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Background: The nucleus pulposus is extremely deformable and it is not uncommon to observe strain ampli-
tudes as large as 12.5% in physiological loading conditions. It has been shown that the nucleus pulposus con-
tributes to the damping properties of the intervertebral disc. The quantification of the damping properties of
the nucleus pulposus under physiological large deformations is then a key aspect for its mechanical charac-

g{?y ‘f"orgs’ terization and for the design of nucleus replacement devices.
Dfr;lpfnlon Methods: A specific mechanical device has been developed to encapsulate nucleus pulposus tissues into a
Hystgresgis deformable and permeable device, while quantifying its water content. The specific damping capacity

was defined by dividing the energy loss by the work input. With this device and definition, the specific
damping capacity of the bovine coccygeal nucleus pulposus was quantified in large compressive deforma-
tions (12.5%) and for frequencies ranging between 10~ 2 and 10" Hz.

Findings: It is found that the specific damping capacity of the nucleus pulposus of the bovine coccygeal
ranged between 18 and 36%. The lowest values of specific damping capacity are found for frequencies
corresponding to the dynamics of loads in all day activities such as walking (0.1 to 1 Hz).

Interpretation: The nucleus pulposus contributes to dissipate energy under physiological large deforma-
tions. However, it seems that the nucleus pulposus is designed so that damping is minimal for frequencies

Nucleus pulposus
Large deformation

corresponding to moderate daily activities.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The intervertebral disc (IVD) is a complex joint that can bear impor-
tant loads while allowing flexibility of the spine (Adams et al., 2006).
The nucleus pulposus (NP) is a viscous gelatinous structure composed
of a loose and random collagen fibril mesh embedded in a highly hy-
drated extrafibrillar network. It occupies approximately 50% of the
IVD volume (Rannou et al., 2004).

The function of the NP in the biomechanics of the spine is essential.
Indeed, the biomechanical function of the joint depends on the cooper-
ative interaction between its structural components. Similar to a pneu-
matic system, the IVD can bear large compressive loads as the NP
pressurizes and transfers the load to the bulging annulus fibrosus and
cartilaginous endplates (Adams et al., 2006). The physiological loading
condition of a NP could then be seen as a semi-confined situation. The
NP is extremely deformable and it is not uncommon to observe strain
amplitudes as large as 12.5% in physiological loading conditions
(Tsantrizos et al., 2005). In parallel to its remarkable deformation prop-
erty, in vivo experiments on baboon showed that removing the NP de-
creases the damping properties of the IVD (Quandieu et al, 1983).
Therefore, it seems that, from a biomechanical standpoint, the NP has
two main functions: a hydrostatic function to transfer the load to the
surrounding tissues, and a viscous function to dissipate mechanical
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energy. In particular, it is believed that the central region of the IVD,
comprising the inner annulus fibrosus and the nucleus pulposus, plays
an important role in the damping properties of the IVD (Holzapfel et
al., 2005; latridis et al., 1997; Leahy and Hukins, 2001).

In contrast to elastic properties of the NP, which have been well doc-
umented in the literature (Aladin et al., 2010; Boxberger et al., 2009;
Cloyd et al., 2007; Perie et al., 2005), the viscous properties of the NP
are far less studied with the exception of some works (Boxberger et al.,
2009; Iatridis et al, 1997; Leahy and Hukins, 2001). In particular at
large dynamic physiological strains and in unconfined or semi-confined
situations, there is virtually no information on the damping properties
of the NP. As a result, elastic aspects alone are generally considered for
the design of nucleus replacement devices regardless the evidences
that were reported for the damping contributions of the NP.

The objective of the present study is to introduce a semi-confined
method to address the damping properties of nucleus pulposus under
physiological deformations. In particular, the specific damping capacity
of the coccygeal bovine nucleus pulposus was evaluated.

2. Methods
2.1. Study design
Nucleus pulposus damping properties were evaluated at different

frequencies with a specifically semi-confined technique consisting in
a PDMS chamber in which the NP can freely swell. To correct for the
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damping properties cause by the PDMS chamber, damping properties
were quantified for all the chambers (defined as control) and sub-
tracted from the corresponding measurement performed with the
NP. A specific damping metric was used allowing for this correction
to be performed.

2.2. Specimen preparation

Six tails from 12 month old bovine were acquired from the local
slaughterhouse. The NP of the largest coccygeal disc was excised in
the axial direction using a 7 mm diameter biopsy punch (Fig. 1a,b).
The NP samples were weighed and kept frozen at —18 °C within
12 h of slaughter. Twelve hours prior to testing, the NP samples
were placed into a hydrogel encapsulation device (HED) and let to
swell in a phosphate buffered saline (PBS) solution in the refrigerator
at 4 °C (Izambert et al., 2003). The encapsulation device is composed
of a medical grade 40 um pore size sintered steel filter, a non-
porous rigid disc, and a 100 um thin polydimethylsiloxane (Sylgard
184, Dow Corning, USA) elastomer deformable membrane (Fig. 1c).
Prior to testing, the samples were placed at room temperature
(21°C) for 3 h.

2.3. Dynamic compression testing

The samples were tested on a standard tension machine (Electropulse
E3000, Instron, USA), equipped with specially designed fixtures (Fig. 2,
left). These fixtures firmly grip the encapsulation device and force PBS
through the device's porous filters to maintain the sample hydrated and
at a temperature of 21 °C at all time. An initial 2 kPa pressure was applied
and was used to define a reference configuration. Tests were then per-
formed in sinusoidal strain amplitude control mode reaching a total of
12.5% of compressive strain. Four different frequencies were tested:
0.01, 0.1, 1 and 10 Hz. Preconditioning cycles were required in order to
have reproducible measurements (Bergomi et al., 2009): 10 cycles were
sufficient for tests performed at 0.1, 1 and 10 Hz, and 3 cycles were
enough for tests performed at 0.01 Hz. The zero-displacement was de-
fined for an undeformed HED i.e. inner height of 4 mm (Fig. 2, right).

In summary, 6 bovine coccygeal NP samples were tested at 4 dif-
ferent frequencies, totalizing to 24 experimental runs that were ran-
domly performed. The samples were removed from the fixtures and
placed into PBS after each run.

2.4. Water content

The mechanical properties of the NP are highly dependent on its
water content (Leahy and Hukins, 2001). It is then important to verify
that this parameter does not vary between the different tests performed.
Water content of the NP was determined by weighing the sample at

(b)

harvest, after the mechanical tests, and after drying the sample in the
oven at 40 °C for 14 h. The water content is given by

%H,0 = 100 x {1—(Md,y/1v1wet)] 1)

where M,; and Mgy, are respectively the wet and dry masses of the
sample. The water content of the sample is proportional to the volume
of the sample, which may change from measurements to measure-
ments. In order to follow these volume changes, a photograph was
taken (Vic2D, Limess Gmbh, Germany) at the reference configuration
of 2 kPa load (Fig. 2 center up). Assuming a cylindrical shape of the sam-
ple, an approximation of the sample relative volume change is given by

AV/V =2AD/D + AH/H 2)

where V, D and H are respectively the volume, diameter, and height of
the sample for its last mechanical test. The change in diameter AD is
monitored via the camera (Fig. 2 center) whereas the change in height
AH is the displacement offset given by the tension machine. Further-
more, the relative volume change directly reflects the relative water
content change in the tissue

AV/V = AMwe[/Mtest (3)

where M. is the wet mass of the sample after testing. Measuring the
diameter Dy, height Hges, and mass M, of the samples after testing
and combining Egs. (1) to (3) provides a mean to evaluate the water
content change during the experiment

%H,0 = 100 x [1 - (Md,y /(Myper + AMWH))} . (4)

2.5. Specific damping capacity

There are several metrics that can be used to determine the energy
loss in strain-stress data curves. Classically, the dissipation metric is
based on the loss angle 6 by which strain lags stress. Based on the loss
angle, four classes of viscous behaviors can be defined: 6 =0 for perfect-
ly elastic solids, 0<6<m/4 for viscoelastic solids, m/4<&<m/2 for visco-
elastic fluids, and 6 =m/2 for ideal fluids. Although the loss angle can
easily be used to classify viscous behaviors of materials, it is not appro-
priate for energy-based calculations unless an accurate model is intro-
duced. Therefore, the specific damping capacity ¥ defined as the ratio
of energy loss over energy input is a more intuitive dissipation metric
for this investigation. However, because the NP can show both fluid
and solid behaviors (latridis et al., 1997), an appropriate energy input
metric should be chosen. In this work, following a definition previously
proposed (Lee and Hartmann, 1998), we compute the specific damping
capacity ¥ as the ratio of AW/W, where AW is the energy loss per cycle

(c)

Fig. 1. (a) and (b) the nucleus pulposus samples are excised using a 7 mm biopsy punch and placed in a PDMS deformable encapsulation device (c). The device is closed with a
porous medical grade steel to allow for mass transfer with the sample on one side, and a non porous rigid disc on the other side.
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Fig. 2. Mechanical testing system. Left) The encapsulation device is clamped between two special fixtures that allow for perfusion of PBS. Center, up) The sample setup with per-
fusion. Center, down) The control setup with a syringe controlling the amount of PBS in the encapsulation device. The deformation of the sample is monitored using a camera. Right)

Dimension of the encapsulation device.

or hysteresis and W is the work input per cycle. A typical stress-strain
curve of one sample and control, as well as their respective hysteresis
and work input used in the calculation of the specific damping capacity
is given in Fig. 3. This definition presents several advantages that are
worth to mention. It is intuitive as it reflects the proportion of energy
that is dissipated per cycle; it ranges between nullity and identity, re-
spectively, for perfectly elastic solids and ideal fluids. This metric is
thus also appropriate for classification i.e. ¥ =0.5 separates solid and
fluid viscoelastic behaviors. Finally, it does not require any modeling as-
sumptions and is most appropriate for non-linear materials.

2.6. Statistical analysis

The HED introduces a systematic error on the quantified mechanical
properties of the NP. A paired study using the same HED previously
used with the NP sample but filled with PBS was then performed
(Fig. 2, center down). Hence, all 24 experimental runs performed on the
NP samples were also performed on the chamber filled with PBS only.
The same initial configuration was imposed by setting the same displace-
ment offset as measured with the NP runs, and by filling the HED cavity
with PBS until a prestress of 2 kPa was reached. As for the NP specimens,
two photographs were taken, one at the initial configuration and another
at 12.5% strain state for comparison with the corresponding NP sample
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Fig. 3. A typical stress-strain curve of one sample and control, as well as their respec-
tive hysteresis and work input used in the calculation of the specific damping capacity.

(Fig. 4). The contribution of the HED on the hysteresis and work input
could then be subtracted from the measurements obtained with the NP.

To evaluate if the frequency has an influence on the specific
damping capacity, an ANOVA was performed using a statistical signif-
icance value of P<0.05. Following the ANOVA, a pairwise t-test with
no adjustment and statistical significance level of P<0.05 is used for
multiple comparison purposes.

3. Results
3.1. Water content

The NP had an average water content of ¥H20=280.64+3.2% at
harvest. Water content significantly increased when encapsulated in
the HED. The water content of the samples after testing was
%H20 =190.1 4 1.6%. Throughout 6 h of testing, and according to the
water content calculations using Eq. (4), no statistical difference on
water content was observed for all the specimens.

3.2. Initial configuration setting

The error of the displacement offset was kept under 20 um and was
considered negligible in respect to the error of the diameter setting.
The diameter was controlled by filling the control HED cavity with a
0.01 ml graded syringe until a prestress of 2 kPa was reached. Based on
photographs taken at the initial configuration of the paired samples
(Fig. 4), the relative diameter error was evaluated to AD/D=1.5+4.0%
which, according to Eq. (2), propagates to a relative volume error of
AV/V =3.048.0%. There was no evidence of any statistical correlations
between neither hysteresis nor work input of the control and its (inflat-
ed) diameter. The effect of the relative diameter error was thus assumed
negligible for the calculations of the specific damping capacity.

3.3. Specific damping capacity

The dependency of ¥ on frequency is given in Fig. 5 and Table 1. There
is a moderate effect of frequency on the specific damping capacity of the
NP (P=0.068). The specific damping capacity at 0.1 and 1 Hz is statisti-
cally lower compared to the value at 10 Hz (P<0.05) suggesting a mini-
mum of the specific damping capacity W between those frequencies.
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Fig. 4. Images taken to illustrate a paired sample. On the left hand side, the nucleus pulposus is shown (top) at its initial 2 kPa prestress configuration and (bottom) at the deformed
12.5% strain configuration. On the right hand side, the control sample filled with PBS to reproduce the initial configuration of the paired NP sample.

The specific damping capacity at 0.1 Hz has a tendency to be lower com-
pared to the value of 0.01 Hz (P<0.1).

4. Discussion

The specific damping capacity of the bovine coccygeal nucleus
pulposus was determined for physiological large deformation of 12.5%
and for frequencies ranging between 0.01 and 10 Hz. A hydrogel encap-
sulation device consisting of a PDMS membrane and a porous filter
allowed us to obtain a semi-confined situation for the swollen NP sam-
ples. This mechanical situation is closer to the way NP naturally works
than in tests performed in unconfined or fully confined environments.
The semi-confined test provides some mechanical support and geomet-
ric definition to the soft tissue, which in turn enables one to analyze its
mechanics with relative ease. In particular, the water content of the tis-
sue could be monitored during the experiment, another advantage of
the developed technique.

The water content of the NP samples was relatively stable during the
experiment, although a 10% increase of water content was measured
from harvest. Using a humidity chamber, Iatridis et al. observed a
water content loss of 10.044.5% throughout 1 h of shear testing on
the human NP (latridis et al., 1997). Leahy et al. measured a water con-
tent of 81 4 2% when testing the sheep NP in cyclic compression; water
content stability during testing was not reported in their study (Leahy
and Hukins, 2001). It is interesting to observe that although the harvest
water content of these studies is equal (approx. 80%), our damping mea-
surements agree, nevertheless, very well to those of Iatridis et al. and
Leahy et al. in the range of 1 to 10 Hz and this is despite the fact that
some of these studies deviated significantly from harvest water content
and in opposite directions. It seems, thus, reasonable to conclude that,
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Fig. 5. The specific damping capacity ¥ of the nucleus pulposus is moderately depen-
dent on frequency (P=0.068<0.1).

although the mechanical properties of the NP depend on water content
(Hukins, 1992), damping properties of the NP are not affected between
70 and 90% of water content. This could be verified using the proposed
methodology and by using perfusion solutions of various molarities in
order to control the extent of NP swelling (Glover et al., 1991).

The internal pressure of the HED during deformation is relatively con-
stant and is significantly lower than the pressures found in situ. The order
of magnitude of the internal pressure can be estimated using maximum
force measurements and the axial surface of the cylindrical HED cavity.
At all frequency settings, the maximum pressure was 0.04 MPa. Physio-
logical pressures found in the intervertebral disc are 1 to 2 orders of mag-
nitude higher; intradiscal pressures may range between 0.1 and 2.3 MPa
depending on posture and exercise (Wilke et al., 1999). Moreover, the
characteristic time constant related to NP consolidation in confined tests
is approximately 30 min for a maximum equilibrium stress of 0.06 MPa
(Perie et al,, 2005). While different than our semi-confined situation,
this consolidation time furnished a comparison with the longest cycle pe-
riod in the present study, which lasted 100 s. It seems then reasonable to
assume that hysteresis in the presented measurements was most proba-
bly due to viscous phenomena. This explanation is partially supported by
our measurements that suggest a minimum value of the specific damping
capacity around 0.1 and 1 Hz. We thus hypothesize that there are indeed
two competing damping mechanism in the nucleus pulposus. At frequen-
cies lower than 0.1 Hz, damping is probably driven by fluid-solid interac-
tions (poroelasticity), whereas at frequencies higher than 1 Hz, damping
is rather driven by solid-solid interactions (viscoelasticity). A detailed
analysis of the characteristic timescale for these damping mechanisms
could reliably be assessed using spherical indentation techniques (Chan
et al, 2012).

This work is consistent with the work of Leahy and Hukins in that
damping tends to be lower at values neighboring 0.1 and 1 Hz (Leahy
and Hukins, 2001). These frequencies correspond to the dynamics of
loads in all day activities such as walking. It must be stressed that the
NP is not the only structure that dissipates energy in our back and that
due to its relatively low stiffness, the effective damping contribution of
the NP in our movements is rather limited. It is nevertheless interesting
to observe that for higher frequencies the NP would contribute more to
dampen vibration energies of the spine, and that for lower frequencies
intrinsic NP fluid flow would be enhanced. This is particularly relevant
for tissue-engineered NP replacements as penetration of large-weight

Table 1
The mean specific damping capacity ¥ of the nucleus pulposus at different frequencies.
Standard deviations are given in parenthesis, and n is the number of NP samples.

Frequency [Hz] 0.01 0.1 1 10

v [%] mean 28.7 mean 18.9 mean 23.2 mean 35.7
(SD 9.3) (SD 8.2) (SD 8.8) (SD 15.0)

n 6 6 6 6
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solutes is generally attributed to fluid convection rather than diffusion
(Ferguson et al., 2004).

Nowadays, hydrogel materials are designed for the replacement of
the nucleus pulposus as a solution to manage discogenic pain (Goins
et al., 2005). The mechanical specifications of such nucleus replacement
devices are still under active investigation. The damping characteristics
of the implant have been given relatively small attention and its impli-
cation in the biomechanics of the disc and spine remains largely
uninvestigated. The present study can then fill a gap in this knowledge.

In conclusion, this work introduces a reliable method to measure the
specific damping capacity of soft biological materials in large deforma-
tion. Particularly, the specific damping capacity of the coccygeal nucleus
pulposus of bovine was measured. In contrast to classical rheology tech-
niques, this method has the advantage to work at the energetic level,
which is well suited to study materials in nonlinear regimes.
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