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Abstract – The paper focuses on the solution of the min-

imum loss reconfiguration problem of distribution net-

works, including embedded generation, by means of a 

mixed integer linear programming (MILP) model. The 

proposed model takes into account typical operating con-

straints of distribution networks (radial configuration, 

branch ampacity limits and bus voltage requirements). 

The accuracy of the results and the computational per-

formances of the proposed MILP model are evaluated by 

making reference to test networks already adopted in the 

literature for the problem of interest. 

Keywords: network reconfiguration, power loss 
minimization, radial networks, distribution systems, 
mixed integer linear programming, graph theory.  

1 INTRODUCTION 

The choice of the configuration of a given electrical 

network that minimizes the losses and meets all the 

operating requirements is a typical problem for distribu-

tion system operators and has been successfully ad-

dressed by using various approaches. Recent reviews 

and classifications can be found in [1,2]. In particular, 

heuristic algorithms that start from a feasible network 

configuration have been proven to achieve good results 

in short runtimes [3]. 

The increasing installation of embedded generation, 

which frequently uses renewable, but fluctuating, ener-

gy resources, renovates the interest for the solution of 

the optimal configuration problem, also without the 

need to start from an initial feasible configuration. 

Recently, the efficiency of Mixed Integer Linear 

Programming (MILP) solvers have been significantly 

increased mainly by the adoption of cutting-plane capa-

bilities [4], local search techniques (e.g. [5]), and effec-

tive heuristics techniques applied to the finding of a first 

feasible solution (e.g. [6]).   

A MILP model is defined by a linear objective func-

tion of the variables to optimize, some of which assume 

integer values, and a set of linear (equality or inequali-

ty) constraints. The optimal configuration problem of a 

distribution network is characterized by several nonlin-

earities, mainly represented by the power flow equa-

tions. The main issue in the application of MILP solvers 

is the efficient linearization of these equations.  

The following linearization approaches have been 

presented in the literature. In [7] an iterative procedure 

is applied to a single-loop linear problem, in which the 

network loads are assumed as constant current injec-

tions and voltage drops in the lines are neglected. In [8] 

the linear d.c. power flow approximation is adopted. In 

[9] a genetic algorithm approach is compared with a 

MILP model in which the quadratic functions that rep-

resent the power flow in the lines are approximated by 

using piecewise linear functions (PLFs). Moreover, [2] 

presents a mixed-integer quadratically constrained prob-

lem, formulated so that non-linear multiplications be-

tween line statuses (represented binary variables) and 

continuous variables are avoided. 

This paper describes a MILP model of the reconfigu-

ration problem that directly incorporates the typical 

operating constrains of distribution networks, namely 

radial configuration, branch ampacity limits and limited 

bus voltage deviations with respect to the reference 

value, taking into account the presence of embedded 

generation. To the best of the authors’ knowledge, some 

characteristics of the proposed MILP model, such as the 

linear representation of loads and embedded generation,   

have not been already dealt with in the literature on the 

subject. The approach is tested by using the reference 

networks analyzed in [2]. 

The structure of the paper is the following. Section II 

is devoted to the statement of the problem. Section III 

presents the MILP model. Section IV shows the numer-

ical results obtained for various test networks of differ-

ent size. Section V is devoted to the Conclusions. 

2 THE PROBLEM 

The typical minimum losses configuration problem is 

defined as the search of the radial network configura-

tion that corresponds to the minimization of the network 

losses. The configuration should permit to feed all the 

loads and to allow the production of all the embedded 

generators, with current flows below the ampacity limits 

of cables and overhead lines and bus voltage deviations 

lower than a predefined level of few percent with re-

spect to the rated value. 

Furthermore, various multi-objective reconfiguration 

problems have been formulated and addressed in the 

literature. In these problems, other than the minimiza-

tion of the losses, the objective function may include the 

minimization of voltage deviations (e.g. [10,11]) and of 

other power quality indices (e.g. [12]), the minimization 

of switching number (e.g. [10,13]), transformer load 
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balancing (e.g. [10,11]), the optimal placement of ca-

pacitor banks (e.g. [14]).    

This paper will focus on the solution of the minimum 

losses configuration problem.  

The electric power distribution network of N buses 

and Nb lines is associated to a connected graph G: each 

bus k being represented by one distinct element of the 

set K of the vertices of G and each line b being repre-

sented by one distinct element of the set B of edges of 

G. The point of connection of each load is a bus of the 

network and each couple of connected busses defines a 

different line. The considered networks do not have 

parallel edges and self-loops. A configuration of the 

network that does not contain closed paths (cycles) and 

that allows to feed all the loads is associated to a span-

ning tree of G.  

Each configuration of the network is represented by 

binary column vector u with Nb elements: ub=1 indicates 

that line b is connected, ub=0 indicates that the line is 

disconnected at both ends.  

The optimization model for the computation of the 

minimum loss configuration u* is written as follows: 

 *

loss,

1

arg min
bN

b

b

u P


   (1) 

subject to 

 x F  (2) 

 *u U  (3) 

where Ploss,b are the active power losses on line b, x is 

the set of phasors that represent the bus voltages and the 

line currents, U indicates the set of configurations each 

corresponding to a spanning tree of G and F the feasible 

operating region of the network. 

Objective function (1) minimizes the total value of 

line losses. Constraints (2) represent all the operating 

constraints that bound the bus voltage deviations below 

to a small percentage of rated value Vr and limit each 

line current below the relevant capability. Moreover, 

constraints (2) also include the network equations that 

also incorporate the characteristics of loads and embed-

ded generators. Constraint (3) ensures that the network 

is radially operated. 

In order to obtain a MILP model, both the objective 

function and all the constraints of problem (1)-(3) must 

be expressed by linear relationships, involving binary 

decision variables u* and the associated vector x of 

continuous variables that describe the network operat-

ing conditions. 

3 THE MILP MODEL 

We here assume to have the capability to change the 

status (connected or non-connected) of every line in the 

network. Moreover, for sake of simplicity in the model 

description, the amplitude of the voltage Vs at slack bus 

s is assumed equal to the rated value Vr. Vs is the refer-

ence for the phases of all the other voltages and the 

currents of the network.  

In the following sub-sections, the various parts of the 

proposed MILP model of problem (1)-(3) are presented: 

the radiality constraint, the network equations, the line 

current bounds and the objective function and, finally, 

the constraints on the bus voltage deviations with re-

spect to the rated value. 

3.1 Radiality constraint  

The MILP radial configuration constraints ensure the 

opening of all the cycles of the graph associated to the 

distribution network. All the cycles can be efficiency 

determined by using a search strategy (e.g. [15]) or by 

the union of two or more cycles of a cycle basis [16]. 

The latter approach is here described.  

A spanning tree of G is readily obtained by a apply-

ing a depth-first search (DFS). Each of the Nb-(N-1) 

fundamental cycles associated to the spanning tree is 

defined by adding just one edge and by removing all the 

leaf nodes. As the set of the fundamental cycles associ-

ated to any of the spanning tree of G form a basis for 

the cycle space, all the simple cycles (i.e., without re-

peated vertices) are found by the union of two or more 

cycles of the basis. The union between two cycles is 

performed by applying the exclusive OR logic operation 

to the corresponding elements of the relevant u binary 

vectors. The implemented procedure inspects, again by 

a DFS, the union of each combination of two or more 

fundamental cycles in order to check whether it is a 

simple cycle and, in that case, adds the relevant u vector 

as a column of matrix L, the columns of which finally 

represents all the distinct Nc cycles in the graph.  

Constraint (3) is then represented by the following 

set of integer linear constraints 

 *

, ,

1 1

1 1...
b bN N

b j b b j c

b b

u j N
 

       (4) 

being ,b j  the b,j binary element of matrix L. 

3.2 Network equations  

The network equations define the equilibrium of the 

currents at each bus and the voltage drops in each con-

nected line. 

3.2.1 Bus equations 

The equations include the models of loads and em-

bedded generators.  

These equations are expressed as linear constraints 

by setting, at first, the real and imaginary parts of each 

phasors Ink, representing the current injected into bus k, 

as corresponding to the active power and reactive power 

relevant to the load or generator connected at bus k, 

assuming Vk=Vs.  

As the typical amplitude and phase deviations of Vk 

from Vs limited, we then apply the small variation ap-

proximation in order to find each correction kIn  to be 

added to Ink so to represent the characteristics of load or 

generator injections at bus k. 

Assuming a symmetrical system operating condition, 

each line b is represented the usual one-phase Π equiva-

lent circuit, each characterized by the values of re-

sistance Rb, reactance Xb and total shunt capacitance 

2Cb.  Therefore, for each line each line b connected to 
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bus k, the bus equations includes both current bI  flow-

ing in Rb, and Xb and current ,

sh

b kI  in Cb at bus k 1. 

For each bus, the two linear equality constraints rele-

vant to the real part (superscript re) and imaginary part 

(superscript im) are the following: 

 ,

, ,
k k

re sh re re re

b b k k k

b B b B

I I In In k K k s
 

        (5) 

 ,

, ,
k k

im sh im im im

b b k k k

b B b B

I I In In k K k s
 

        (6) 

where Bk is the set of lines b connected to bus k. 

The components re

kIn  and im

kIn  are functions of 

the deviations of the real and imaginary parts of Vk with 

respect to Vs, taking into account the following three 

cases.   

a) Loads represented by a constant injection Ink 

with fixed amplitude 
kIn  and phase k  with 

respect to the voltage phasor of the relevant bus 

k: 2 

 sin( )
im

re k
k k k

s

V
In In

V
     (7) 

 cos( )
im

im k
k k k

s

V
In In

V
    (8) 

b) Loads and embedded generators represented by 

constant active P and reactive Q power injec-

tions (PQ nodes): 3 

 
re im

re re imk s k
k k k

s s

V V V
In In In

V V


       (9) 

 
im re

im re imk k s
k k k

s s

V V V
In In In

V V


      (10) 

c) Embedded generators represented by constant 

active power P injections with the capability to 

maintain the voltage amplitude equal to a set 

value Vk (PV node): constraints (5),(6),(9) and 

(10) are applied with 
im

kIn  as a continuous vari-

able and the two following constraints are added 

 max, min,

3 3

k kim

k

s s

Q Q
In

V V
     (11) 

 2 2 2re im

k k kV V V   (12) 

In (11) the sign convention of positive powers and 

current components when injected in the bus from out-

side applies. im

kIn permits to adapt the reactive power 

production taking into account the generator upper and 

lower limits. Constraint (12) is explained in sub-section 

3.4. 

                                                           
1 The inclusion of  

,

sh

b k
I  appears to be useful for the calculation of 

the voltage amplitudes when the network is characterized by a large 

presence of cable lines. 
2 If the angular deviation of Vk with respect to Vs is small, then the 

ratio 
im

k s
V V  could be assumed as its approximation. 

3 A null variation of the active power value implies 

  0
re re re im im

k s k k s k k
V V In In V V In         

and a null variation of the reactive power value implies 

  0
im re re im im

k k k s k k s
V In V V In In V       . 

Even when the functions that describe re

kIn  and 

im

kIn  are linear, as in case a) and b), we have found 

more convenient, from the computational point of view, 

the implementation of a two-iterations procedure. In the 

first iteration, re

kIn  and im

kIn  are null, while in the 

second, both are calculated by using the values re

kV   and 

im

kV  obtained in the first iteration. 

3.2.2 Line equations 

The equations of the differences between the real and 

imaginary parts of the voltage phasors at the terminals h 

and k of each line b are represented by the following 

linear constraints: 

 0re re re im re

h k b b b b bV V R I X I v b B          (13) 

 
*

*

re

b b

re

b b

v BN u BN

v BN u BN

   

   
 (14) 

 0im im re im im

h k b b b b bV V X I R I v b B          (15) 

 
*

*

im

b b

im

b b

v BN u BN

v BN u BN

   

   
 (16) 

where BN is a big number, in this case, larger than the 

maximum voltage difference between unconnected 

busses 4. Constraints (14) and (16) ensure that auxiliary 

variables re

bv  and im

bv  are null when line b is con-

nected. 

Alike, the real and imaginary parts of current ,

sh

b kI of 

each line connected to bus k are represented by the 

following constraints: 

 

,

, ,

*

,

*

,

0

, ,

sh re im re

b k b k b k

re

b k b k

re

b k b

I C V v

v BN u BN b B k K k s

v BN u BN

    

        

   

(17) 

 

,

, ,

*

,

*

,

0

, ,

sh im re im

b k b k b k

im

b k b k

im

b k b

I C V v

v BN u BN b B k K k s

v BN u BN

    

        

   

(18) 

being ω the rated value of the angular frequency. Auxil-

iary variables ,

re

b kv  and ,

im

b kv  are null when line b is 

connected and equal to - im

kV  , respectively, and re

kV  

when disconnected (being ,

,

sh re

b kI  and ,

,

sh im

b kI  null). 

3.3 Objective function and line current constraints 

Both the objective function and the maximum line 

constraint require the evaluation of the square value of 

the real and imaginary part of the line current phasors, 

defined by the network equations. For this purpose, a 

PLF approximation is adopted. 

Different PLF techniques, compared in [17], use bi-

nary variables or special ordered sets of variables 

(SOS2 [18]). For the PLF representation of the objec-

tive function and the line current constraints, the three 

following simplifying conditions apply: 

1) the function to be represented is quadratic; 

                                                           
4 As explained in subsection 3.3, when line b is disconnected both 

re

b
I  and 

im

b
I  are null.  
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2) the minimum value of the currents is sought by 

the optimization problem; 

3) the constraints are represented by upper bunds. 

These simplifying conditions permit to represent both 

the objective function and the line current constraints by 

means of the two following sets of linear constraints: 

- the first set permits the evaluation of re

bI  and 

im

bI  b B  , which also ensure that current bI  

is null if line b is not connected (i.e., if *

bu =0), 

 

*

,max

0

0

0

re re

b b

re re

b b

re

b b b

I I

I I

I I u

 

  

  

 (19) 

 

*

,max

0

0

0

im im

b b

im im

b b

im

b b b

I I

I I

I I u

 

  

  

 (20) 

(analogous equations are written also for ,

,

sh re

b kI  

and ,

,

sh re

b kI ) 

- whilst the second set of constraints applies the 

PLFs to estimate the square values of the real 

part ( 2re

bI ) and imaginary part ( 2im

bI ) of each line 

current, 

 2

, , ,re re re re re

b b i b b i bI I i Z b B          (21) 

 2

, , ,im im im im im

b b i b b i bI I i Z b B          (22) 

where {1... }re re

b bZ z  and {1... }im im

b bZ z  are 

the set of breakpoints of the PLFs, and 

 
, , 1 ,

2

, , , ,

1. .. 1

re re re

b i b i b i
re

bre re re re

b i b i b i b i

I I
i z

I I





 
  

   
 (23) 

 
, , 1 ,

2

, , , ,

1. .. 1

im im im

b i b i b i
im

bim im im im

b i b i b i b i

I I
i z

I I





 
  

   
 (24) 

being (
,

re

b iI , 2

,

re

b iI ) and (
,

im

b iI , 2

,

im

b iI ) the coordi-

nates of each breakpoint i of the PLFs. 

Due to simplifying condition 1, equations (23) and 

(24) represent the slope and the ordinate intercepts 

relevant to each interval of the PLFs. Simplifying con-

ditions 2 and 3 permit to avoid additional binary varia-

bles. 

Being 2 2 2re im

b b bI I I  , objective function (1) be-

comes 

 2 2

1 1

b bN N
re im

b b b b

b b

R I R I
 

   (25) 

In the representation of the line ampacity constraints, 

we disregard the contribution of ,

sh

b kI   to the line current 

in order to reduce the number of the required PLF mod-

els:  

 2 2 2

,max

re im

b b bI I I b B     (26) 

being ,maxbI  the maximum current amplitude value for 

each line b. 

3.4 Bus voltage constraints 

For the bus voltages, simplifying conditions 2) and 

3) do not apply. Therefore, in order to enforce the lower 

and upper boundaries to the bus voltage amplitude, we 

have included two additional binary variables, namely 

,

re

k iw  and ,

im

k iw  for each interval i of the PLF model of the 

square value of Vk. The two sets of constraints repre-

senting the relevant PLF models are: 

- evaluation of re

kV  and im

kV  ,k K k s    

 
0

0

re re

k k

re re

k k

V V

V V

 

  
 (27) 

 
0

0

im im

k k

im im

k k

V V

V V

 

  
 (28) 

- PLF models of the real and imaginary parts of Vk 

,k K k s   , each specified by a set of break-

points {1... }re re

k kZ z  or {1... }im im

k kZ z , 

 

1 1
2 2

, , , ,

1 1

1 1

, , ,

1 1

1

,

1

, ,max ,

0

0

1

0 1. .. 1

re re
k k

re re
k k

re
k

z z
re re re re re

k k i k i k i k i

i i

z z
re re re re

k i k i k i k

i i

z
re

k i

i

re re re

k i k k i k

V v V w

v V w V

w

v V w i z


 

 

 

 





     

   



     

 

 



 (29) 

 

1 1
2 2

, , , ,

1 1

1 1

, , ,

1 1

1

,

1

, ,max ,

0

0

1

0 1. .. 1

re re
k k

re re
k k

re
k

z z
im im im im im

k k i k i k i k i

i i

z z
im im im im

k i k i k i k

i i

z
im

k i

i

im im im

k i k k i k

V v V w

v V w V

w

v V w i z


 

 

 

 





     

   



     

 

 



 (30) 

where,  

 
, , 1 , 1. .. 1re re re re

k i k i k i kV V i z       (31) 

 
, , 1 , 1. .. 1im im im im

k i k i k i kV V i z       (32) 

In (29) and (30), additional continuous variables ,

re

k iv  

and ,

im

k iv  represents the difference between the values of  

,

re

k iV  and ,

im

k iV  with respect to the immediately preced-

ing abscissa of a PLF breakpoint. The third and fourth 

constraints in (29) and (30) guarantee that 
2re

kV  and 

2im

kV  are defined by only one of the intervals of the 

relevant PLF representations. 

Being 
2 2 2re im

k k kV V V  , the upper and lower bounds 

Vk,max and Vk,min of Vk become 

 

2 2 2

,max

2 2 2

,min

re im

k k k

re im

k k k

V V V
k K

V V V

 
 

   
 (33) 
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4 TEST RESULTS 

The model described in the previous section has been 

tested by using the CPLEX V12.2 MIP solver under 

Matlab R2009b on a 1.3 GHz Intel Quad Core proces-

sor with 4 GB of RAM, running 32-bit Windows.  

The tests have been carried out for the distribution 

networks analyzed in [2], which presents a detailed 

comparison of the results reported in the literature: the 

15-bus 16-line system originally described in [19], the 

32-bus 37-line system originally described in [20] and 

the 69-bus 74-line system firstly adopted in [21] as an 

enlargement of the radial network described in [22]. 

Moreover, [2] also presents the results for a 5-bus 7-line 

system in order to illustrate the effects of operating 

conditions and constraints not usually included, such as 

the presence of a PV node, the maximum current con-

straint in a line and the minimum voltage bounds. 

All the lines of the considered networks are assumed 

to be equipped with reconfiguration switches. 

Both the computational time and the accuracy de-

pend on the number of intervals adopted for the PLF 

representation of the quadratic functions. In all the tests, 

the results have been obtained with the following num-

ber of intervals for the PLF models: 

for 2

bI ,  re

bz = im

bz =31 b B   

for 2

kV , re

kz = im

kz =4 k K    

A maximum phase deviation  with respect to the 

slack bus of 5°, i.e. the break points relevant to 
2re

k
V  are 

allocated between ,min cos( / 36)kV   and ,maxkV , whilst 

those relevant to 2im

kV  are allocated between 0 and 

,max sin( / 36)kV  . 

For each network, the minimum losses configuration 

obtained by using the proposed MILP model is com-

pared with the results reported in the literature. Moreo-

ver, in order to assess the effects of the linear approxi-

mations, each MILP solution is also compared with the 

power flow (PF) results corresponding to the obtained 

optimal network configuration5. 

4.1 5-bus 7 line system 
The slack bus has constant voltage equal to 

Vs=20 kV.  At the end of line 3 is connected a an em-
bedded generator G represented as a PV node with 
P=5 MW and V=0.97 p.u.. All the other 4 buses are 
represented by PQ nodes with the values reported in [2]. 
The network contains 3 distinct simple cycles. 

The three different tests presented in [2] are repeated 

here by using the proposed MILP model: namely the 

base test, the voltage test and the current test. 

4.1.1 Base test 
In the base test the voltage and current operating 

constraints are not binding, i.e. Vk,max=1.1 p.u., 
Vk,min=0.9 p.u., and Ib,max=600 A. 

The minimum-losses radial configuration is shown in 
Fig. 1a) in which the two open lines are: 4 and 6. 

                                                           
5 The EMTP-rv load flow code [23] have been used. 

The comparison between the final MILP solution and 
the PF results corresponding to the minimum-losses 
configuration is summarized in Tab. 1. The table reports 
also the computer total time relevant to the Cplex solu-
tion of the two iterations. A slightly lower value of the 
network losses has been obtained by the MILP model 
due to the approximations associated to the use of (9) 
and (10) for the PQ-node representation. 

a)  

b)  

c)  
Figure 1 Optimal configurations of the 5-bus system: a) base 

test, b) voltage test, c) current test. The numbers indicate the 

lines according to the order of table B.1 of [2], whilst dotted 

lines indicate those open. 

 PF reference 

results 

MILP solution 

Losses (kW) 637.658 632.204 

Min. bus voltage (p.u.) 

(at the end of line no.) 

0.9681 

 (1) 

0.9683 

 (1) 

Max line current (A) (line no.) 496.55  (7) 495.11  (7) 

Load active power (MW) 17.500 17.484 

Load reactive power (Mvar) 0.630 0.600 

Active power injected by G (MW) 5.000 4.950 

Reactive power injected by G (Mvar) -10.260 - 10.179 

Slack bus active power (MW) 13.138 13.165 

Slack bus reactive power (Mvar) 11.103 10.990 

Cplex time (s)  0.23+0.45 

Table 1:  Comparison between the MILP solution and PF 

results for the base test of the 5-bus system. 

4.1.2 Voltage test 
In the voltage test the lower bound Vk,min = 0.97 p.u. 

has been imposed at every load bus. The minimum-
losses radial configuration is shown in Fig. 1b) in which 
the two open lines are: 3 and 6. The comparison be-
tween the final MILP solution and the PF results corre-
sponding to the minimum-losses configuration is sum-
marized in Tab. 2. 
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 PF reference 

results 

MILP solution 

Losses (kW) 647.114 644.529 

Min. bus voltage (p.u.) 0.970 (at G) 0.970 (at G) 

Max line current (A) (line no.) 497.40 (1) 496.64 (1) 

Load active power (MW) 17.500 17.492 

Load reactive power (Mvar) 0.630 0.589 

Active power injected by G (MW) 5.000 4.968 

Reactive power injected by G (Mvar) -10.270 - 10.248 

Slack bus active power (MW) 13.147 13.168 

Slack bus reactive power (Mvar) 11.137 11.071 

Cplex time (s)  0.23+0.36 

Table 2:  Comparison between the MILP solution and PF 

results for the voltage test of the 5-bus system. 

4.1.3 Current test 
In the current test Ib,max=368.9A has been enforced at 

line 5. The minimum-losses radial configuration is 
shown in Fig. 1c) in which the two open lines are: 4 and 
7. The comparison between the final MILP solution and 
the PF results corresponding to the minimum-losses 
configuration is summarized in Tab. 3. 

 PF reference 

results 

MILP solution 

Losses (kW) 855.206 859.356 

Min. bus voltage (p.u.) 

(at the end of line no.) 

0.9455  

(5) 

0. 9461 

(5) 

Max line current (p.u.) (line no.) 551.64 (6) 554.60 (6) 

Load active power (MW) 17.500 17.449 

Load reactive power (Mvar) 0.630 0.579 

Active power injected by G (MW) 5.000 4.965 

Reactive power injected by G (Mvar) -12.660 - 12.860 

Slack bus active power (MW) 13.355 13.343 

Slack bus reactive power (Mvar) 13.668 13.818 

Cplex time (s)  0.25+0.14 

Table 3:  Comparison between the MILP solution and PF 

results for the current test of the 5-bus system. 

The obtained results are in agreement with those pre-
sented in [2]. 

4.2 15-bus 16-line system 

The slack bus has constant voltage equal to 

Vs=23 kV, all the other 15 buses are represented by PQ 

nodes. The network contains 7 distinct simple cycles. 
The minimum loss configuration obtained without 

any voltage and current binding constraint (i.e. 
Vk,max=1.1 pu. Vk,min=0.9 p.u., Ib,max= 400 A) is shown in 
Fig. 2, in which the 3 open lines are: 17, 19, 26.  

 
Figure 2 Optimal configuration of the 15-bus system. The 

numbers indicate the lines according to Fig. 2 of [19], whilst 

dotted lines indicate those open. 

The comparison between the final MILP solution and 

the PF results corresponding to the minimum-losses 

configuration is summarized in Tab. 4. the results are in 

agreement with those presented in the literature [2]. 

 PF reference 

results 

MILP solution 

Losses (kW) 466.127 465.971 

Min. bus voltage (p.u.) 

(at the end of line no.) 

0.9716 

 (20) 

0.9719  

(20) 

Max line current (A) (line no.) 355.76 (16) 355.25  (16) 

Load active power (MW) 28.700 28.680 

Load reactive power (Mvar) 5.900 5.877 

Slack bus active power (MW) 29.166 29.145 

Slack bus reactive power (Mvar) 6.445 6.421 

Cplex time (s)  0.55+0.36 

Table 4:  Comparison between the MILP solution and LF 

results for the 15-bus system. 

4.3 32-bus 37-line system 

The slack bus has constant voltage equal to 

Vs=12.66 kV, all the other 32 buses are represented by 

PQ nodes. The network contains 26 distinct simple 

cycles. 
The minimum loss configuration obtained without 

any voltage and current binding constraint (i.e. 
Vk,max=1.1pu. Vk,min=0.9p.u., Ib,max=300A) is shown in 
Fig. 3, in which the 5 open lines are: 7, 9, 14, 32, and 
37. The comparison between the final MILP solutions 
and the PF results corresponding to the minimum-losses 
configuration is summarized in Tab. 5. The obtained 
results are in agreement with those presented in the 
literature [2].  

 
Figure 3 Optimal configuration of the 32-bus system. The 

numbers indicate the lines following the order of [20], whilst 

dotted lines indicate those open. 

 PF reference 

results 

MILP solution 

Losses (kW) 139.552 140.799 

Min. bus voltage (p.u.)  

(at the end of line no.) 

0.9378 (31) 0.9388 (31) 

Max line current (A) (line no.) 207.13 (1) 206.52 (1) 

Load active power (MW) 3.715 3.704 

Load reactive power (Mvar) 2.300 2.292 

Slack bus active power (MW) 3.855 3.842 

Slack bus reactive power (Mvar) 2.402 2.393 

Cplex time (s)  9.06+7.50 

Table 5:  Comparison between the MILP solution and PF 

results for the 32-bus system. 

4.4 69-bus 74-line system 

The slack bus has constant voltage equal to 

Vs=12.66 / 3 kV, all the other 69 buses are represented 

by PQ nodes. In [21], three load conditions are exam-

ined, indicated as normally loaded system, heavy-

loaded system (multiplying each load demand by 1.2) 

and a light-loaded system (multiplying each load de-
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mand by 0.5). The network contains 24 distinct simple 

cycles.  
For all the three load conditions, the minimum-losses 

radial configuration obtained without any voltage and 
current binding constraint (i.e. Vk,max=1.1pu. 
Vk,min=0.9p.u., Ib,max=200A) is shown in Fig. 4, in which 
the five open lines are: 15, 59, 62, 70, and 71 6.  

 
Figure 4 Optimal configuration of the 69-bus system. The 

numbers indicate the lines following the order of [21], whilst 

dotted lines indicate those open. 

The configuration of Fig. 4 is the same as the one ob-

tained in [2] for the normal case, whilst differs from the 

one obtained in [2] both for the heavy case (lines 15 and 

61 are open instead of lines 13 and 64 as in [2]), and for 

the light case (lines 70 and 62 are open instead of lines 

13 and 64 as in [2]). The network losses calculated by 

using the PF code for the heavy-case configuration of 

[2] are equal to 44.770 kW, whilst for the light-case 

configuration of [2] are equal to 7.674 kW. Both values 

are larger than the losses corresponding to the configu-

ration of Fig. 4. 

The comparison between the final MILP solutions 

and the PF results corresponding to the minimum-losses 

configuration is summarized in Tab. 6, Tab. 7 and Tab. 

8, for the normally, heavily and lightly loaded cases, 

respectively. 

 PF reference 

results 

MILP solution 

Losses (kW) 30.093 30.554 

Min. bus voltage (p.u.)  

(at the end of line no.) 

0.9452 (61) 0.9461 (61) 

Max line current (A) (line no.) 116.14 (1-and 2) 115.88 (1-and 2) 

Load active power (MW) 1.108 1.106 

Load reactive power (Mvar) 0.898 0.895 

Slack bus active power (MW) 1.138 1.135 

Slack bus reactive power (Mvar) 0.931 0.928 

Cplex time (s)  31.09+17.86 

Table 6:  Comparison between the MILP solution and PF 

results for the 69-bus system normally loaded. 

 PF reference 

results 

MILP solution 

Losses (kW) 44.210 44.512 

Min. bus voltage (p.u.)  

(at the end of line no.) 

0.9335 (61) 0.9348 (61) 

Max line current (A) (line no.) 140.30 (1 and 2) 139.83 (1 and 2) 

Load active power (MW) 1.329 1.325 

Load reactive power (Mvar) 1.078 1.073 

Slack bus active power (MW) 1.374 1.369 

Slack bus reactive power (Mvar) 1.126 1.121 

Cplex time (s)  30.90+23.41 

Table 7:  Comparison between the MILP solution and PF 

results for the 69-bus system heavily loaded. 

                                                           
6 Note that opening one of the three lines 56, 57, 58 or 59 is indifferent 
as the loads at the end of the three lines 56, 57 and 58 are null. 

 PF reference 

results 

MILP solution 

Losses (kW) 7.177 7.915 

Min. bus voltage (p.u.)  

(at the end of line no.) 

0.9734 (61) 0.9737 (61) 

Max line current (A) (line no.) 57.16 (1 and 2) 57.32 (1 and 2) 

Load active power (MW) 0.554 0.554 

Load reactive power (Mvar) 0.449 0.449 

Slack bus active power (MW) 0.561 0.561 

Slack bus reactive power (Mvar) 0.457 0.457 

Cplex time (s)  27.41+20.19 

Table 8:  Comparison between the MILP solution and PF 

results for the 69-bus system lightly loaded. 

5 CONCLUSIONS 

The paper has addressed the problem of determining 

the minimum loss radial configuration of a distribution 

network. The proposed MILP model takes into account 

the main operating constraints other than radiality, such 

as the lower and upper bounds of the bus voltages and 

the upper limits of the line currents. As the network 

equations are written in terms of relationships between 

voltages and currents, the model incorporates also the 

line shunt capacitances useful for an accurate estimation 

of bus voltages in cable networks. The solution of the 

MILP model does not require the knowledge of an ini-

tial feasible configuration of the network. 

The results of the tests carried out on the four sys-

tems analyzed by Romero-Ramos et al. in [2] demon-

strate the good accuracy of the proposed MILP model 

The reasonable accuracy on the evaluation of the fi-

nal losses has been verified by its comparison with the 

LF results corresponding to the obtained optimal net-

work configurations. Also the computational times 

appear reasonable. 
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