length along the c axis. On the

other hand, the isotopic sample is needle–shaped, with length ∼ 30◦ away from the

field direction (∥ c). The higher demagnetization field in the isotopic sample is obvious

due to its larger Hc value – by roughly ∼ 10% – compared to the Hc of the natural

sample. In fact, the demagnetization field lowers the effective field on the sample so
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the critical field appears at a higher value. In the rectangular (natural) sample, since

the path of the magnetic field is large (it is almost 3 times larger than in the other

two in–plane directions) the demagnetization field is small (as usually for needle-like

samples). However, in the isotopic sample – where its irregular shape makes the

demagnetization field calculation complicated – it seems that the thin path of ∼ 2 mm

is more preferable for the magnetic flux to pass through, rather than through the

relatively larger distance outside the sample (disk-like). Whether the demagnetization

field can alter the exponent, and if so, how much, is not clear. One should notice that

in LiErF4 g⊥ ∼ 4g∥, so the longitudinal demagnetization field should not be sizeable.

Hence, the noticeable difference between the order parameter curves of the samples

at QPT is a mystery and needs further inquiries.

0 2 4 6
0

0.4

0.8

H (k Oe)

I /
 I 0

βN
H
 = 0.31 ± 0.02

βI
H
 = 0.50 ± 0.01

Figure 4.14: Intensity (order parameter squared) of Q=(100) BP versus applied field
along the c–axis. The isotopic sample (red squares) clearly shows a different exponent
(MF-like) from the natural (blue circles) sample (3D class). The slightly higher value of
Hc in the Li168ErF4 system could be due to the demagnetization effect mentioned in
the text.

Due to the lack of available dataset, it was not possible to map the detailed shape

of the phase boundary of the isotopic sample. However, the absence of the upturn

around QCP – in agreement with Ac-susceptibility measurements – is roughly visible

at low temperatures. Figure 4.15 displays the evolution of the order parameter curve

as a function of magnetic field (∥ c) at different temperatures.
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Figure 4.15: Intensity (order parameter squared) of (100) BP versus applied field along
c axis at different temperatures. The absence of the upturn at QCP is obvious from the
phase diagram (inset).

4.5 Complementary techniques to study order parame-

ter

The next two subsections introduce neutron backscattering and muon spin rotation

(µSR) as tested methods to investigate the order parameter. Although the experiments

were not successful – as are explained in details in the following – to study the desired

subject, they still provided useful information about the measured systems.

4.5.1 Nuclear spin excitations in LiReF4 (Re=Ho,Er), studied by neu-

tron back scattering technique

According to neutron scattering and AC-susceptibility measurements, hyperfine in-

teractions play an important role in the phase diagram of LiHoF4. Careful studies of

the excitation spectra while tuning through the QCP revealed that hyperfine coupling

to the nuclear spin bath forestalls the electronic mode softening expected for a QPT
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[3]. This limits the ability to observe intrinsic electronic quantum criticalities. As

discussed in sections 4.4.5 and 4.3, the hyperfine interactions – although not dramatic

– also play a role in the phase diagram of LiErF4. Therefore, studying the nuclear

excitations helps in quantitative understanding of the effect. Probing nuclear energies

demands high resolution spectrometers. Besides, low temperatures (T < 1K) are typi-

cally required to suppress any thermal dynamics of the electronic system. Considering

the typical hyperfine splittings of the range of few µeV, high resolution backscattering

neutron spectrometers are suitable to measure their effect [62]. Hence, the inelastic

scattering of the neutrons from nuclear spins can be studied if the nucleus incoherent

scattering is strong enough. In the process of scattering a neutron from a nucleus with

spin I, the spin of the neutron flips with the probability of 2/3. The nucleus, which

the spin-flipped neutron has scattered from, changes its magnetic quantum number

by ±1, due to the conservation of the angular momentum. Therefore, if the nuclear

ground state is split into different energy levels as a consequence of the hyperfine

interactions, the neutron spin–flip causes a change in the energy levels. This energy

change is transferred to the scattered neutron. If the incident energy is higher than the

inelastic signal, one expects a single elastic peak and two inelastic peaks on energy–

loss and energy–gain sides – if the sample has only one stable isotope. Moreover, the

energy of the inelastic signal is proportional to the order parameter in the systems

containing only one magnetic sublattice [63].

Since LiReF4 single crystals are of high quality, the extinction might be an issue. Ex-

tinction is essentially the attenuation of the primary beam by Bragg scattering from

perfect crystals, which increases with the order parameter. Therefore, an extinction–

free way of order parameter determination is to track the hyperfine energy splitting

versus temperature/field. Chatterji et. al. [64] measured hyperfine interactions in

CoF2 through high–resolution neutron spectroscopy. They succeeded in measuring

the order parameter with the critical exponent β= 0.313±0.007. In this approxima-

tion, nuclear moment is simply a spectator measuring the expectation value of the

electronic moments. In systems with strong hyperfine coupling and a low electronic

energy scale, hybridization will happen and the nuclear channel will contain richer

behavior. LiHoF4 and LiErF4 lie on this threshold, when field and temperature allow

tuning from spectator to hybrid behavior. Holmium has only one stable isotope (165

Ho) with 100% natural abundance. Its nuclear spin is I = 7/2, where the nuclear
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magnetic moment (4.17µN ) and the incoherent scattering cross section (0.36 barn)

are fairly large. Therefore, Ho and Ho-based compounds are suitable to study nuclear

spin excitations. On the other hand, Erbium has only one stable isotope containing

nuclear spin (167 Er), I = 7/2 , with only 23% natural abundance. Its nuclear magnetic

moment is −0.56µN , and the incoherent scattering cross section is ∼ 1.1 barn. Hence,

Er-based materials are also good candidates to investigate low energy excitations. The

Hamiltonian of the hyperfine interaction is:

H= A(I · J), (4.13)

where A is the hyperfine coupling. Its value is 3.36 µeV [5] and 0.5 µeV [44] for Ho and

Er ions, respectively. I and J stand for the nuclear and electronic angular momenta,

respectively. At zero temperature, the MF calculation of the single ion hyperfine

interaction – corresponding to the ground state energy change of ∆E = Em −Em±1

(∆I = 1) [65] – gives 19 µeV and 1.7 µeV for Ho and Er ions, respectively. It is a rough

approximation which provides a good starting range to look for the excitations in

the measurement. The experiment was performed at the backscattering neutron

spectrometer SPHERES of the Jülich Centre for Neutron Science located at the FRM II

reactor in Munich. Three blades of LiHoF4 crystals – each with dimension of 10×1.5×
30 mm3 – and one single blade of LiErF4 were used for the measurement. The crystals

were aligned with ab in the horizontal scattering plane. A precise alignment was not

necessary simply because the measurements were performed in zero magnetic field.

The selected λi = 6.271 Å provided δE ∼ 1 µeV resolution at the elastic line. The aim of

the experiment was firstly, a more accurate determination of the hyperfine coupling

parameter (A), which is important for quantitative models. Secondly, an independent

way of measuring the order parameter to ensure the already extracted value for βT

was desired. Figure 4.16 presents the typical energy scan obtained from both systems.

The spectra are the result of summing up the counts of the individual detectors placed

at different scattering angles. Surprisingly, no inelastic signal could be detected from

the samples, nor in any single detector. Several reasons could attribute to no signal

observation: (1) It was found out that the samples were not aligned properly with

respect to the center of the beam, resulting in a loss of some amount of the signal. (2)

The rather high absorption cross sections of Er (∼ 554 barn) and Ho (∼ 225 barn) could

have weakened the signal. (3) Insufficient neutron flux at SPHERES could be another
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reason for the unsuccessful experiment. Ehlers et.al. were able to measure the nuclear

energy splitting of another Ho-based system, Ho2Ti2O7, at the powerful backscattering

spectrometer BASIS at the Spallation Neutron Source (SNS)/Oak Ridge [66]. Based on

their observations, the intensity of the inelastic excitation was less than ∼ 20% of the

elastic intensity, which is of the order of the background in the presented experiment.

However, the idea and the theory behind that are rather interesting. A higher–flux

facility would probably give a more promising result. Especially, the measurement is

more feasible in LiHoF4 due to the rather large hyperfine coupling of the Ho nuclei.

4.5.2 µSR measurements on LiErF4

Since muons are able to probe the local field at the sites they occupy within a lattice

as well as its spatial and temporal variation, they are a suitable tool to study magnetic

systems. To date, no µSR measurements on LiErF4 have been reported. The goal of our

muon experiment on LiErF4 was to measure the AFM order parameter as a function

of field and temperature. Since the muon precession frequency is proportional to the

local field, the µSR signal can track the order parameter. In addition, the measured

signal can provide information about the nature of the internal magnetic field distri-

bution, as well as its width and fluctuations. These measurements could be further

compared with the Ising member of the family (LiHoF4) and improve the knowledge

of the system at the microscopic scale. The experiment was performed on four plates

of gold sputtered 12×4.5×1.5 mm3 single crystals attached to a silver sample holder

side by side (providing a total 12×18 mm2 surface) to optimize the full area coverage

of the holder. The c-axis was perpendicular to the surface of the holder and along the

magnetic field direction. The measurement was carried out at the "Low Temperature

Facility" (LTF) at Paul Scherrer Institut (PSI), in Zero Field (ZF), Longitudinal field

(LF), and Transverse Field (TF) modes. In the LF case, the muon spin were along the

applied magnetic field; and in the TF measurements the muons were implanted with

the spin at 45◦ away from the c-axis. Temperature scans at zero field were performed

from 0.019−3.5 K. A typical example of two ZF runs below and above the transition

temperature is presented in Fig. 4.17. Over the whole temperature range, the data

looked qualitatively similar, and could be fitted by two exponential functions
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Figure 4.16: Top: Inelastic spectra of LiHoF4, measured on the back scattering neutron
spectrometer SPHERES/FRMII at three different temperatures, below and above
Tc = 1.53 K. Bottom: Inelastic spectra for LiErF4 with wide (a) and narrow (b) energy
scans, below and above TN = 0.37 K. No inelastic signal was observed in the range
±30 µeV, mostly due to the insufficient flux.

G(t ,λ) = A f e−λ1t + A(1− f )e−λ2t , (4.14)

where A = 0.138 is the overall amplitude of the signal, which was constant at all

temperatures. f = 0.88 is the fraction of the total amplitude – corresponding to

the first exponential, and λ1 and λ2 are the relaxation rates of the two functions,
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respectively.
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Figure 4.17: ZF asymmetry versus time at two temperatures, below and above TN =
0.37 K. The scans look qualitatively similar. The relaxation to zero asymmetry with
time is a characteristic of magnetic fluctuations, as explained in the text.

The response is different from the usual Kubo-Toyabe (KT) function at static local

fields, with a flat tail reaching to 1/3 at long time. In fact, the extracted signal relaxes

to zero as a function of time, which is more like the behavior expected from magnetic

fluctuations [37]:

G(t ,ν) = Te(T−1)νt , (4.15)

where T is the asymmetry of the static signal at very long times (T = 1/3 for the KT

case), and ν corresponds to the internal field fluctuation rate. As in many fluorine

systems, muons most likely stop at half–way between the nearest neighbor fluorine

nuclei, which are (0 ±1/4 1/8) and (±1/4 0 -1/8) within the unit cell of LiReF4 [67].

The calculated dipolar field contribution from Er ions at these sites summed over

15×15×15 lattices – at the ordered state – is about 22 kOe, which corresponds to

a muon precession frequency of about ν= 298 MHz (the gyromagnetic ratio of the

muon is γ = 135.5 MHz/T). Therefore, a large internal field generated by Er ions

with considerable magnetic moment (J = 15/2), is indeed expected to be observed

in the experiment. It turned out that λ2 (the slower relaxation rate) is temperature
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independent, and most probably comes from a fraction of the muons which did

not land inside the sample. On the other hand, the faster component λ1 (Fig. 4.18)

decreases towards TN while cooling down from 3K, and remains almost constant below

the transition within the error bars. The amplitude of the ZF signal was observed to be

smaller than expected (it is typically 0.25). Since the antiferromagnetic state occurs in

100% of the sample, it is unlikely that the missing asymmetry is due to a fast relaxing

fraction of muons. Instead, it is probable that the field at the muon site is so big that

the signal is quickly relaxed to about 1/3 of the asymmetry within the initial blind

window (5.3 ns); and then the only thing that was observed was the relaxation of the

1/3 tail due to "slow" fluctuations of the local magnetic field. In fact, and from what

was mentioned above, it can be expected that the static µSR signal in LiErF4 relaxes

in a time scale of 3ns (≈ 1/298 MHz) which is smaller than the blind window of the

signal. Within this assumption, the fast relaxing part of the ZF signal can be analyzed

with Eq. 4.15 [37]. Comparing the Eq. 4.14 and 4.15 suggests a proportionality factor

of ν≈ 1.8×λ1 for the internal field fluctuation rate. Unfortunately, the errorbars in

the data are not small enough for further investigation of the order parameter critical

exponent. In the case of LiHoF4 and LiHoxY1−xF4, a large static field generated by

the Ho nuclei, and a fast relaxation rate of the signal could be measured [68]. The

"quasi–static" scenario proposed here for the XY–AFM member of the family LiErF4,

confirms the argument of the larger internal fluctuations of the system with the h4

anisotropy, which results in a larger deviation from the MF predictions.

LF studies at 20 mK were performed in the presence of several magnetic fields applied

in the direction of the muon spins within 0.5–8 kOe range. In contrast to LiHoF4,

where the amplitude of the signal decreases as a function of field, implying a static

internal field of 20 kOe [37], here in LiErF4 the signal amplitude did not vary all the

way up to 8 kOe (Fig. 4.19). This observation confirms that the static internal field

at the muon site is bigger than 20 kOe, in agreement with the "quasi–static" picture

– discussed in ZF analysis. As presented in Fig. 4.19, the relaxation rate of the signal

shows a broad maximum at the transition field.

In TF measurements (Fig.4.20) the muon spin is rotated by 45◦ with respect to the

applied field. A fast oscillation at the beginning of the signals was noticed together with

a fully precessing background. The background was found to have a field–independent
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Figure 4.18: Temperature dependence of the fast relaxation rate (λ1) in zero field.
When cooling from 3.5 K, λ1 decreases towards TN and remains constant below the
transition. Unfortunately, the errorbars are too large to determine the critical exponent
of the phase transition.
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Figure 4.19: LF dependence of the relaxation rate (λLF ) at 20 mK, shows a maximum
at Hc , where the enhancement of the quantum fluctuations are expected.
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relaxation rate and a frequency equal to the Larmor frequency of the muon. The

background was fitted above 0.1 µs, and then it was kept fixed for the early time

(< 0.1 µs) analysis. The fast oscillating part of the signal was fitted to a Gaussian

damped harmonic function:

G(ν, t ) = Ae−(λt )2
cos(2πνt +φ), (4.16)

where the amplitude A = 0.075 was found to be field-independent, and kept constant

for all runs. λ, ν and φ are the relaxation rate, frequency and the phase of the internal

field response, respectively. As presented in Fig. 4.21 all fitting parameters exhibit a

noticeable change in the 2–3 kOe range, after which they become constant (within the

errorbars). Unfortunately, no more quantitative information could be extracted from

TF measurements because of the large existing uncertainties.

In summary, µsr measurements on LiErF4 confirm the existence of a fluctuating local

field produced by Er ions in the system. In fact, the internal field at the muon sites is

so large that the signal relaxes within the first 3 ns, and therefore can not be covered

completely within the muon’s time window, and only its relaxing tail can be recorded.

This observations are in agreement with the large deviation of the critical points from

the MF predictions and the order-by-disorder scenario.
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Figure 4.20: Asymmetry versus time at 22mK. Faster oscillations are obvious close to
Hc . The scan at 3.6 kOe is shifted for better visualization.
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Figure 4.21: TF dependence of the fitting parameters in Eq. 4.16 at 20 mK. The sizable
change in all parameters is observable in the 2-3 kOe range.
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4.6 Magnetic correlation length studies of LiErF4

Magnetic correlation studies on LiErF4 (natural sample) were performed along all

three crystallographic directions. Due to several difficulties from the experimental

point of view, the measurements along the crystallographic c-axis are presented

in appendix A. Imperfect collimation in field studies and a sudden failure in the

thermometer performance during the experiment are the reasons for the remaining

doubts.

The measurements along a,b-axes were carried out on V2 three-axis spectrometer

at HZB/Berlin – as a part of the order parameter investigations (4.4.1). A 10×10×
30 mm3 single crystal of the natural sample (cut into blades and plated with gold

to improve thermalization) was oriented with (h,0,0) and (0,k,0) reciprocal lattice

vectors in the horizontal scattering plane. Two 40′ collimators were inserted after the

monochromator and after the sample to facilitate the diffuse scattering separation,

which is weakly spread on the sides of the intense magnetic BP. This improves the

signal–to–noise ratio. Correlation length and critical scattering were measured by

wide longitudinal (1+ξ 0 0) and transverse (1 ξ 0) reciprocal scans through the (100)

magnetic BP at different temperatures/magnetic fields (∥ c-axis) in the vicinity of

both classical and quantum phase transitions. Figure 4.22 compares the two scans in

perpendicular directions at 384 mK. From the figure, it is clear that the longitudinal

scan is wider than the transversal one. This behavior, which demonstrates the highly

anisotropic distribution of the intensity in reciprocal space, is the same for the whole

studied temperature range.

The structure factor S(Q) for the critical scattering could be modeled by a Lorentzian

function. In the case of the longitudinal scan for instance it is given by:

S(Q) = χ0

1+ (QH −Q0
H )

2
ξ2

a

, (4.17)

where QH and ξa are the wavevector component along Q=(H,0,0) direction, and

the correlation length along a, respectively. The amplitude of the critical scattering

(χ0) is proportional to the staggered susceptibility. Therefore, its temperature/field

dependence obeys the scaling law relation [69, 70]. Data were fitted to a Lorentzian
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Figure 4.22: Two scans perpendicular to each other at Q=(100). The anisotropy of
the critical scattering in the reciprocal space is clear from the Lorentzian widths
comparison.

function folded with the resolution of the instrument. Fig. 4.23 presents the example

of some fits to (1ξ0) scans at several different temperatures.

The correlation length – the inverse width of the critical scattering – diverges at the

phase transition. Hence, the Lorentzian width of the modeled line shape should fall to

zero at the critical points. This is followed by the divergence of the susceptibility. This

behavior is followed at the same value of temperature/field for I (critical scattering

intensity),ξ (correlation length )and χ (susceptibility). As depicted in Fig. 4.24, for

T > TN at zero field the amplitude of the critical fluctuations could be fitted by I ∝
χγ with γb = 0.83±0.04 and γa = 0.82±0.04 for transverse and longitudinal scans,

respectively.

Above the transition temperature the spin-spin correlation length follows a power

law with transverse and longitudinal exponents equal to νb = 0.55±0.05 and νa =
0.44±0.05, respectively. The difference in the value of the in-plane correlation lengths

is related to the planar anisotropy of the critical scattering mentioned earlier. The

intrinsic width has a minimum at the transition point, but still doesn’t reach the

resolution limit of the instrument. The anisotropic nature of the critical scattering and

a non–perfect diffuse signal separation could explain the remanent value. Figure 4.25
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demonstrated at different temperatures.
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Figure 4.24: Susceptibility (critical scattering amplitude) versus temperature in (1ξ0)
(left), and (1+ξ00) (right) scans. The red lines are the power law fit to the curves at
T > TN . The insets present the critical exponent extraction in the logarithmic scale.

shows the evolution of the width and correlation length as a function of temperature in

both directions. The planar critical exponents of the correlation length at the classical

phase transition are compared in Fig. 4.26.

At the base temperature, field scans were performed along Q=(1ξ0) only. For an un-

known reason, field data have lower quality compared to temperature scans with simi-

lar statistics. Hence, the uncertainties of the fits are larger. Above Hc , the Lorentzian

width and intensity – presenting the reciprocal correlation length and susceptibility

– obey power–law scaling with γH
b = 1.44±0.2 and νH

b = 0.71±0.04, respectively (Fig.

4.27).
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Figure 4.25: Critical scattering width and correlation length versus temperature in
Q=(1ξ0) (left), and Q=(1+ξ00) (right) scans. The red lines are the power law fit to the
curves at T > TN .
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4.6.1 Discussion

In section 4.4.1, the critical exponents of the order parameter (β) and specific heat

(α), and the nature of both classical and quantum phase transitions were obtained. In

the previous section, two other exponents (γ and ν) were extracted. For the thermal

phase transition we first compare our results directly to the reported values:

• The estimated h4 anisotropy in LiErF4 from order-by-disorder phenomena (dis-

cussed in 4.4.4) is in the same order of magnitude of the predictions by Taroni

et.al [55] for β= 0.15, which is the value obtained in LiErF4.

• The exponent α=−0.28±0.04 for the specific heat is far from the predictions

of 3D classes (-0.13 to -0.2). Unfortunately, there is no specific heat report on

the the 2D XY/h4 universality class, except for a rough numerical estimate on

a square lattice dipolar system with α=−0.4±0.2 [53]. This value, within the

errorbar, is consistent to the result obtained for LiErF4.

• The determined h4 value and β for LiErF4 correspond to ν= 1.19 according to

Ref. [55]. This number is far from the here extracted exponents (0.44–0.55) for

the correlation length in the ab–plane.

• The measured critical exponent for the susceptibility (γ= 0.83±0.04) is far from

the 2D Ising and 3D models (Table 4.3) [51].

• Finally, our calculated critical exponents (using α, β and scaling relations, as-

suming d=2) of δ= 14.2 (magnetization) and η= 0.26 (anomalous dimension

for the spatial correlation function) are in agreement with the predictions of the

2D (Ising/XY) models.

Secondly, we can test the internal consistency of the measured parameters against the

scaling relations. Let us first consider:

2β= dν−γ (4.18)

γ= (2−η)ν (4.19)
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From Eq. 4.18, which links the susceptibility and correlation length exponents to β,

one can for a fixed β extract ν from γ, and vice versa. Using Eq. 4.18, the planar (ab)

critical exponents for the diffuse scattering amplitude γa = 0.82±0.04 and γb = 0.83±
0.04 give ν2D

a ∼ 0.56 and ν2D
b ∼ 0.57 for a 2D system. On the other hand, if one assume

d = 3, the corresponding exponents for the in-plane correlation length would be ν3D
a ∼

0.37 and ν3D
b ∼ 0.38, respectively. Furthermore, the experimental values extracted

from the power law fit to inverse width of the critical scattering, are νa = 0.44±0.05

and νb = 0.55±0.05. The comparison of the correlation length exponents extracted

from Eq. 4.18 with the values from the experiment (within the errorbars), suggests a

2D–like universality class in LiErF4. This strengthens the previous arguments from

the order parameter and specific heat studies. In addition, inserting the obtained

values for ν and γ into Eq. 4.19, results in η ' 0.36, which is slightly different from

0.26 extracted earlier (by α and β). It should be noticed that the β/ν= 1/8 condition

corresponding to a 2D Ising model seems not valid in LiErF4 [55]. Now we continue

the inquiries with two other scaling relations:

α+2β+γ= 2 (4.20)

α+dν= 2. (4.21)

Inserting the obtained exponents for α, β and γ in the left hand side of the Eq. 4.20

gives 0.8 instead of 2. The same procedure for Eq. 4.21 results in -1.3 ( for d=2) and

-0.8 ( for d=3). Therefore, it is obvious that the relevant exponents are not consistent

with this second set of relations. On the other hand, the Eq. 4.18 is achieved by the

combination of the Eqs. 4.20 and 4.21, excluding α from the relation. As mentioned

earlier, this equation is satisfied with the extracted values for β, ν and γ for a two

dimensional system. Therefore, it is possible that one of the parameters mentioned

above is not accurate enough; giving invalidity to some of the scaling relations. Further

studies are required to confirm this fact, e.g. analysis of the line shape of the scattering

function at TN could verify the value of η experimentally. Table 4.3 summarizes the

critical parameters of LiErF4 at TN and Hc . The reported values for the mean-field, 2D

Ising and 3D universality classes are also given for comparison.
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Table 4.3: Critical exponents comparison: Mean-field, 3D models, 2D/Ising, and
LiErF4 (this work).

Exponent β γ ν η δ α

Mean-field 0.5 1 0.5 0 3 0

3D [51]

Ising 0.32 1.24 0.63 0.04 4.8 0.11

XY 0.35 1.32 0.67 0.04 4.8 -0.01

Heisenberg 0.36 1.39 0.71 0.04 4.8 -0.12

2D

Ising [54] 0.125 1.75 1 0.25 15 0

XY/h4 [55] 0.1-0.25 1-1.37 0.25 15

LiErF4 (at TN ) 0.15 (0.02) 0.82 (0.04) 0.44-0.55 (0.05) 0.26 14.2 -0.28 (0.04)

LiErF4 (at Hc ) 0.31 (0.02) 1.44 (0.2) 0.71 (0.04)

Regarding to the QPT at the base temperature the Lorentzian fit to the data satisfies

νH
b = 0.71±0.04, which clearly matches with the 3D models–in agreement with the

order parameter studies. On the other hand, inserting the extracted exponent for

the staggered susceptibility (γH
b = 1.44±0.2) into Eq. 4.18 results in νH ,2D = 1.03 and

νH ,3D = 0.69 for the critical exponents of the correlation length for d = 2 and d = 3

respectively. Unfortunately, no more exponent at QPT is measured to test other scaling

relations.
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4.7 Excitation spectrum in LiErF4

The hallmark of a quantum phase transition (QPT) is a concomitant softening of the

characteristic excitations. In the case of LiHoF4 the remaining gap around the QCP

originated from mixing with the nuclear spins through the hyperfine coupling [3]. In

LiErF4 the advantage of the weak hyperfine interaction with A = 0.43 µeV, and the

fact that only 23% of the natural abundancy of Er isotopes carry nuclear spins, result

in decreasing the effect in the low–energy excitations. In fact within a resolution of

' 40µeV, a seemingly softening of the electronic excitation at Hc was measured in the

previous studies [19], confirming the presence of a QPT in the system. Moreover, the

spin bath effect can be switched on and off using the isotopic Er. Here, a full dispersion

of the magnetic excitations in the ordered state at H=0 was obtained with the high

resolution TOF spectrometer LET at ISIS on two gold sputtered 10×30×1.5 mm3

blades of LiErF4 single crystals. The two plates were inserted in parallel – to improve

the total cross section – inside a copper sample holder covered with a few µm of

gold. The ac crystallographic plane was placed in the horizontal scattering plane, and

the choice of Ei = 1.5 meV provided the resolution of ∼ 14 µeV ≈ 1% at the elastic

line. The large magnetic moment of the sample (J = 15/2) and negligible incoherent

scattering resulted in fast data acquisition with satisfactory statistics. The excellent

signal and low background allowed the so-called Horace scans, whereby full four

dimensional data sets (3 momentum and one energy axis) could be achieved (Fig.

4.28). This provided the possibility to perform many cuts along different reciprocal

directions for more quantitative analysis. Because of the limited angular coverage of

the detector (60◦) at LET, the sample was aligned in such a way that Q=(00-1) magnetic

BP (with shorter reciprocal value) was placed at the elastic line, thus providing access

to the complete Brillouin zone (BZ) along the c-axis. On the other hand, only ±40 % of

the BZ could be covered along the a,b directions.

4.7.1 Base temperature spectrum

At the selected directions in reciprocal space, the excitations were evaluated by RPA

calculation – convoluted with a Gaussian function with a fixed width as an approxima-

tion for the instrumental resolution – taking into account the two magnetic domain
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Figure 4.28: Two different 3-dimensional cuts from the 4D-Horace scans performed
at LET/ISIS. Top: the in-plane ac dispersion. Bottom: the ab dispersion (b is the
out-of-plane component).
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structure. Figure 4.29 shows the fits at selected Q points. The red line is the Gaussian

fit to the data. The pink and green lines are the RPA calculations originating from

two domains, and the black line is the sum of both domain contributions. The good

agreement between experiment and calculation confirms the correctly determined

magnetic structure of LiErF4, in favor of the two domain model. Figure 4.30 depicts a

2-dimensional view of the excitation spectra obtained by the RPA-MF calculation and

experiment along several selected directions.
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Figure 4.29: Excitations at selected Q points at H=0. The red line is the Gaussian fit to
the data. The pink and green lines are the RPA calculations for the two domains, and
the black line is a sum of both domain contributions.

Dispersions along Q=(00l), Q=(h0-1) and Q=(0k-1) are presented in Fig. 4.31, which

are obtained by fitting the 1D cuts with simple Gaussian functions – folded with a

Gaussian function with the fixed width corresponding to the finite instrumental res-

olution. The spectrum is gapped at the zone center. Fitting to a damped harmonic

oscillator model, the RPA calculation could reproduce the correct slope of the exci-

tation spectrum, considering the two-domain structure of the zero-field magnetic

lattice in the calculations.
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4.7. Excitation spectrum in LiErF4

Figure 4.30: The top three panels are the MF-RPA calculation at a selected point in
Q space. The left two are the calculations performed for the two domains, and the
third is the sum of both. The bottom two panels are the experimental 2D cuts from
the Horace scans. The points correspond to the dispersion obtained by the fits to the
data. 85
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Figure 4.31: Dispersion of the magnetic excitations in LiErF4 at H = 0 and T = 22 mK.
The spectrum is gapped at the zone center Q=(00-1). The black solid curves are the
RPA calculations, considering two possible domain structure. RPA is able to reproduce
the correct slope of the dispersion.

4.7.2 Excitations at elevated temperatures

As a function of temperature, the excitations soften, and within the instrumental

resolution the gap in the dispersion disappears at the thermal phase transition. The

energy of the excitations were determined by fitting the data to a Gaussian function

folded with instrumental resolution which was modeled by another Gaussian (Fig.

4.32). In addition, the critical scattering diverges when approaching TN – as presented

in Fig. 4.32 – which provides an independent way of transition temperature deter-

mination. Interestingly, the RPA calculation does not reproduce the slope of the the

gap-versus-temperature curve obtained from the experiment. As Fig. 4.32 displays,

RPA predicts a similar value for the measured gap at the base temperature (including

hyperfine interaction), whereas at any higher temperatures it underestimates the en-

ergy of the excitations. It is clear that the calculated gap has a sharp drop towards 200

mK, where it becomes less steep towards higher temperatures. The upturn disappears

when hyperfine effect is neglected in the calculation. As mentioned in 4.4.4, order

by disorder phenomena introduce an h4 anisotropy to the ground state of LiErF4,

86



4.7. Excitation spectrum in LiErF4

which might be the reason for the larger measured energy gap below TN (except at

22 mK) compared to the RPA predictions. The similar extracted values for the gap

at the base temperature from the experiment and RPA theory, might have a physical

interpretation or might be only a coincidence, since the calculated curve lies below

the measured curve in any other temperature. The reason for the absence of the

upturn from the hyperfine interaction (calculated by RPA) in the experiment could

be either, in the experiment the sample was not cold enough to show the effect, or

MF-RPA overestimates the effect of the hyperfine interaction. It should be noticed

that quantum fluctuations are not included in the calculations. In addition, thermal

fluctuations have been considered only in the single ion susceptibility calculation.

Therefore, the smaller gap of the excitations in theory, could be related to the absence

of the fluctuations in the calculation.
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4.8 Conclusion

LiErF4 is an example of a XY dipolar AFM. In zero field, it orders at TN = 370 mK

through a classical phase transition. A QPT occurs at Hc = 4 kOe applied along

the crystallographic c-axis. The universality class of the system was investigated by

studying the behavior of the order parameter, specific heat, correlation length, and

their relevant critical exponents, in the vicinity of the transitions. The thermal phase

transition belongs to the 2DXY/h4 class, whereas the QPT is 3D. The dispersion of

the excitation energies is gapped at the high symmetry reciprocal space points, and

closes at TN . The gapped dispersion of the excitations is more likely the combination

of order-by-disorder, hyperfine coupling to the nuclear states, and the cf anisotropy.
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5 The phase diagram of LiHoxY1−xF4

In this chapter, LiHoF4 and its diluted series with non magnetic Y ions, representing

another family member of LiReF4 are partially studied as a side project in continua-

tion of the previous work [19]. The phase diagram is mapped by means of neutron

scattering up to 75% dilution of the magnetic sites, and the results are compared with

mean-field predictions.

5.1 Introduction

Among the LiReF4 family of compounds, the LiHoF4 Ising dipolar material has at-

tracted many theoretical and experimental efforts. A 50 kOe field (H⊥) transverse to

the easy axis introduces quantum fluctuations to the system [6]. The role of hyperfine

interactions on the phase diagram of LiHoF4 close to the quantum critical region is

discussed in [5, 3]. In fact, the coupling of the 4 f electronic moments to the nuclear

spin bath are larger than both the mean dipole-dipole interaction and the exchange

coupling in the vicinity of the QPT. This affects the low temperature boundary of the

phase diagram around the critical field (Hc ≈ 50 kOe). The ability to dilute Ho sites

with nonmagnetic Yttrium ions provides a rich arena to explore how disorder and

randomness affect the magnetic properties and collective phenomena [3]. The system

is ferromagnetically ordered at low temperature (below Tc ' 1.53 K) above a critical Ho

concentration (xc ≈ 25%) [7]. Below xc , a transition to a spin glass (SG) state has been

argued [8] although, some numerical calculations have not found evidence for a SG

transition [71, 72]. On the other hand, it has been reported [73] that in LiHoxY1−xF4a
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real spin glass phase can only appear in zero field, and for any other values of H⊥
random fields and quantum fluctuations might obscure the correct interpretation

[9, 10, 11, 12]. However, in the less diluted series – which are the subject of this chapter

– the random fields are less pronounced to destroy the long range order of the system

[56]. In the following, the phase diagram of the diluted LiHoxY1−xF4(0.25 ≤ x ≤ 1) ob-

tained by MF calculation is presented. The results are then compared with the neutron

scattering measurements on the same concentrations. The observed discrepancies

and the probable reasons for that are discussed afterwards.

5.2 Phase diagram studies by MF calculations

As mentioned in 2.2, the total Hamiltonian describing the system includes five terms:

H = HC F +Hhy p +Hz +HD +Hex

= ∑
i

[
HC F (Ji )+ AJi · Ii − gµB Ji .H

]
−1

2

∑
i j

∑
αβ

JD DαβJiαJ jβ−
1

2

∑
i j ,n.n.

Jex Ji · J j (5.1)

Recalling, HC F is the crystal field, Hhy p the hyperfine coupling to the nuclear spins,

Hz the Zeeman term, HD the dominant dipolar interaction, and Hex the nearest

neighbors Heisenberg exchange interaction. J = 8 and I = 7/2 correspond to electronic

and nuclear angular momentums, respectively. The Landé factor parameter (g ) in

Zeeman term is 5/4. A = 3.361 µeV is the hyperfine coupling constant reported

from hyperfine resonance [17] and specific heat measurements [15]. The full rare

earth Hamiltonian was diagonalized through the Virtual-Crystal-Mean-Field (VCMF)

approximation, mentioned in 2.6; hence, the phase diagram of LiHoxY1−xF4 could

be mapped qualitatively. The exchange coupling in the calculation was fixed to

Jex = 0.1 µeV. The crystal field parameters are those reported in reference [5], except

for B 4
6 (s) which is a fine–tuning parameter. Instead, B 4

6 (s) = 6 µeV value obtained

by fitting the crystal field energy levels was used. It should be noticed that tuning

the B 4
6 (s) parameter only alters the value of Hc , and no change occurs in the overall

behavior of the phase diagram. Normalizing the effective length of the local magnetic

moments along the z-axis (Jz) by a factor (0.785), gives Hx=1
c(MF ) ' 53kOe which is close
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to the critical field extracted from the neutron scattering measurements. Since the aim

of this work is to distinguish the difference between the phase diagrams extracted from

MF predictions and experimental observations (to understand the physics conducting

the system), this scaling is useful when comparing the phase boundaries.

The phase diagram of five different Ho concentrations of LiHoxY1−xF4 0.25 ≤ x ≤ 1

was calculated, assuming the samples have a spherical shape. Periodic boundaries

were taken into account, and the long range interactions were limited to a fixed

radius threshold. The results are shown in Fig. 5.1. The dashed lines represent the

calculations neglecting the hyperfine interaction.
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Figure 5.1: T-H phase diagram of LiHoxY1−xF4(0.25 ≤ x ≤ 1) calculated by VCMF. The
dashed lines are the calculation without the hyperfine interaction.

5.3 Phase diagram studies by neutron scattering

The T-H phase diagrams of five compounds from LiHoxY1−xF4family with 0.25 ≤ x ≤ 1

in transverse fields (H⊥) to the easy axis, have been mapped using neutron diffraction

[19]. The resolution limited Bragg peaks at Q = (200) reflection indicated true long

range ferromagnetic order in all samples in temperature scans in zero field. The
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extracted Curie temperatures (Tc ) were in agreement with the susceptibility results

reported earlier [74]. Down to 46% dilution, the observed linear suppression of Tc

by doping satisfies the predictions of the mean field theory (Tc (x) = x ·Tc (x = 1)), as

presented in Fig. 5.2.
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Figure 5.2: The Phase diagram of LiHoxY1−xF4versus x [19]. The measured Tc by
means of neutron scattering is in accordance with the susceptibility data from [74].
The squares are the VCMF predictions of Tc for the mentioned concentrations.

In addition, the transverse field measurements, in which the samples were cooled

in zero field (ZFC) down to the base temperature (T ≈ 120 mK), also revealed the

long range ordering (LRO) transition in all samples, through the sharp BP having the

resolution limited width. The intensities of the (200) BP, which is proportional to the

order parameter squared, versus H at the base temperature is depicted in Fig. 5.3 for

the measured concentrations. The transverse scans through Q = (200) at each point in

field were extended in reciprocal space such that the diffuse component as well as the

Bragg scattering was covered. As a model to fit the data a Gaussian (with a fixed width

corresponding to the finite instrumental resolution) plus a Lorentzian was considered.

The enhancement of the critical scattering for x ≤ 0.46 is obvious from the graph.

The critical scattering was subtracted from the curves, to facilitate the order parameter
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Figure 5.3: The intensity of the (200) Bragg peak versus H⊥ in LiHoxY1−xF4 (0.25 ≤
x ≤ 1) at the base temperature. The line in cyan is the critical scattering of the x=0.25
sample, which was subtracted from the data for critical exponent studies.

comparison. Fig. 5.4 compares the order parameter of the measured samples versus

field at base temperature, where the curves are scaled with their corresponding Hc

values. Indeed similar behavior of the order parameter is observable from the plot.

The extracted critical exponents of the order parameter from power law fits to the

Bragg peak intensity in the critical regimes are in good agreement with the values

reported for the pure compound (x = 1), in the vicinity of both thermal and quantum

phase transitions. For the quantum phase transition, βH = 0.47± 0.02 is close to

the mean field exponent βMF = 0.5, whereas βT = 0.32±0.02 for the thermal phase

transition at Tc is lower and is consistent with β3D = 1/3 of the 3D-Ising model. This

interesting outcome indicates that the criticality is not affected by dilutions up to 75%.

Fig. 5.5 presents a comparison between the x = 0.46 and x = 1 concentrations.

However, the conclusion drawn from the susceptibility measurements on x = 0.44

concentration [75] is in contradiction to the neutron results. There, the internal

random fields are considered to be responsible for the phase transition, and a different

exponent in the thermal regime is reported. More experimental investigations to

understand the reasons for this discrepancy are of interest.

The temperature–field phase diagram of LiHoxY1−xF4 obtained by neutron scattering

93



Chapter 5. The phase diagram of LiHox Y1−x F4

0 0.5 1 1.5
0

1

2

3

4

5

x 10
4

H  /  H
c

In
t. 

[a
rb

.u
. ]

 

 

x=1
x=0.83
x=0.67
x=0.46
x=0.25

Figure 5.4: The behavior of the order parameter versus field at base temperature for
LiHoxY1−xF4(0.25 ≤ x ≤ 1) are identical.

is depicted in Fig. 5.6. The extracted curves from the MF calculation are added to the

plot, while have been scaled such the field axis match the low temperature range of

the experimental data. This improves the comparison of the phase boundaries, and

helps for the zero temperature Hc extraction. The scaling factor increases from 1 for

the pure compound to about 4 for the x = 0.25 sample, which shows the faster critical

field reduction in the experiment compared to the MF calculation. The feature is more

pronounced when normalizing the field and temperature in the phase diagram by the

associated predicted mean field values (see Fig. 5.7).

The transition field Hc⊥ decreases from ∼ 50 kOe for the Ho concentration of 100%

to ∼ 7 kOe for x=0.25, which is much faster than the mean field prediction (Fig.

5.8). The hyperfine interaction seems less crucial at ∼ Tc /2, therefore, the field val-

ues at this temperature could be compared with the critical fields extracted by MF

calculation neglecting the hyperfine effect. The difference in H
with-hyperfine
c(MF)

−
H

without-hyperfine
c(MF)

is almost constant, because hyperfine term has been included

in the single ion Hamiltonian, hence, it is not x dependent. On the other hand,

H
with-hyperfine
c(exp) − H

without-hyperfine
c(exp) decreases from x=1 to x=0.46, where it be-
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Figure 5.5: Intensity of the magnetic Bragg peak (200) around the phase transition
in LiHoxY1−xF4, x = 0.46 compared with x = 1. The signal originating from critical
scattering is indicated by the black curve in (a,d) and was subtracted for further
analysis (b,c,e,f). The critical exponents of the magnetization in the diluted and pure
compounds are identical [19].

95



Chapter 5. The phase diagram of LiHox Y1−x F4

0 0.5 1 1.5 2
0

10

20

30

40

50

T [K]

H
 [k

O
e]

x=0.83

x=0.25

x=0.46

x=0.67

x=1

Figure 5.6: Phase diagram of LiHoxY1−xF4(0.25 ≤ x ≤ 0.83) from neutron diffraction
(symbols). The data for x = 1 are adapted from AC-susceptibility measurements by
[50], which show a clean phase boundary at low temperatures. The solid (dashed)
lines are the VCMF calculation with (without) hyperfine interaction.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

H
  /

  H
c M

F
 

T  /  T
c
 MF  

 

 

Ho 100%
Ho 83%
Ho 67%
Ho 46%
Ho 25%
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diffraction scaled by Tc and Hc values predicted for each concentration.
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comes almost constant below this concentration. Therefore, hyperfine effect de-

creases at lower Ho concentrations.
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Figure 5.8: Left: Hc -x for LiHoxY1−xF4 (0.25 ≤ x ≤ 1) obtained from neutron scattering.
The Hc values at zero temperature are obtained by scaling the MF curve to match
the low temperature part of the experimental curves. The values are compared with
the experimental Hc at 100 mK. The curves have similar tendencies. At Tc /2 the

hyperfine effect seems less severe. Hence, H
with-hyperfine
c(exp) − H

without-hyperfine
c(exp)

could demonstrate the decrease of the hyperfine effect at lower Ho concentrations.
Right: The calculations have been performed via MF approximation for comparison.
The faster experimental Hc suppression compared to MF is observed.

The reason for the faster reduction of Hc in the experiment comparing to MF cal-

culation could be disorder and quantum fluctuations, which are neglected in the

theory. It has been argued [61] that through dilution, the off diagonal terms of the

dipolar interactions, which are in principle canceled by symmetry in the pure LiHoF4

compound, are no longer absent in diluted systems. These terms introduce both local

effective longitudinal interactions and a fluctuating term in the transverse direction.

As a result, the effective transverse field is enhanced, which reduces the critical field

of the transition.
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Chapter 5. The phase diagram of LiHox Y1−x F4

5.4 Discussion

For proper understanding of the physics of the LiHoxY1−xF4 system, we shall compare

our results with theoretical studies. The classical random field Ising model (CRFIM),

which has been widely studied [76], can describe the system in the low transverse

field region where the quantum fluctuations are negligible. By increasing the applied

transverse field, the quantum tunneling between the Ising GS doublets will introduce

fluctuations and randomness to the system. To clarify the observations, one can

rewrite the Hamiltonian inspired from ref.[77]:

H=∑
i j

V zz
i j σ

z
i σ

z
j +

∑
i j

V zx
i j σ

z
i σ

x
j +

∑
i
γiσ

z
i +Γ

∑
i
σx

i , (5.2)

Where V zz
i j and V zx

i j are the strength of longitudinal and transverse dipolar interactions,

respectively. Transverse interactions, which are induced from interplay between off

diagonal interactions and applied transverse field, add an additional term to the

effective H⊥, and reduce the expected critical field. σi is the Pauli operator and γi

denotes the effective local random field. The term Γ defines the effective transverse

field. In fact, one could describe the local randomness as domain walls, which are

pinned by the weak transverse fields at elevated temperatures close to Tc . When H⊥
increases, it induces tunneling between the domains and breaks their localization.

Hence, QF gain importance and the transition to paramagnetic (PM) state occurs [78].

The result of QF and random field enhancement is the Hc suppression. This argument

is in agreement with the observed increase of the scaling factor (and faster critical

field reduction) with dilution when comparing the related MF and neutron scattering

phase diagrams. On the other hand, because the transverse dipolar interactions are

weaker for the more diluted samples, their role in enhancing the effective transverse

field is less crucial than in higher Ho concentrations. This could explain the results

for x = 0.25, where the experiment (Fig. 5.8) shows a more moderate critical field

suppression versus x, and a sudden change in the slope of the curve occurs reaching

the 25% concentration. This feature have been argued by Schechter et al. [11], where

the minimum in Hc⊥ reduction by x in the presence of off diagonal interactions is

discussed.
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5.5. Conclusion

5.5 Conclusion

Neutron scattering studies of LiHoxY1−xF4 could confirm the presence of QPT in the

range (0.25 ≤ x ≤ 1). The calculated phase diagram of the measured concentrations by

MF could provide a quantitative comparison between experiment and theory. The

transverse field, randomness, and off diagonal dipolar interactions play important role

on the LiHoxY1−xF4 phase diagram properties, which neglecting them show significant

effect especially close to QCP, where quantum fluctuations are present.
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6 Conclusions

The LiReF4 family of compounds, where Re stands for a rare-earth element, provide a

wide arena to explore fundamental questions in many body correlated physics such as

quantum entanglement, collective phenomena, classical and quantum phase transi-

tions (QPT). In fact, the simple and well-understood Hamiltonian of the system makes

it a suitable candidate for theoretical advances, providing a guide for experimental

studies.

LiHoF4, the Ising ferromagnetic member of the family has attracted significant ex-

perimental efforts, being a realization of the experimentally accessible transverse–

field–induced QPT. Hyperfine interaction strongly influences the phase diagram at

low temperatures around the QCP, and leads to a considerable increase of Hc .

It was studied that dilution with nonmagnetic Yttrium ions induces randomness to the

system, which eventually destroys the ferromagnetic order below a marginal Ho con-

centration, as a result of the interplay of the off–diagonal terms in dipolar interactions

and the applied transverse field. By means of neutron scattering experiments here

we observed that above the critical doping (x ' 0.25), the long–ranged ferromagnetic

state survives in LiHox Y1−x F4, where the order parameter and the related critical expo-

nents around both thermal and quantum critical regimes behave as in the pure (x = 1)

compound. The faster suppression of the critical field comparing to the mean–field

approximation was quantified. The decrease of the hyperfine effect by dilution could

be observed from comparison of the experimental critical fields at base temperature

and Tc /2.

LiErF4 is a XY AFM member of LiReF4 family, exhibiting a pronounced XY-anisotropy
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Chapter 6. Conclusions

with g⊥/g∥ ' 3.7. The small hyperfine coupling (A ' 0.5µeV) of the naturally occurring

Er (with only 23% nuclear spins), and the advantage of nuclear-spin-free existence

of 168Er stable isotope weaken the effect of spin bath in this system, as confirmed by

AC-susceptibility and neutron scattering measurements of the phase diagram. Critical

exponents obtained from specific and order parameter, together with the relevant

scaling relations, suggest 2DXY/h4 universality class behavior of the thermal phase

transition. The critical exponents of the correlation length and staggered suscepti-

bility were extracted from diffuse neutron scattering measurements. However, they

appear to be different from the predictions of 2D Ising and 3D models. Furthermore,

the 3D nature of the system at the quantum critical regime is in accordance with

the expected additional dimension when presenting a QPT within a classical picture.

The h4 anisotropy has its major origin in order–by–disorder phenomena by quantum

fluctuations. This is in agreement with the considerable deviation of the critical tem-

perature and critical field from MF predictions. The softening of the characteristic

electronic excitations at the critical field highlights the QPT nature of the low tempera-

ture transition, which could not be observed in e.g. LiHoF4 with the larger hyperfine

effect. The excitations were measured using new high–resolution TOF instrument LET.

The full dispersion obtained at the base temperature could be reproduced by random

phase approximation (RPA). The observed gap of ∼ 30 µeV softens as a function of

temperature and closes at TN . RPA underestimates the value of the gap, which could

be due to the absence of the fluctuations in the theory.
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7 Outlook

Comparing to e.g. LiHoF4 and its diluted series, LiErF4 has not been explored much.

Therefore, with respect to the interesting results obtained within this thesis, the field

is open for various exciting theoretical and experimental advances. As a future project

a complementary correlation length measurements along the c-axis in the vicinity of

both thermal and quantum regimes is suggested. In accordance with the 2DXY/h4

behavior of the system weaker magnetic correlations are expected in out–of–plane

direction. In addition, specific heat investigations around QCP could further confirm

the classical 3D universality class of the system. A continuation study of the excitations

in the presence of an applied magnetic field along the c-axis is planned on the LET

spectrometer. The good resolution of the instrument allows to verify the so called ω/T

scaling through the measurements at Hc at the base temperature and several elevated

temperatures similar to the previous study of CaCuAu [79] except with the advantage

that the microscopic Hamiltonian is completely determined here. In addition, a

complete 4-dimensional (Horace) scan at TN could shed light on the possibility for

the dimensional reduction phenomena. To further test the effect of disorder and

randomness, an enhancement of off-diagonal terms via substitution of Ho for Er ions

is expected. An added benefit of Er is the existence of isotopes with and without

nuclear spins, allowing comparative exploration of decoherence and mixing effects.

Interestingly, the recently produced nano-crystals of LiReF4 [80], could open a field

to investigate the magnetic structures at lower dimensions. The 2D dipolar-coupled

behavior of the system could have a rather far application in producing nanomagnetic

arrays for ultra-high-density magnetic storage technology [1, 2].
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A Correlation length studies of LiErF4

along c-axis

As mentioned in 4.6, due to several uncertainties from the experimental point of view,

the measurements along the crystallographic c-axis are presented in the appendix.

Field measurements were performed at IN14 cold TAS at ILL. A single piece of LiErF4

crystal with 5× 5× 20 mm3 dimension, covered with gold, aligned with ac in the

horizontal scattering plane. A horizontal magnet was used to apply the magnetic

field along the crystallographic c-axis. longitudinal scans performed along Q=(00-3)

magnetic reflection. The selected ki = k f = 1.54 Å−1 in open configuration provided a

resolution of 0.01 Å−1, which was not perfect for the weak diffuse scattering separa-

tion from the intense magnetic BP around Hc . Within the last couple of days of the

experiment, three tight 20′ collimators were inserted between the monocromator-BE

filter, sample-analyzer, and analyzer-detector. This configuration together with the

choice of ki = k f = 1.35Å−1 provided δQ = 0.003 Å−1, which reduced the statistics by a

factor of three. Therefore, the time was not sufficient to get enough points. In addition,

due to the fact that the quality of the field scans is worse than temperature scans,

good statistics are required to obtain smooth curves, that helps for more accurate fits

and analysis. However, some preliminary analysis which might be helpful for the the

further planned experiments are shown in fig. A.1. A resolution corrected sum of a

Gaussian and a Lorentzian functions, used as a model to fit the data.

Temperature studies at zero field carried on 4F1 triple axis spectrometer /LLB. The

measurement performed on the similar sample as IN14 experiment, keeping the same

configuration for the alignment, ki , and collimations. Critical scattering along c-axis

was measured through transverse scans to Q=(100) magnetic BP. The best fit to the
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Appendix A. Correlation length studies of LiErF4 along c-axis
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Figure A.1: Fits to Q=(00ξ) at zero field and few fields in the vicinity of Hc at collimated
configuration.

data obtained by summation of two Voigt functions, which the lorentzian width of

one of the Voigt components appeared temperature independent (most probably

having back ground origin), and kept fixed for further analysis. Fig. A.2 presents a

series of scans along Q=(10ξ) below and above TN = 375 mK. The not perfect fit at

TN could mean that critical scattering at the transition point is not described by a

pure Lorentzian model. Moreover, the model is working well to fit the data above

the transition. Unfortunately, a sudden failure happened on performance of the

thermometer during the experiment, which means the exact temperature of the

sample was not known. This doubt on the actual value of T, doesn’t allow any further

analysis. Based on the above statements, no subtle argument can be given on the

measurements along the c-axis –due to the mentioned experimental uncertainties.

Therefore, more experiments are planned for further studies.
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B h4 anisotropy and universality class

Here we estimate the h4 anisotropy in LiErF4 and compare to the 2D universal window

for critical exponents calculated by A. Taroni et al. in the generic case of the clock

model [55]. The clock model

Hclock =−Jclock

∑
〈i , j 〉

cos(θi −θj)−h4
∑

i
cos(4θ) (B.1)

is equivalent to the classical spin Hamiltonian with Si = (cos(θi),sin(θi),0):

Hclock =−Jclock

∑
〈i , j 〉

Si ·S j −h4
∑

i
(Sx

i
4 +S y

j
4 −6Sx

i
2S y

i
2
). (B.2)

To compare with our system, we write both the clock model and LiErF4 Hamiltonians

in the mean field approximation with, in the case of LiErF4, Ji = jx y Si where jx y =
|〈d |J x |d〉| = 3.28, |d〉 being one of the states from the lowest-energy crystal-field

doublet.

HMF
clock = ∑

i
Si ·HMF

clock −h4
∑

i
(Sx

i
4 +S y

J
4 −6Sx

i
2S y

i
2
) (B.3)

HMF
Er = ∑

n
Sn ·HMF

Er,n +HC F (B.4)

with n indexing the sites within the LiErF4 unit cell. The mean fields are

|HMF
clock| = | ∑

N N
Jclock〈S〉| =−4Jclock (B.5)
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Appendix B. h4 anisotropy and universality class

|HMF
Er,n| = |∑

m
JD j 2

x y Dmn(q = 0)〈Sm〉| = 60.25µeV ∀n. (B.6)

The two models can thus be compared by their respective ratios h4

|HMF
clock|

= h4
4Jclock

and

h4Er

|HMF
Er,n|

with h4Er the four-fold planar anisotropy to be determined in LiErF4. There are

two potential sources of h4 anisotropy, which we have evaluated: Crystal field and

order-by-disorder:

1. In the LiErF4 crystal field, the positive parameters B 0
l , l = 2,4,6, ensure the

magnetic moment is lying in the ab crystallographic plane. But the operators∑
l=4,6 B 4

l (c)O4
l (c)+B 4

6 (s)O4
6(s) can induce a small planar anisotropy. Calculating

the classical energy of the crystal field while rotating a magnetic moment of

length jx y gives a four-fold anisotropic energy of hCF
4Er = 0.11µeV. This value is

negligible relative to |HMF
Er |, and thus the crystal field anisotropy alone cannot

explain the small β exponent found in our case.

2. The quantum and thermal fluctuations, if anisotropic, may also induce a break-

ing of the continuous rotational XY symmetry, a phenomenon known as order-

by-disorder. To estimate its size, we use C. L. Henley’s result for the second

order perturbation theory energy correction to the ground-state in the case of

a dipolar coupled spin system [58, 59]. The magnetic order in LiErF4 entails a

continuous symmetry corresponding to nearest neighbors rotating about the z

axis in opposite directions. Writing the effective spin Hamiltonian (eq.4.3) in a

rotated frame of reference Si = l̂i Sx
i +m̂i S y

i + n̂i Sz
i with (l̂i ,m̂i , n̂i ) an orthonor-

mal triad and n̂i the spin’s classical ground-state direction, the second order

correction to the ground state energy is given by

δE2 =−∑
i< j

2S|bi j |2/[hi +h j −ai j ] (B.7)

where hi = S
∑

j ai j , ai j = n̂T
i J i j n̂ j and bi j = 1

4 (l̂i−i m̂i )TJ i j (l̂ j−i m̂ j ). Rotating

the frame of reference in opposite direction every second layer, we find a four-

fold anisotropy hobdo
4Er = 5.26µeV, giving a sizable ratio

hobdo
4Er

|HMF
Er,n|

= 0.09. In the work

of Taroni et. al, β= 0.15 (which is what we measure in LiErF4) corresponds to

Jclock ' |HMF | ⇒ h4
|HMF | ' 0.25. The above estimate from order-by-disorder is

within a factor of 3 from this result, hence, of the required order of magnitude.
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Bearing in mind that LiErF4 and the square lattice clock model are different

models, that we compare on the mean-field level, and that we only estimate

quantum , not thermal fluctuations, a closer numerical agreement can not be

expected.
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