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Introduction
R. C. Kirby and W. B. R. Lickorish have proved (cf. (4)) that any classical knot

is concordant to an indecomposable knot. In the present note we show that this
statement is also true for higher dimensional knots: more precisely, for any higher-
dimensional knot K there exist infinitely many non-isotopic indecomposable simple
knots which are concordant to K. This, together with the result of Kirby and
Lickorish, gives a complete solution of problem 13 of (1).

1. Simple knots and isometric structures

Kervaire has proved that the concordance group of even dimensional knots is
trivial (cf. (2)), so we only need to consider odd-dimensional knots K2?-1 cr S28"1"1,
q > 1. Such a knot K2*-1 is said to be simple if n^S^+^K^-1) ~ nx(S') for i < q.
Levine has proved that every higher-dimensional (2q — l)-knot is concordant to a
simple knot (cf. (5)).

An isometric structure is a triple (L, (, >, z) where L is a free Z-module of finite rank,
(, ) : L x i / - > 2 i s a Z-bilinear, e-symmetric (where e = + 1) non-singular form (i.e. the
adjoint of (,} is an isomorphism), z:L-*L is a Z-linear endomorphism such that
(za,b} = (a, (1 — z)6) for all a,beL.

Two isometric structures are isomorphic if there exists a Z-linear isomorphism which
is an isomorphism between the forms and also commutes with the endomorphisms.

An isometric structure (L, (,), z) is metabolic if L contains a sub Z-module M which
is stable by z, such that rank (L) = 2 rank (if) and that (a, b) = 0 for all a, b in M.
Two isometric structures Lx and L2 are Witt-equivalent if there exist metabolic iso-
metric structures Nv N2 such that Lt -L Nx ^ L2 ± N2 (where -L denotes orthogonal sum).

To any odd-dimensional knot K^-1 we can associate an isometric structure with
e = (-1)« (cf. (5) and (3)). Levine has proved that two simple (2q- l)-knots, q > 1,
are concordant if and only if the corresponding isometric structures are Witt-
equivalent (cf. (5)). The isometric structure of a connected sum is the orthogonal
sum of isometric structures.

An isometric structure (L, (, >,z) is said to be decomposable if L ® Z[l/a] =
(Lx ® Z[l/o]) ± ( i 2 ® 2[l/a]) where LltL2 are non-trivial isometric structures and
a = det(z). Otherwise, we say that (L,<,),2) is indecomposable. This definition is
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motivated by the fact that if two simple knots are isotopic, then the corresponding
isometric structures are ^-equivalent (cf. (6)) and therefore Z[l/a]-isomorphic (cf. (9)).

Therefore it suffices to prove the following:

THEOREM. Every isometric structure (L, <,), z) is Witt-equivalent to an indecomposable
isometric structure.

Addendum. The Witt-equivalence class of (L, {, >, z) contains infinitely many in-
decomposable isometric structures which all have distinct characteristic polynomials.

Indeed, every ( — 1 ̂ -symmetric isometric structure can be realized by a simple
(2q— l)-knot (cf. (3)) and the characteristic polynomial of the isometric structure is
related to the Alexander polynomial of the knot (cf. (8), p. 14) which is an invariant
of the isotopy class of the knot.

2. Proof of the Theorem

Let (L,(,>,z) be an isometric structure. Iifel[x], we shall denote/* (a;) =f(l—x).
By (8), Proposition 1-8, we may assume that the minimal polynomial <f> of z can be
written <f> = $x... <pn, <j>* = <j>t, <pt irreducible and 0f #= <pj if i +j. Let p be a prime
such that I.(p)[x]/(</>t) is Dedekind (i = 1,...,n) thatp does not divide 0(0) and that p
does not divide any of the resultants Res (${, <f>j). Let frlt..., i/rk be polynomials with
integral coefficients such that r/r1 = 0, that ^ + 1 divides i/ri for all i = 1,...,k — 1 and
that the product rfrx... r/rk is the characteristic polynomial of z. Let ^ G Z [ X ] be monic,
irreducible polynomials such that Ft 4= F*, that Ft =t= Fj if t + j and Ft = ^ m o d ^ 2

for a l i i = 1,..., k (apply the Chinese remainder theorem).
Let H{ = Hyp(Z[a;]/(J^)) be the hyperbolic isometric structure associated to the

polynomial Fit i.e. the isometric structure

el 0/' \0 I-M\

where nf = deg (Ft), I is the identity matrix, Mi is the companion matrix to F{ and M\
is the transpose of M{.

LetH' = H1±...±Hk.
The first step will be to construct an indecomposable, metabolic isometric structure

M such that H[p) is an orthogonal summand of Mip) (notice that if k = 1, i.e. if the
characteristic polynomial of z has no repeated factor, then we can take M = H').

Let q = p be a prime which does not divide ^(0), i^(0), Ff(0) for all i = 1,..., k, and
does not divide any of the resultants Res (FiFf^^Ff), Res {(p^F^Ff). Let Fel[x]
be a monic irreducible polynomial such that F = F*, that .^(0), F*(0) are not divisible
by p and that

k

Let H" = Hyp (Z[x]/(F)) be the hyperbolic isometric structure associated to F. Set
H = H'± H". Notice that (qH)* = (l/q)H (if K is a lattice in (F«, [, ]), then we denote
K* ={xeV such that [x, K] £ Z}).

Let T = (l/q)H/qH, together with the induced torsion isometric structure (cf. (8),
Section 2).
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We have T = TH.±TH., where TH. = (l/q)H'/qH't THn = (l/q)H"/qH>'. Let
n: (1/q) H -> T be the projection. Multiplication by q gives the isomorphism:

H
i=l k i=l k

Notice that TF.Fj is a free Z/g2-module.
Similarly,

TH. s Eyp({Z/q*)[x]/{F)) £ I Kyy (a
i=i fc

This decomposition follows from an analogue of (8), Theorem 3-2, because q does not
divide any of the resultants Res (FtFf, F^Ff).

We shall need the following

Claim 2-1. Let R be a commutative ring and F = R™. Let (F, S, w) be an isometric
structure. Then

is isomorphic to

Indeed, an isomorphism is given by

/ / 0\ (S-1 0\ / / -I\_ (S-1 S-1 \
\wS l)\ 0 7/^0 / / \w 1-wJ-

We shall apply this claim with JR = Z/q2, F = TF.F*, S = St, w = Zi. We obtain:

i=l k

Accordingly, we have a decomposition of T

T = \_(Ti±Til(-Ti)) with Ti = {TFiF;,8i,zi).
t = l k

Let

Xi = {(x,qy,x)eTi-LTi±(-Ti)} and Z = © X,.
1=1

S e t M = TT-HX) cr 1 ^ .
Q

As X is a metabolizer in T, we have M* = ilf. Clearly M is metabolic (cf. (8),
proposition 1-3). Moreover, Miq) is indecomposable (where M^ = M ® Z(a)). Indeed,
assume that Jtf(e) = Ji^X J!f2. Since the decomposition is orthogonal, we may assume
that FF* divides the characteristic polynomial of M2. Then M± £ Anno (M^), where
G = (Fx... Fk) (F1...Fk)*.WehaveM1 <= (l/g)H'm, bu tZ n n((l/q)H[a)) = {0},therefore
JbTx c qH[qy This contradicts the assumption that Jff = Jb .̂ Finally, it is clear that
f̂w = HM if r 4= q because M <= (1/g) H.

Let4" = {lfr)(L± M}fp{L±M} = TL± TM, and let/»:{l/p}(L± M}^ T' bethepro-
jection. Let Lt — Ann^ (L(p)). We have

hP) = _ J Lt,
t=l n

because^ does not divide Res (<f>it fij) if i 4= j . Let At = Z(p,[Z]/(^i). Then Lt is a torsion
free Af-module of finite rank. We have assumed that At is Dedekind, therefore Lt is
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projective. Moreover At is semi-local, so Lx is a free Aj-module of rank, say, mi (cf. (7),
p. 24). We have:

TL S

where T^ is a free Z/^2[X]/(^i)-module of rank mf.
On the other hand, we have:

y = l k
2"

where 3 " = H"/p*H".
Applying Claim 2-1, we have

i = l , . . . , n

[Hyp(Z/p2[Z]/(?5i))"H]±T",

This induces a splitting of T':

T' ~ I (T1±T'i±(-T'1))J.T'
i=\,...,n

let

and

r n

Li=l
Set

As Y is a metabolizer in T', we have iV̂ * = N. I t is clear that N is Witt-equivalent to
LJLM, because they are Witt-equivalent over the rationals (cf. (8), 1-3 and 1-6), so
JV and L are Witt-equivalent.

Let us check that N is indecomposable. Let a = det (z)FiFf(0) ...FkF%(0)FF*(0).
Assume that N ® Z[l/a] = (N' <g> Z[l/a]) 1 (N" ® Z[l/a]). Suppose that F divides the
characteristic polynomial of N". Then F1...Fk also divides the characteristic poly-
nomial of N". Indeed, if Fi divides the characteristic polynomial of N', then

K =

As 9 is prime to a, to Res {<f>pFtFi) and to Res (JJ i*7*, Fi Ff) for all j , Kiq) is an orthogonal
summand of N'iQ). But iV(g) = L{q) L M(q) and iT(9) is contained in M(q); therefore this gives
a splitting of M(q) which is impossible. So we have

But

therefore

N'

so we cannot have (N1)* = N'.
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Proof of the addendum. The characteristic polynomial of the isometric structure N
is \jr1... ijrkFx ...FkF* ...F%FF*. I t is easy to see that we have infinitely many possi-
bilities for, say, Fv

3. Example

An explicit illustration of the method is given in the following example:
Consider the direct sum of the isometric structures

and

L9 =

i / 0 1\ /O - 1 \ \

A-(zez. {_, 0), (4 ,))
on /i -

- 1 o/' \l

with minimal polynomials ^ (X) = X2 —X+ 1 and 0 2 W = X2 —X + 2, respectively.
To find an indecomposable isometric structure by our method, we choose a poly-

nomial F = 0X mod 4 and also F = 02 mod 9. One choice is -F(X) = X2 + 35X + 29, and
we let M = Z[X]/(F(X)). We construct the desired indecomposable as a lattice inside
the rational vector space spanned by

as follows:
The dual lattice to 6L is \L with the quotient, T, isomorphic to L/36L with the

isometric structure obtained by reduction modulo 36. Now T splits orthogonally
into its p-primary components T2 and T3 inside which we choose metabolic subgroups
in the following manner: Since the endomorphisms of M and Lx have the same mod4
reduction it follows from Claim 2-1 that

and we may choose the metabolic subgroup

H2 = {(2x, y, y, 2z) e Lx 0 - Lx 0 i , © L2)

inside T2. Similarly for H3 c T3.
The desired indecomposable structure is N = 7r~\H2 © H3) where

is the projection.
First we give the isometric structure for L = 7r~1(Zf2 @ 3T3) which reveals how Lx

is 'tied' to Hyp(J/) :£ = (Z8,3,2), where

0 1 0 0 0 0 0 0>
-10 00 00 00

0-
0
0
0
0
0

0
0
0
0
0
0

0
0

- 1
0
0

4>
0
1
0
0
0

tr
- 1

0
- 4

0
0

1
0
4
0
0
0

&
0
0
0
0

_ j

0
0
0
1
0
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- 2 8 -129 128 200 - 3 2 - 5 0 0

2 =

\

1
- 1 4

0
0
0
0
0

29
- 5 0

32
0
0
0
0

0 - 5 6 0 14 0
64 71 _16 - 1 8 0

1 - 6 3
0 0
0 0
0 0
0 0

0
0
1
0
0

16 0
- 1 0

1 0
0 0
0 1

o
0
0
0

Finally the isometric structure for N =

8 =

\

- 4 2
9

- 1 4
0
0
0
0
0

537
135
246

32
0
0
0
0

592
•141
241

21
0
0
0
0

0
6

•9

3
0

-4
0
0

-1515 432
365 - 96

-633 144
- 6 2

0
0
0
0

0
0
1
0
0

-9
6

-9
0
4
0
0
0

612
-162
306
48

1
0
0

0
0
0
4
0
0
0

- 9

12\
- 8
12
0
0
0
97
0/

-256
56

-84
0
0
0
0
1

-676\
164

-284
- 2 8

0
0

Partial credit is awarded to SPEAKEASY for help in the matrix manipulations.
Notice that (Z8, S, Z) ® Z[\] is decomposable. As det (z) = 3770, this implies that

N = (Z8, S, z) is decomposable in the sense of our definition of Section 1. However, N
is not 5-equivalent to an orthogonal sum of non-trivial isometric structures (the 8-
equivalence of isometric structures being denned as the ^-equivalence of the asso-
ciated Seifert matrices, cf. (6), (10)).

Indeed, det (Z) = 3770 is square-free. Trotter has proved that two isometric struc-
tures with square-free determinant are <S-equivalent if and only if they are isomorphic
over Z{p) for all primes p (cf. (10), Corollary 4-7a). Now it is easy to check that N does
not decompose in the same way over Z(2) and Z(3).

Therefore the simple (4g + l)-knot, q ^ 1, associated to N is indecomposable.
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