Conference paper

Recursive Risk Estimation For Non-Linear Image Deconvolution With A Wavelet-Domain Sparsity Constraint

We propose a recursive data-driven risk-estimation method for non-linear iterative deconvolution. Our two main contributions are 1) a solution-domain risk-estimation approach that is applicable to non-linear restoration algorithms for ill-conditioned inverse problems; and 2) a risk estimate for a state-of-the-art iterative procedure, the thresholded Landweber iteration, which enforces a wavelet-domain sparsity constraint. Our method can be used to estimate the SNR improvement at every step of the algorithm; e.g., for stopping the iteration after the highest value is reached. It can also be applied to estimate the optimal threshold level for a given number of iterations.


  • There is no available fulltext. Please contact the lab or the authors.

Related material