Journal article

Amygdaloid Signature of Peripheral Immune Activation by Bacterial Lipopolysaccharide or Staphylococcal Enterotoxin B

Activated immune cells produce soluble mediators that not only coordinate local and systemic immune responses but also act on the brain to initiate behavioral, neuroendocrine and metabolic adaptations. Earlier studies have shown that the amygdala, a group of nuclei located in the medial temporal lobe, is engaged in the central processing of afferent signals from the peripheral immune system. Here, we compared amygdaloid responses to lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB), two prototypic bacterial products that elicit distinct immune responses. Intraperitoneal administration of LPS (0.1 mg/kg) or SEB (1 mg/kg) in adult rats induced substantial increases in amygdaloid neuronal activity as measured by intracerebral electroencephalography and c-fos gene expression. Amygdaloid neuronal activation was accompanied by an increase in anxiety-related behavior in the elevated plus-maze test. However, only treatment with LPS, but not SEB, enhanced amygdaloid IL-1β and TNF-α mRNA expression. This supports the view of the immune system as a sensory organ that recognizes invading pathogens and rapidly relays this information to the brain, independent of the nature of the immune response induced. The observation that neuronal and behavioral responses to peripheral immune challenges are not necessarily accompanied by increased brain cytokine expression suggests that cytokines are not the only factors driving sickness-related responses in the CNS.


Related material