Arch. Math., Vol. 40, 182—185 (1983) 0003-889X/83/4002-0182 §$ 2.30/0
© 1983 Birkh&user Verlag, Basel

Definite hermitian forms and the cancellation of simple knots

By

Eva Bayer¥)

Schubert has shown that every classical knot 2Z1c 83 factorises uniquely into the
connected sum of finitely many indecomposable knots (cf. [12]). In particular can-
cellation holds for these knots. For higher dimensional simple knots factorisation is
not always unique (cf. [5] and [1]), but in many cases we still have cancellation
(see [2], Proposition 6.6).

In this note we shall give counter examples to the cancellation of non-singular
hermitian and skew-hermitian forms. In order to obtain these examples we shall
show that the extension of the Z-lattice Iy, , n == 1, to certain orders is indecompos-
able.

Using the classification of simple (2¢—1)-knots X2¢-1c §2¢+1, ¢ == 1, in terms
of (—1)7*tl-hermitian (Blanchfield) forms, we shall then prove that cancellation
does not hold for higher odd-dimensional knots.

I thank Hans-Jochen Bartels and Larry Gerstein for useful conversations.

1. Definite hermitian forms. Let K be a number field with a @-involution which
we shall denote by an overbar. Assume that K is totally imaginary and that the
fixed field F of the involution is totally real. Let 4 be an order of K, and let L be
a torsion free A-module of finite rank. We shall say that a hermitian form
h: L x L— A is definite if b is anisotropic at every real embedding of F. Other-
wise we shall say that & is indefinite.

The following is a result of Eichler (cf. [3]).

Lemma 1. Every definite hermitian form decomposes uniquely as an orthogonal sum
of indecomposable forms.

Sketch of proof (see Kneser [8] and O’Meara [11], § 105). We shall say that
x € L is irreducible if x cannot be written as a sum x =y + 2, ¥ =0, 2 == 0 and
k(y, z) = 0. Then every = € L can be expressed as a finite sum of irreducible elements.
Indeed, if # =y -+ 2z with k(y,2) =0 then h(x,z) = h(y,y) + (2, 2). As b is
anisotropic at every real place, %(y, y) and k(z, z) have the same sign at each real
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embedding of F. Therefore
Nijo(h(y, y)) < Nrjg(h(z,z)), and Ngg(h(z 2)) < Nrq(h(z,2).

As Ngjg(h(z,z)) is a natural number, we see by induction that z can be written
as a finite sum of irreducibles. We shall say that two irreducible elements z and z’
are equivalent if there exists a finite chain of irreducible elements

T=120,T1,..., Ly =2,

such that & (x;, ;41) = 0. Every equivalence class generates a sublattice of L, and
L is the orthogonal sum of these lattices. It is easy to see (cf. [11], § 105), that every
orthogonal splitting of L into indecomposables is a permutation of these sublattices.

Let L be a free Z-module of finite rank, and let b: L X L - Z be a symmelriz
Z-bilinear form. Let L = 4 ®,L, and let h: L X L — A be the hermitian form
which is defined by A(xw, By) = afb(z,y) for o, €4 and z,ye L. If b is de-
finite then % is also definite.

We shall apply this construction to the Z-bilinear form &: L X L — Z which cor-
responds to the lattice Iy, (cf. [10], chap. II, § 6, or [11], § 106 E).

Proposition. The hermitian form A sy is indecomposable if n > 1.
The following lemma is well known.

Lemma 2. Let m = [F: Q). If ae F is a totally positive algebraic integer, then
Trpig(@) = m. Moreover, if Trpjg(a) =m then a = 1.

This follows immediately from the inequality between arithmetic and geometric
means.

Proof of Proposition. Let V = Ke; @ --- @ Kegn with the hermitian form
hi{e;, e;) = Oy5. Then A Iy, is the lattice in ¥ which is generated by e; + ¢; and
L(er + -+ + ean). We shall prove that if x € A Iy, such that A(z,z) = 2, then =
is irreducible.

Indeed, assume that z =y + 2z with y =0, 2 == 0 and A(y, z) = 0. Therefore
hi{z,z) = k(y,y) + k(z,2), so we have

2m = Trpiq(h(z, 7)) = Trriq(h(y, y) + Trrig(h(z,2)),
where m = [F: Q). But k(y, y) and k(z, z) are both totally positive. By Lemma 2
this implies that Tre/q (k(y, ¥)) = Trriglh(z, 2)) = m (infact, h(y, y) = h(z,2) = 1).
Now we sha,]l show that if y € ATy,, then Treq(h(y, y)) = m is impossible. In-
deed, 1fy ZazezeAﬂm, then a;€%4, az—a,eA for every i, 7__ 1,...,4n

=1
and Za, c24 (cf. [11], § 106 E). We have h(y, y) Zazai, s0 M = Z Trriq(@:ds).

Two cases are possible: either all of the a;’s are in A or a; = % b; w1th bie A and
b;=+=0,i=1,...,4n. If we are in the first case, then Lemma 2 implies that all
the a;’s except one, say a;, are zero. But then a; €24, which contradicts
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in
Trpg(@1d1) = m. In the second case we have m = J‘Z bib; = n - m, using Lemma 2.
i=1
But n > 1 so this is impossible. Let o; = ¢; — ¢;41 for ¢ =1,...,4n — 1 and let
Zap = €4n—1 -+ €aq. We have h(x;,z;) =2, so x1,...,%s, are irreducible. But

h(x;, ziy1) 5 0, so the ay’s are all in the same indecomposable component of 4 I},
(see Lemma 1). But the z;'s are linearly independent, so this component must be
AI-,471,.

Remark 1. The proposition can be generalized as follows: If (L, b) is definite,
indecomposable, then (L, h) is also indecomposable. If K is a quadratic field, then
this has been proved by L. Gerstein (cf. [4], Corollary 1.4) and R. Smith (cf. [13],
Theorem 2.2). In the general case the analogue of this statement for quadratic forras
has been proved by Y. Kitaoka (cf. [7], Corollary of Theorem 4). It is possible to
adapt Kitaoka’s proof to hermitian forms, only obvious changes are necessary.

Remark 2. Assume that 4 is integrally closed and that there exists an « € 4
such that & 4+ o = 1. Then two indefinite non-singular hermitian forms are isometric
if and only if they have the same rank, signatures and isometric determinants
(cf. [2], Definition 1.9 and Corollary 4.10).

By contrast, the above proposition shows that the number of isometry classes of
definite hermitian forms of rank 4 and determinant (1> is at least p(n), where
2(m) is the number of partitions of » into a sum of positive integers. (See Gerstein [4],
Theorem 3.9 for related results.)

2. Counter-examples to the cancellation of simple (2¢ — 1)-knots, ¢ > 1. Let
A€ Z[z] be an irreducible polynomial such that A(z) = 2%#. j(z~1) and A(0) =
Aly=A(—1)=1.

Set 4 = Z[z)/(2), K = Q[z]/(A) = Q (7). Then K has a Q-involution which sends
T to 771

Let M be a torsion free A-module of finite rank. By results of Kearton, Levine
and Trotter, we have: Every non-singular (— 1)¢+L-hermitian form 2: M x.M -+~ 4
can be realized as the Blanchfield form of a simple (2¢ — 1)-knot 22¢-1c §2¢+1 if
g > 2. Two simple (2¢ — 1)-knots are isotopic if and only if the associated Blanch-
field forms are isometric, for ¢ > 1 (cf. [6], [9], [14]). Therefore it is enough to show
that cancellation does not always hold for non-singular hermitian and skew-hermitian
forms.

Let us choose A such that K is totally imaginary and that the fixed field F of
the involution is totally real. (For instance, i(z) = ¢ — 22 + 1, the cyclotomic
polynomial corresponding to the 12th roots of unity.)

We have:
(*) Als | Al's | {(—1> = ATle L {—1>

(where | denotes orthogonal sum, and {— 1) is the hermitian form deX de — 4
such that ee = — 1). Indeed, this isomorphism already holds over Z (cf. [10],
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Chap. II, Theorem (4.3)). On the other hand, 41y | A4 I is not isometric to 4 I'y6
because the latter is indecomposable (see Section 1).

This gives the desired counter-example for ¢ odd, ¢ = 1.

Let v = v — 71, Then w is a unit of 4 because

Niiq(u) = Nriq(v1) Nijq(t — 1) Ngjg(r + 1) = 2(0) - A(1) - A(— 1) =1.

We have @ = — u, so multiplying (*) by % we obtain a counter-example to can-
cellation of non-singular skew-hermitian forms, i.e. for the case ¢ even, ¢ == 2.

We need a special argument for 3-knots. Let h: M X M — A be a non-singular
skew-hermitian form. There exists a simple 3-knot 2'3c S5 such that the Blanchfield
form of 23 is isometric to % if and only if the signature of the intersection form cor-
responding to A is divisible by 16 (cf. [9], [14]).

Let I" be the orthogonal sum of 16 copies of I's. We have

AN 1 1) 1 {—1> = ATes | 1) L~ 1.

As before, we multiply by « in order to obtain skew-hermitian forms.
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