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Abstract. We present a new approach for the automated segmentation
of excitatory synapses in image stacks acquired by electron microscopy.
We rely on a large set of image features specifically designed to take
spatial context into account and train a classifier that can effectively
utilize cues such as the presence of a nearby post-synaptic region. As a
result, our algorithm successfully distinguishes synapses from the numer-
ous other organelles that appear within an EM volume, including those
whose local textural properties are relatively similar. This enables us to
achieve very high detection rates with very few false positives.

1 Introduction

New imaging technologies have been a key driver of recent advances in neuro-
science. In particular, block face scanning electron microscopy (EM) can now
deliver a 4nm nearly isotropic sampling and produce image stacks that reveal
very fine structures. Stacks such as those of Fig. 1(a) can be used to analyze
the size, shape and distribution of synapses, which in turn will lead to an under-
standing of the connection strength between neurons and, in time, brain circuits.

Currently, analysis is carried out by manually segmenting synapses using
tools such as Fiji [1]. This is not only a tedious and time consuming process but
also an error-prone one. Furthermore, the need for expert knowledge and the
growing size of these datasets render manual segmentation intractable and not
amenable to crowd-sourcing methods. There has been great interest in automat-
ing the process. However, current synapse segmentation methods either require
first finding cell membranes [2] or operate on individual 2D slices [3], thus failing
to leverage the 3D structure of the data. By contrast, the recent method of [4] op-
erates entirely in 3D. However, it does not exploit the contextual clues that allow
human experts to distinguish synapses from other structures, such as endoplas-
mic reticula, which exhibit similar textural properties, as depicted by Fig. 1(b).

In this work, we propose an approach designed to take contextual cues into
account and emulate the human ability to distinguish synapses from regions that
merely share a similar texture. Thus, we significantly outperform the method
of [4]. Our algorithm relies on features which compute sums of various image
properties over cubes placed in an extended 3D neighborhood surrounding the
voxel to be classified, as shown in Fig. 1(c). It then uses AdaBoost [5] to select
the most informative ones.
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Fig. 1: Importance of context in synapse segmentation. The dark structures in
the middle of both images look similar locally. However, only the ones in the top
image constitute a synapse: the lack of vesicles in the bottom one is a indicative
sign. The features we use are designed to capture this fact. To classify a voxel
(blue), we consider sums over image cubes (shown as yellow squares) whose
respective positions are defined relative to an estimated normal vector ni.

2 Related Work

Several fully automated approaches to reliable segmentation of organelles, such
as mitochondria [6, 7] or neuronal membranes [8, 9], from 3D EM stacks have re-
cently been proposed. However none of these methods exploit context in a mean-
ingful way. Though features are extracted in a neighborhood around the voxel
of interest, they are either pooled into global histograms [6, 7] or computed at
predetermined spatial locations [8, 9]. The resulting classifier is therefore unable
to hone in on arbitrary localized context cues. Along similar lines, a method for
automated 3D segmentation of synapse in EM volumes using a Random Forest
classifier has recently been proposed [4]. While this technique produces interest-
ing results, it does not account for context as the features it uses simply measure
various filter responses at the voxel of interest. The method is therefore unable
to distinguish synaptic voxels from voxels exhibiting synapse-like textural prop-
erties. This is the limitation that our approach, specifically designed to utilize
context cues, addresses. We run various filters over the EM stack but compute
our features over arbitrarily sized cubes placed at arbitrary locations inside an
extended neighborhood of the voxel to be classified. Next, we rely on a Boosting
to select the relevant filter channels as well as the relevant cube locations and
sizes. The resulting classifier is thus able to hone in on the presence of pre- and
post-synaptic regions around the synapse. As a result, our method is shown to
reduce the false alarm rate by a factor of 2 as compared to [4].



(a) (b)

Fig. 2: (a) cli,ni
p define consistent locations relative to differently located and

oriented voxels. (b) Cubes over which sums are computed at consistent locations.

3 Method

As shown in Fig. 1(b), it can be difficult to distinguish synapses from other
structures based solely on local texture evidence. Human experts confirm the
presence of a synapse by looking nearby for post-synaptic densities and vesicles.
This protocol cannot be emulated by measuring filter responses at the target
voxel [4], pooling features into a global histogram [6, 7] or relying on hand-
determined locations for feature extraction [8, 9]. To emulate the human ability to
identify synapses, we design features, termed context cues, that can be extracted
in any cube contained within a large volume centered on the voxel to be classified,
as depicted by Fig. 2(b). They are computed in several channels using a number
of Gaussian kernels, as shown in Fig. 3. As this yields a total of 40, 000 potential
features, we rely on Boosting to select the most discriminative ones.

3.1 Contextual Features

Given that synapses have arbitrary 3D orientations, we ensure that our context
cues are computed at consistent locations across differently oriented synapses.
We rely on the pose-indexing framework of [10] to enforce this consistency.

Context Cue Location Formally, let us consider voxel si, located at li and
an associated unit vector ni. In practice, we take ni to be the orientation of
the eigenvector with largest eigenvalue of the Hessian operator, which can be
expected to be normal to the synaptic cleft if there is one. Let

cp, p = 1, . . . , P (1)

denote a set of P locations expressed in the common x0, y0, z0 reference frame
shown at the center of Fig. 2(a). These locations are translated and rotated to
occur at consistent locations relative to a target voxel by defining,

cli,ni
p = li + R(ni)cp (2)

where R(ni) is a rotation matrix such that R(ni)(0, 0, 1)T = ni.
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Fig. 3: Context cues. They are computed within the yellow rectangles whose
coordinates are expressed with respect to the location of the voxel to be classi-
fied and the local orientation vector n. Each Hi line depicts a specific channel
designed to capture different statistical characteristics.

Context Cue Features Given the cli,ni
p locations of Eq. 2, our goal now is to

compute image statistics inside cubic neighborhoods Nr(cli,ni
p ) of edge length 2r

centered around these locations, such as those depicted in Fig. 2(b).

To this end, we precompute gradient magnitudes, Laplacians of Gaussian
and eigenvalues of structure tensors and Hessians everywhere in the EM volume.
Each of the resulting cubes of data, in addition to the original one, is treated as
a data channel m, 1 ≤ m ≤ 5, and is smoothed using isotropic Gaussian kernels
of increasing variance σn as in [4]. We denote the gray levels in the resulting
data volumes as

Hm,σn
(x, z) , (3)

where x is the original EM volume and z represents the 3D location. We take
context cue features to be

fcp,m,σn,r (x, li,ni) =
∑

z∈Nr(c
li,ni
p )

Hm,σn
(x, z) . (4)

In other words, we sum the smoothed channel output over the cubic boxes
centered at all cp for all possible values of m, σn, and r. This yields a set of
K = 40000 features, which we will denote for simplicity

fk (x, li,ni) , k = 1, . . . ,K , (5)

and which we use for classification purposes as discussed below.



3.2 Segmentation and Implementation Details

We create decision stumps by thresholding on the value of the fk features of
Eq. 5. These stumps are combined by a standard AdaBoost procedure [5] into a
strong learner of the form

ϕ (x, li,ni) =

T∑
t=1

ωt1{ft(x,li,ni)>ρt} . (6)

Learning this classifier requires annotated training data. Since our contextual
features are computed both for a given location and orientation, our training
data must include both. As discussed above, we use the Hessian to compute the
orientation for every voxel.

A potential difficulty arises from the fact that polarity also matters since
pre- and post- synaptic regions look very different. We follow the pose-indexing
methodology to exploit this structure. At training time, when dealing with
synaptic voxels, we direct the orientation vector towards the pre-synaptic region
in our positive examples and add the corresponding location with the flipped
orientation vector to our list of negative examples. At run-time, we use the Hes-
sian to compute ni, evaluate ϕ(.) for both possible polarities, and retain the
maximum response.

In practice, to speed-up the computation, we do not work on individual voxels
of the EM volume. Instead, we group them into supervoxels that are regularly
spaced small regions with relatively uniform gray level [11]1. We then run our
classification scheme on their centers.

4 Experiments

We now demonstrate our approach and compare its performance to that of [4]
on two different volumes from the adult rat brain, one from the somatosensory
cortex, and the other from striatum. Their respective sizes are 1500 × 1125 ×
750 and 1423 × 872 × 318. The training set consists of 7 fully-labeled synapses
in each volume plus negative samples labeled from non-synaptic voxels. For
evaluation purposes, we labeled as synaptic or not each voxel in a somatosensory
cortex subvolume of size 655 × 429 × 250, which contains 24 synapses. It took
approximately 40 minutes for each one, which highlights the need for automation.
This voxel-wise ground truth allows for a robust quantitative evaluation and
differs significantly from the protocol of [4], where synapses were annotated by
an expert using a small sphere, making voxel-wise evaluation impossible.

Fig. 4 depicts the results of our quantitative evaluation on the ground-truth
volume of the somatosensory cortex. We plot ROC curves, which show the True
Positive Rate (TPR) as a function of the False Positive Rate (FPR). There are
two parameters that we vary to obtain different sets of features fk. The first is
rmax, the maximum possible size of the cubes over which sums are computed.

1 Supervoxels source code available at http://ivrg.epfl.ch/research/superpixels
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Fig. 4: Voxel-wise classification ROC curves for different radii of the sphere within
which the contextual features are computed.

The second, ‖cp‖max, is the radius of the sphere surrounding each voxel in which
we extract our context features. Note that with ‖cp‖max = 0 and rmax = 0, our
feature set essentially reduces to that of [4] where responses are measured at the
target voxel, without exploiting context.

In Fig. 4(a), we set ‖cp‖max = 0 and vary rmax, meaning that the feature set
only consists of cubes centered on the target voxel. As rmax grows, more context
is taken into account and performance improves. At 90% TPR our method out-
performs [4] in all cases. In Fig. 4(b), we set rmax = 20 and vary ‖cp‖max. In other
words, we use our full feature set consisting of both centered and un-centered
cubes. For ‖cp‖max = 40, our approach yields a FPR almost three times smaller
than the one of [4] at 90% TPR. Qualitatively, this difference in performance
can be seen in Fig. 5 where the algorithm of [4] erroneously fires on non-synaptic
tissue due to textural similarities.

Performing this computation on the whole somatosensory volume and thresh-
olding at 90% TPR yields the result depicted by Fig. 6, where connected regions
of less than 2000 voxels were removed and a gaussian filter of σ = 1 was applied
for visualization, as in [4]. The number of detected synapses is 358, which implies
a density of 0.9 synapses per µm3 and is in agreement with the expected density
for the somatosensory cortex region (layer II) [12]. Finally, Fig. 7 depicts similar
qualitative results for the striatum dataset.

5 Conclusion

We presented a novel approach to synapse segmentation. It relies on a large
set of image features, specifically designed to take spatial context into account,
which are selected, weighed and combined using AdaBoost. We used two different
EM datasets to demonstrate that our algorithm effectively distinguishes true
synapses from other organelles that exhibit the same local texture.



(a) Raw EM data (b) Kreshuk et al.[4] (c) Our method

Fig. 5: Somatosensory cortex dataset results. Voxels labeled as synaptic by the
method of [4] and ours overlaid in yellow. Threshold set to 90% TPR. Note the
non-synaptic voxels found by [4] and correctly ignored by our method.
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Fig. 6: 3D reconstruction of the detected synaptic voxels in the somatosensory
cortex dataset. From our automated segmentation, various shape statistics can
be computed for the purpose of analysis, such as the histograms on the right.
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