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ABSTRACT

Good software engineering practice demands generalization
and abstraction, whereas high performance demands spe-
cialization and concretization. These goals are at odds, and
compilers can only rarely translate expressive high-level pro-
grams to modern hardware platforms in a way that makes
best use of the available resources.

Generative programming is a promising alternative to fully
automatic translation. Instead of writing down the tar-
get program directly, developers write a program genera-
tor, which produces the target program as its output. The
generator can be written in a high-level, generic style and
still produce efficient, specialized target programs. In prac-
tice, however, developing high-quality program generators
requires a very large effort that is often hard to amortize.

We present lightweight modular staging (LMS), a gener-
ative programming approach that lowers this effort signifi-
cantly. LMS seamlessly combines program generator logic
with the generated code in a single program, using only types
to distinguish the two stages of execution. Through exten-
sive use of component technology, LMS makes a reusable and
extensible compiler framework available at the library level,
allowing programmers to tightly integrate domain-specific
abstractions and optimizations into the generation process,
with common generic optimizations provided by the frame-
work.

LMS is well suited to develop embedded domain specific
languages (DSLs) and has been used to develop powerful
performance-oriented DSLs for demanding domains such as
machine learning, with code generation for heterogeneous
platforms including GPUs. LMS has also been used to gen-
erate SQL for embedded database queries and JavaScript for
web applications.

1. INTRODUCTION

Building and managing complex software systems is only
possible by generalizing functionality and abstracting from
particular use cases. Achieving performance, on the other
hand, requires concretizing configurations and specializing
code to its particular environment. Generative program-
ming can bridge this gap by translating away abstraction
overhead and effectively specializing generic programs.
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Generative programming can be broadly classified as static
or dynamic. Static code generation happens at compile time,
a widely used example is the C++ template language or
macro systems in other languages. Dynamic code genera-
tion that takes place at program runtime brings additional
flexibility because code can be specialized with respect to
parameters not yet available at compile time.

Many computations can naturally be separated into stages
distinguished by frequency of execution or availability of in-
formation. Staging transformations aim at executing certain
pieces of code less often or at a time where performance is
less critical. In the context of program generation, multi-
stage programming (MSP, staging for short) as established
by Taha and Sheard [22] allows programmers to explicitly
delay evaluation of a program expression to a later stage
(thus, staging an expression). The present stage effectively
acts as a code generator that composes (and possibly exe-
cutes) the program of the next stage. A nice property of
this approach is that generator and generated code are ex-
pressed in a single program, with the aim that programmers
can construct a multi-stage program from a naive implemen-
tation of the same algorithm by adding staging annotations
in a selective way.

Basic mechanisms for composing program fragments at
runtime have existed for a long time in the form of Lisp’s
“code is data” model and its use of quasi-quotation: syntac-
tic annotations to denote expressions that should remain un-
evaluated and to mark holes within them, to be filled in with
expressions computed elsewhere. Dedicated MSP languages
such as MetaML [22] and MetaOCaml [1] add well-scoping
and well-typing guarantees about the generated code. De-
spite these advances, incorporating dynamic code generation
into larger systems in the form of self-optimizing “active” li-
braries or adding compilation to embedded domain-specific
languages (DSLs) that are implemented as libraries remains
a significant challenge.

1.1 Contributions

In this paper, we present lightweight modular staging (LMS),
a dynamic code generation approach that further reduces
the effort to develop sophisticated program generators. The
presentation will use the Scala programming language but
the core concepts are not tied to any language in particular.

The classical introductory staging example is to special-
ize the power function for a given exponent, assuming that
a program will take many different numbers to the same
power. Considering the usual implementation,

def power(b: Double, n: Int): Double =
if (n == 0) 1.0 else b * power(b, n - 1)



we want to turn the base b into a staged expression. Fol-
lowing Carette et al. [2] and Hofer et al. [8], and in contrast
to the quasi-quotation approach of syntactic annotations,
the central idea of LMS is to use types to distinguish the
computational stages. In particular, we change b’s declared
type from Double to Rep[Double]. The meaning of having
type Rep[Double] is that b represents a computation that
will yield a Double in the next stage. We also change the
function’s return type accordingly.

Now we need to regain the ability to do arithmetic on b,
which is no longer a plain Double. The second idea of LMS
is to package operations on staged types as components. To
make its required functionality explicit, we wrap the power
function itself up as a component (a trait):

trait Power { this: Arith =>
def power(b: Rep[Double], n: Int): Rep[Double] =
if (n == 0) 1.0 else b * power(b, n - 1)
}

In Scala, traits are similar to classes but they can be used
in mix-in composition, a limited form of multiple inheri-
tance [15]. The self-type annotation this: Arith denotes a
“requires” relationship: whenever an instance of Power is cre-
ated, an instance of a concrete (but unspecified) subclass of
Arith (see Figure 3) that provides staged double arithmetic
must be mixed in, too.

LMS shares many benefits with earlier staging approaches:

e Code generators and generated code are expressed in
the same program.

e Objects that are live within the generator’s heap can
be accessed from generated code if the code is invoked
directly (cross-stage persistence).

e Staged expressions inherit the static scope of the gen-
erator and if the generator is well-typed so is the gen-
erated code.

e Data types representing staged expressions are inacces-
sible to the program itself (making optimizations safe
that preserve only semantic but not structural equal-
ity).

At the same time, LMS differs from previous approaches
in important ways:
e Staging is driven entirely by types, no special syntax
is required.
e Given a sufficiently expressive programming language,
the whole framework can be implemented as a library
(hence lightweight).

e Staged code fragments are composed through explicit
operations, in particular lifted variants of the usual
operators and control flow statements extended with
optimizing symbolic rewritings (semantic composition
instead of syntactic expansion).

e Using component technology, operations on staged ex-
pressions, data types to represent them, and optimiza-
tions (both generic and domain-specific) can be ex-
tended and composed in a flexible way (hence modu-
lar).

e Different code generation targets can easily be sup-
ported, their implementations can share common code.

e The relative evaluation order of expressions is pre-
served across stage boundaries. There is no danger of
accidentally omitting, reordering, or duplicating com-
putation.

The last item deserves more explanation, as it is arguably
the most prevalent difficulty programmers face with other
staging approaches. Since freely composing code fragments
voids any evaluation order guarantees (such as call-by-value
semantics), adding quasi-quotation annotations can easily
change the result of a program in unforeseen ways or slow
down the program by duplicating computation. In practice,
quasi-quotation is therefore often used as a low-level tool,
like an “assembly language” for code generation, and com-
bined with application specific front-end layers that apply
high-level code optimizations and ensure correct evaluation
order. LMS provides predictable execution order, makes the
composition of staged expressions extensible and thus re-
moves the need for extra front ends.

LMS is a key constituent of Delite [13, 18], an open-
source framework for high-performance parallel domain spe-
cific languages (DSLs) that has been used to develop DSLs
for demanding application areas such as machine learning,
graph processing or mesh-based partial differential equation
solvers. In this context, LMS enables “abstraction with-
out regret”: DSL programmers can use arbitrary Scala fea-
tures to structure their programs in the generator stage,
with the comforting knowledge that LMS guarantees to re-
move these abstraction during staging and no runtime price
will need to be paid. Coupled with advanced compiler opti-
mizations such as data parallel loop fusion and architecture-
specific data structure transformations, Delite generates ef-
ficient code for a variety of parallel platforms like multi-core
CPUs and GPUs.

LMS has also been used to generate SQL statements for

queries embedded in Scala programs and to generate JavaScript

from staged Scala fragments, allowing web-applications to
execute parts of their logic in the client’s browser.

1.2 Organization

The rest of this paper is structured as follows. Section 2
presents an end-to-end example, turning a naive algorithm
into an efficient code generator, while introducing the major
LMS components on the way. Section 2.1 discusses rep-
resentations of staged code, Section 2.2 is concerned with
optimizations, Section 2.3 with target code generation, and
Section 2.4 concludes the example by showing how gener-
ated code can be integrated in larger programs. Section 3
describes how additional features can be added, in particular
functions and recursion. Section 4 discussed related work.
An earlier version of this paper appeared at GPCE 2010.
The original version contains a few additional examples and
a more thorough discussion of how effectful statements are
represented, while the present version has been updated with
some new material in Section 3.

2. AN END-TO-END EXAMPLE

In the same way as the simple power function shown above,
we can stage far more interesting and practically relevant
programs, for example the fast fourier transform (FFT).
A staged FFT, implemented in MetaOCaml, has been pre-
sented by Kiselyov et al. [12] Their work is a very good show-
case for how staging allows to transform a simple, unopti-
mized algorithm into an efficient program generator. Achiev-
ing this in the context of MetaOCaml, however, required
restructuring the program into monadic style and adding a
front-end layer for performing symbolic rewritings. Using
our approach of just adding Rep types, we can go from the



trait FFT { this: Arith with Trig =
case class Complex(re: Rep[Double], im: Rep[Double]) {
def +(that: Complex) =
Complex(this.re + that.re, this.im + that.im)
def +(that: Complex) = ...

b

def omega(k: Int, N: Int): Complex = {
val kth = -2.0 = k * Math.Pi / N
Complex(cos(kth), sin(kth))

def fft(xs: Array[Complex]): Array[Complex] = xs match {
case (x :: Nil) = xs
case _ =
val N = xs.length // assume it’s a power of two
val (evenO, odd0) = splitEvenOdd(xs)
val (evenl, oddl) = (fft(even0), fft(odd0))
val (even2, odd2) = (evenl zip oddl zipWithIndex) map {
case ((x, ), k) =
val z = omega(k, N) » y
x+2z, Xx-12)
}.unzip;
even2 ::: odd2

Figure 1: FFT code. Only the real and imaginary
components of complex numbers need to be staged.
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Figure 2: Computation graph for size-4 FFT. Auto-
generated from staged code in Figure 1.
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naive textbook-algorithm to the staged version (shown in
Figure 1) by changing literally two lines of code:

trait FFT { this: Arith with Trig =>
case class Complex(re: Rep[Double], im: Rep[Double])

}

All that is needed is adding the self-type annotation to im-
port arithmetic and trigonometric operations and changing
the type of the real and imaginary components of complex
numbers from Double to Rep[Double].

Merely changing the types will not provide us with the de-
sired optimizations yet. We will see below how we can add
the transformations described by Kiselyov et al. to generate
the same fixed-size FFT code, corresponding to the famous
FFT butterfly networks (see Figure 2). Despite the seem-
ingly naive algorithm, this staged code is free of branches,
intermediate data structures and redundant computations.
The important point here is that we can add these transfor-
mations without any further changes to the code in Figure 1,
just by mixing in the trait FFT with a few others.

In the remainder of this section we present the LMS frame-

trait Base {
type Rep[+T]

trait Arith extends Base {
implicit def unit(x: Double): Rep[Double]
def infix_+(x: Rep[Double], y: Rep[Double]): Rep[Double]
def infix_+(x: Rep[Double], y: Rep[Double]): Rep[Double]

}
trait Trig extends Base {
def cos(x: Rep[Double]): Rep[Double]
def sin(x: Rep[Double]): Rep[Double]
}

Figure 3: Interface traits defining staged operations.
For simplicity, operations are defined for Double only.

work that is used to generate the code in Figure 2 from the
algorithm in Figure 1. Before considering specific optimiza-
tions, a closer look at the definition of Rep and the traits
Arith and Trig is in order. The definitions are given in Fig-
ure 3. In trait Base, the declaration type Rep[+T] defines an
abstract type constructor (also called a higher-kinded type)
Rep which we take to range over possible representations of
staged expressions. Since Rep is abstract, no concrete rep-
resentation is defined yet; the declaration merely postulates
the existence of some representation.

Trait Arith extends trait Base and contains only abstract
members, too. These postulate the existence of an implicit
lifting of Doubles to staged values and the usual arithmetic
operations on staged expressions of type Rep[Double]. The
restriction to Doubles is just to keep the presentation con-
cise. Any suitable means to abstract over numeric types,
such as the “type class” Numeric from the Scala standard li-
brary could be used to define Arith in a generic way for a
range of numeric types. Analogously to Double, we could
define arithmetic on matrices and vectors and implement
optimizations on those operations in exactly the same way.
Trait Trig is similar to Arith but defines trigonometric op-
erations.

One way to look at Base, Arith and Trig is as the defi-
nition of a typed embedded language (or its syntax). The
embedding is tagless (i.e. method resolution happens at com-
pile time without additional runtime dispatch overhead) [2]
and polymorphic [8], in the sense that we are free to pick
any suitable concrete implementation that fulfills the given
interface.

From a safety point of view, keeping the actual repre-
sentation inaccessible from the program generator is very
important. Otherwise, the program generator could exe-
cute different code depending on the exact structure of a
staged expression. Optimizations that replace staged code
with simpler but semantically equivalent expressions would
risk changing the meaning of the generated program.

2.1 Representing Staged Code

With the aim of generating code, we could represent staged
expressions directly as strings. But for optimization pur-
poses we would rather have a structured intermediate rep-
resentation that we can analyze in various ways.

We choose a representation based on expression trees, or,
more exactly, a “sea of nodes” representation that is in fact
a directed (and for the moment, acyclic) graph but can be
accessed through a tree-like interface. The necessary infras-
tructure is defined in trait Expressions, shown in Figure 4.



There are three categories of objects involved: expres-
sions, which are atomic (subclasses of Exp: constants and
symbols; with a “gensym” operator fresh to create fresh
symbols), definitions, which represent composite operations
(subclasses of Def, to be provided by other components), and
blocks, which model nested scopes.

The guiding principle is that each definition has an asso-
ciated symbol and refers to other definitions only via their
symbols. In effect, this means that every composite value
will be named, similar to administrative normal form (ANF).
Trait Expressions provides methods to find a definition given
a symbol or vice versa. The extractor object Def allows to
pattern-match on the definition of a given symbol, a facility
that is used for implementing rewritings (see below).

The framework ensures that code that contains staging op-
erations will always be executed within the dynamic scope of
at least one invocation of reifyBlock, which returns a block
object and takes as call-by-name argument the present-stage
expression that will compute the staged block result. Block
objects can be part of definitions, e.g. for loops or condition-
als.

The implicit conversion method toAtom converts a defini-
tion to an atomic expression and links it to the scope being
built up by the innermost enclosing reifyBlock call. When
the definition is known to be side-effect free, toAtom will
search the already encountered definitions for a structurally
equivalent one. If a matching previous definition is found,
its symbol will be returned, possibly moving the definition
to a parent scope to make it accessible. If the definition may
have side effects or it is seen for the first time, it will be as-
sociated with a fresh symbol and saved for future reference.
This simple scheme provides a powerful global value number-
ing (common subexpression elimination) optimization that
effectively prevents generating duplicate code. More com-
plicated optimization schemes can be added, too.

Since all operations in interface traits such as Arith re-
turn Rep types, defining Rep[T] = Exp[T] in trait BaseExp
(see Figure 5) means that conversion to symbols will take
place already within the constructor methods (e.g. cos or
infix_x). This fact is important because it establishes our
correspondence between the evaluation order of the program
generator and the evaluation order of the generated pro-
gram: at the point where the generator calls toAtom, the
composite definition is turned into an atomic value, i.e. its
evaluation will be recorded now and played back later in the
same relative order with respect to others within the closest
reifyBlock invocation.

We observe that there are no concrete definition classes
provided by trait Expressions. Providing meaningful data
types is the responsibility of other traits that implement
the interfaces defined previously (Base and its descendents).
For each interface trait, there is one corresponding core
implementation trait. Shown in Figure 5, we have traits
BaseExp, ArithExp and TrigExp for the functionality required
by the FFT example. Trait BaseExp installs atomic ex-
pressions as the representation of staged values by defin-
ing Rep[T] = Exp[T]. Traits ArithExp and TrigExp define
one definition class for each operation defined by Arith and
Trig, respectively, and implement the corresponding inter-
face methods to create instances of those classes.

2.2 Implementing Optimizations

trait Expressions {
// expressions (atomic)
abstract class Exp[+T]
case class Const[T](x: T) extends Exp[T]
case class Sym[T](n: Int) extends Exp[T]

def fresh[T]: Sym[T]

// block scopes
abstract class Block[T]

def reifyBlock[T](x: => Exp[T]): Block[T]

// definitions (composite, subclasses provided
// by other traits)
abstract class Def[T]

def findDefinition[T](s: Sym[T]): Option[Def[T]]
def findDefinition[T](d: Def[T]): Option[Sym[T]]
def findOrCreateDefinition[T](d: Def[T]): Sym[T]

// bind definitions to symbols automatically
implicit def toAtom[T](d: Def[T]): Exp[T] =
findOrCreateDefinition(d)

// pattern match on definition of a given symbol
object Def {
def unapply[T](s: Sym[T]): Option[Def[T]] =
findDefinition(s)

Figure 4: Expression representation (method imple-
mentations omitted).

Some profitable optimizations, such as the global value
numbering described above, are very generic. Other opti-
mizations apply only to specific aspects of functionality, for
example particular implementations of constant folding (or
more generally symbolic rewritings) such as replacing com-
putations like x * 1.0 with x. Yet other optimizations are
specific to the actual program being staged. In the FFT
case, Kiselyov et al. [12] describe a number of rewritings that
are particularly effective for the patterns of code generated
by the FFT algorithm but not as much for other programs.

What we want to achieve again is modularity, so that op-
timizations can be combined in a way that is most useful
for a given task. To implement a particular rewriting rule
(whether specific or generic), say, x * 1.0 — X, we can pro-
vide a specialized implementation of infix_» (overriding the
one in trait ArithExp) that will test its arguments for a par-
ticular pattern. How this can be done in a modular way is
shown by the traits ArithExpOpt and ArithExpOptFFT, which
implement some generic and program specific optimizations
(see Figure 6). Note that the use of x*y within the body of
infix_x will apply the optimization recursively.

In essence, we are confronted with the classic “expression
problem” of independently extending a data model with new
data variants and new operations. There are many solutions
to this problem but most of them are rather heavyweight.
More lightweight implementations are possible in languages
that support multi-methods, i.e. dispatch method calls dy-
namically based on the actual types of all the arguments.
Figure 6 shows how we can achieve essentially the same (plus
deep inspection of the arguments) using pattern matching
and mixin composition, making use of the fact that compos-
ing traits is subject to linearization [15]. We package each
set of arithmetic optimizations into its own trait that inher-
its from ArithExp and overrides the desired methods (e.g.
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trait BaseExp extends Base with Expressions {
type Rep[+T] = Exp[T]

trait ArithExp extends Arith with BaseExp {
implicit def unit(x: Double) = Const(x)
case class Plus(x: Exp[Double], y: Exp[Double])
extends Def[Double]
case class Times(x: Exp[Double], y: Exp[Double])
extends Def[Double]
def infix_+(x: Exp[Double], y: Exp[Double]) = Plus(x, V)
def infix_ =(x: Exp[Double], y: Exp[Double]) = Times(x, y)
}
trait TrigExp extends Trig with BaseExp {
case class Sin(x: Exp[Double]) extends Def[Double]
case class Cos(x: Exp[Double]) extends Def[Double]
def sin(x: Exp[Double]) = Sin(x)
def cos(x: Exp[Double]) = Cos(x)
}

Figure 5: Implementing the interface traits from
Figure 3 using the expression types from Figure 4.

infix_x). When the arguments do not match the rewrit-
ing pattern, the overridden method will invoke the “par-
ent” implementation using super. When several such traits
are combined, the super calls will traverse the overridden
method implementations according to the linearization or-
der of their containing traits.

Implementing multi-methods in a statically typed setting
usually poses three problems: separate type checking/com-
pilation, ensuring non-ambiguity and ensuring exhaustive-
ness. The described encoding supports separate type-checking
and compilation in as far as traits do. Ambiguity is ruled
out by always following the linearization order and the first-
match semantics of pattern matching. Exhaustiveness is en-
sured at the type level by requiring a default implementa-
tion, although no guarantees can be made that the default
will not choose to throw an exception at runtime. In the par-
ticular case of applying optimizations, the default is always
safe as it will just create an expression object.

2.3 Generating Code

Code generation is an explicit operation. For the com-
mon case where generated code is to be loaded immediately
into the running program, trait Compile provides a suitable
interface in form of the abstract method compile (see Fig-
ure 8). The contract of compile is to “unstage” a function

Optimizations

[ArithExpOptFFT] ScalaGenArith )% Arithmetic
ScalaGenTrig | Trigonometry

Specific Opts Scala Code generation

Arrows denote extends relationships, dashed boxes represent units of

trait ArithExpOpt extends ArithExp {
override def infix x(x:Exp[Double],y:Exp[Double]) = (x,y) match {
case (Const(x), Const(y)) => Const(x * y)
case (x, Const(1)) => x
case (Const(1), y) => x
case _ => super.infix_*(x, y)
}
}
trait ArithExpOptFFT extends ArithExp {
override def infix_x(x:Exp[Double],y:Exp[Double]) = (x,y) match {
case (Const(k), Def(Times(Const(l), y))) => Const(k * 1) * y
case (X, Def(Times(Const(k), v))) => Const(k) * (X * y))
case (Def(Times(Const(k), x)), v) => Const(k) * (x * y))

é:a.lée (%, Const(y)) => Times(Const(y), x)
case _ => super.infix_*(x, v)

Figure 6: Extending the implementation from Fig-
ure 5 with generic (top) and specific (bottom) opti-
mizations (analog of TrigExp omitted).

from staged to staged values into a function operating on
present-stage values that can be used just like any other
function object in the running program.

For generating Scala code, an implementation of the com-
pilation interface is provided by trait CompileScala. This
trait extends another trait, ScalaGenBase, whose subclasses
are responsible for traversing nested blocks and generating
Scala code for individual definition nodes. Of course, the
traversal code can also be factored out and shared by multi-
ple code generation targets. Subclasses of ScalaGenBase are
structured in a similar way as those of Base, i.e. one for each
unit of functionality (see Figure 9). Code generation can
omit side-effect free graph nodes that are unreachable from
the final result, effectively performing a dead code elimina-
tion optimization.

The overall compilation logic of CompileScala is relatively
simple: emit a class and apply-method declaration header,
emit instructions for each definition node according to the
schedule, close the source file, invoke the Scala compiler,
load the generated class file and return a newly instantiated
object of that class.

2.4 Putting it all Together



trait Compile extends Base {
def compile[A,B](f: Rep[A] => Rep[B]): A=>B
}
trait CompileScala extends Compile with ScalaGenBase =>
def compile[A,B](f: Exp[A] => Exp[B]) = {
val x = fresh[A]
val y = reifyBlock { f(x) }
// emit header
emitBlock(y)
// emit footer
// invoke compiler
// load generated class file
// instantiate object of that class

Figure 8: Code generation interface and skeleton of
Scala compilation component.

trait ScalaGenBase extends BaseExp {
def emitBlock[T](Block[T]) = ...
def emitNode[T](sym: Sym[T], node: Def[T]) =
throw new Exception("node " + node + " not supported")

}
trait ScalaGenArith extends ScalaGenBase with ArithExp {

override def emitNode(sym: Sym[T], node: Def[T]) = node match {
case Plus(a,b) => println("val %s = %a + %b".format(sym,a,b))
case Times(a,b) => println("val %s = %a * %b".format(sym,a,b))

case _ => super.emitNode(sym, rhs)
}
}

Figure 9: Scala code generation for selected expres-
sions.

In the previous sections, we have discussed the major in-
gredients of lightweight modular staging, focusing mostly on
individual components. Figure 7 shows an overview of the
traits encountered so far and their relationships.

Using the staged FFT implementation as part of some
larger Scala program is straightforward but requires us to
interface the generic algorithm with a concrete data rep-
resentation. The algorithm in Figure 1 expects an array
of Complex objects as input, each of which contains fields
of type Rep[Double]. The algorithm itself has no notion of
staged arrays but uses arrays only in the generator stage,
which means that it is agnostic to how data is stored. The
enclosing program, however, will store arrays of complex
numbers in some native format which we will need to feed
into the algorithm. A simple choice of representation is to
use Array[Double] with the complex numbers flattened into
adjacent slots. When applying compile, we will thus receive
input of type Rep[Array[Double]]. Figure 10 shows how we

trait FFIC extends FFT { this: Arrays with Compile =>
def fftc(size: Int) = compile { input: Rep[Array[Double]] =>
assert(<size is power of 2>) // happens at staging time
val arg = Array.tabulate(size) { i =>
Complex(input(2+i), input(2xi+l1))

}
val res = fft(arg)
updateArray(input, res.flatMap {
case Complex(re,im) => Array(re,im)

1))

Figure 10: Extending the FFT component from Fig-
ure 1 with explicit compilation.

trait Functions extends Base {

def lambda[A,B](f: Rep[A] => Rep[B]): Rep[A=>B]

def infix apply[A,B](f: Rep[A=>B], x: Rep[A]): Rep[B]
}

Figure 11: representing A-abstractions as Scala func-
tion values (higher-order abstract syntax)

can extend trait FFT to FFIC to obtain compiled FFT im-
plementations that realize the necessary data interface for a
fixed input size.

We can then define code that creates and uses compiled
FFT “codelets” by extending FFIC:

trait TestFFTC extends FFTC {
val fft4: Array[Double] => Array[Double] = fftc(4)
val fft8: Array[Double] => Array[Double] = fftc(8)

// embedded code using fft4, fft8, ...

Constructing an instance of this subtrait (mixed in with the
appropriate LMS traits) will execute the embedded code:

val OP: TestFFC = new TestFFIC with CompileScala
with ArithExpOpt with ArithExpOptFFT with ScalaGenArith
with TrigExpOpt with ScalaGenTrig
with ArraysExpOpt with ScalaGenArrays

We can also use the compiled methods from outside the ob-
ject:

opP.fft4(Array(1.0,0.0, 1.0,0.0, 2.0,0.0, 2.0,0.0))
— Array(6.0,0.0,-1.0,1.0,0.0,0.0,-1.0,-1.0)

Providing an explicit type in the definition val OP: TestFFC = ...

ensures that the internal representation is not accessible
from the outside, only the members defined by TestFFC.

3. ADDING MORE FEATURES

Many features can be added in a way that is analogous
to what we have seen above but some require a bit more
thought. In this section we will take a closer look at staged
functions. Basic support for staged function definitions and
function applications can be defined in terms of a simple
higher-order abstract syntax (HOAS) [16] representation,
similar to those of Carette et al. [2] and Hofer et al. [§]
(see Figure 11). The idea is to provide a lambda opera-
tion that transforms present-stage functions over staged val-
ues (type Rep[A] => Rep[B]) to staged function values (type
Rep[A=>B]). Note how this is similar to the signature of
compile. To give an example, the staged recursive factorial
function will look like this:

def fac: Rep[Int => Int] = lambda { n =>

if(n==0)1
else n * fac(n - 1)

}

As opposed to the earlier power example, an invocation
fac(m) will not inline the definition of fac but result in an
actual function call in the generated code.

However the HOAS representation has the disadvantage
of being opaque: there is no immediate way to “look into”
a Scala function object. If we want to treat functions in
the same way as other program constructs, we need a way
to transform the HOAS encoding into our graph representa-
tion. We can implement lambda(f) to call

reifyBlock { f(fresh[A]) }

which will unfold the function definition into a Block that
represents the entire computation defined by the function.
But eagerly expanding function definitions is problematic.



For recursive functions, the result would be infinite, i.e. the
computation will not terminate. What we would like to do
instead is to detect recursion and generate a finite represen-
tation that makes the recursive call explicit. However this
is difficult because recursion might be very indirect:

def foo(x: Rep[Int]) = {

val f = (x: Rep[Int]) => foo(x + 1)
val g = lambda(f)
g(x)

Each incarnation of foo creates a new function f; unfold-
ing will thus create unboundedly many different function
objects.

To detect cycles, we have to compare those functions.
This, of course, is undecidable in the general case of tak-
ing equality to be defined extensionally, i.e. saying that two
functions are equal if they map equal inputs to equal out-
puts. By contrast, the standard reference equality, which
compares memory addresses of function objects, is too weak
for our purpose:

def adder(x:Int) = (v: Int) = x + vV

adder(3) == adder(3)

— false

However, we can approximate extensional equality by in-
tensional (i.e. structural) equality, which is sufficient in most
cases because recursion will cycle through a well defined
code path in the program text. Testing intensional equal-
ity amounts to checking if two functions are defined at the
same syntactic location in the source program and whether
all data referenced by their free variables is equal. Fortu-
nately, the implementation of first-class functions as closure
objects offers (at least in principle) access to a “defunction-
alized” data type representation on which equality can easily
be checked. A bit of care must be taken though, because the
structure can be cyclic. On the JVM there is a particularly
neat trick. We can serialize the function objects into a byte
array and compare the serialized representations:

serialize(adder(3)) == serialize(adder(3))

— true
With this method of testing equality, we can implement con-
trolled unfolding. Unfolding functions only once at the defi-
nition site and associating a fresh symbol with the function
being unfolded allows us to construct a block that contains a
recursive call to the symbol we created. Thus, we can create
the expected representation for the factorial function above.

3.1 Guarantees by Construction

Making staged functions explicit through the use of lambda
enables tight control over how functions are structured and
composed. For example, functions with multiple parameters
can be specialized for a subset of the parameters. Consider
the following implementation of Ackermann’s function:

def ack(m: Int): Rep[Int=>Int] = lambda { n =
if (m == 0) n+l else
if (n == 0) ack(m-1)(1) else
ack(m-1) (ack(m) (n-1))

}

Calling ack(m) (n) will produce a set of mutually recursive
functions, each specialized to a particular value of m. For
ack(2) (n), for example, we will get:

def ack 2(n: Int) = if (n == 0) ack_1(1) else ack_1(ack_2(n-1))
def ack_1(n: Int) = if (n == 0) ack_0(1) else ack_0O(ack_1(n-1))
def ack_O(n: Int) = n+l

acc_2(n)

In essence, this pattern implements what is known as

“polyvariant specialization” in the partial evaluation commu-
nity. But unlike automatic partial evaluation, which might
or might not be able to discover the right specialization, the
use of staging provides strong guarantees about the structure
of the generated code. In this case, we are guaranteed that
specialization will happen for each value of m (but never for
n), statically evaluating tests on values of m and inserting
constants for all occurrences of m in the generated code.

Other strong guarantees can be achieved by restricting the
interface of function definitions. Being of type Rep[A=>B],
the result of lambda is a first-class value in the generated
code that can be stored or passed around in arbitrary ways.
However we might want to avoid higher-order control flow
in generated code for efficiency reasons, or to simplify sub-
sequent analysis passes. In this case, we can define a new
function constructor fundef as follows:

def fundef[A,B](f: Rep[A] => Rep[B]): Rep[A] => Rep[B] =

(x: Rep[A]) => lambda(f).apply(x)

Using fundef instead of lambda produces a restricted func-
tion that can only be applied but not passed around in the
generated code (type Rep[A]=>Rep[B]). At the same time, a
result of fundef is still a first class value in the code gener-
ator. If we do not expose lambda and apply at all to client
code, we obtain a guarantee that each function call site un-
ambiguously identifies the function definition being called
and no closure objects will need to be created at runtime.

4. RELATED WORK

Static program generation approaches include C++ tem-
plates, and Template Haskell [20]. Building on C++ tem-

plates, customizable generation approaches are possible through

Expression Templates [23]. An example of runtime code gen-
eration in C++ is the TaskGraph framework.Active libraries
were introduced by Veldhuizen [24], telescoping languages by
Kennedy at al. [11]. Specific toolkits using domain-specific
code generation and optimization include FETW [6], SPI-
RAL [17] and ATLAS [25].

This paper draws a lot of inspiration from the work of
Kiselyov et al. [12] on a staged FFT implementation. Per-
forming symbolic rewritings by defining operators on lifted
expressions and performing common subexpression elimina-
tion on the fly is also central to their approach. LMS takes
these ideas one step further by making them a central part
of the staging framework itself.

Immediately related work on embedding typed languages
includes that of Carette et al. [2] and Hofer et al. [8]. Lee et
al. [13, 18] describe how LMS is used in the development of
DSLs for high-performance parallel computing on heteroge-
nous platforms.

Multi-Stage Programming Languages such as MetaML
[22] and MetaOCaml [1] have been proposed as a disciplined
approach to building code generators. These languages pro-
vide three syntactic annotations, brackets, escape and run
which together provide a syntactic quasi-quotation facility
that is similar to that found in Lisp but statically scoped
and statically typed.

MSP languages make writing program generators easier
and safer, but they inherit the essentially syntactic notion
of combining program fragments, which incurs the risk of
duplicating or reordering computation [3, 21]. Code duplica-
tion can be avoided systematically by writing the generator
in continuation-passing or monadic style, using appropriate
combinators to insert let-bindings in strategic places. How-



ever this is often impractical since this style significantly
complicates the generator code. Another possibility is to
make extensive use of side-effects in the generator part, but
side-effects invalidate some of the static guarantees of MSP
languages. This dilemma has been described as an “ago-
nizing trade-off”, due to which one “cannot achieve clarity,
safety, and efficiency at the same time” [10].

By contrast, lightweight modular staging prevents code
duplication by handling the necessary side effects inside the
staging primitives, which are semantic combinators instead
of syntactic expanders. Therefore, code generators can usu-
ally be written in purely functional direct style and are much
less likely to invalidate safety assurances.

Another characteristic of some MSP languages is that
staged code cannot be inspected due to safety consider-
ations. Thus, domain-specific optimizations must happen
on an external intermediate representation, before using the
MSP primitives to generate code [12]. The burden of choos-
ing and implementing a suitable representation is on the
programmer and it is not clear how different representations
can be combined or re-used.

Lightweight modular staging provides a systematic inter-
face for adding symbolic rewritings. Safety is maintained by
exposing the internal code structure only to rewriting mod-
ules but keeping it hidden from the client generator code.

Compiled embedded DSLs, as studied by Leijen et al.
[14] and Elliott et al. [5], can also be implemented using MSP
languages by writing an explicit interpreter and adding stag-
ing annotations in a second step [19, 4, 7]. This is simpler
than writing a full compiler but compared to constructing
explicit interpreters, “purely” embedded languages that are
implemented as plain libraries have many advantages [9].
LMS allows as simpler approach, by starting with a pure
embedding instead of an explicit interpreter. In many cases,
adding some type annotations in strategic places is all that
is needed to get to a staged embedding. If domain-specific
optimizations are needed, new AST classes and rewriting
rules are easily added.
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