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Abstract— Programming by Demonstration offers an intu-
itive framework for teaching robots how to perform various
tasks without having to preprogram them. It also offers an
intuitive way to provide corrections and refine teaching during
task execution. Previously, mostly position constraints have been
taken into account when teaching tasks from demonstrations.
In this work, we tackle the problem of teaching tasks that
require or can benefit from varying stiffness. This extension is
not trivial, as the teacher needs to have a way of communicating
to the robot what stiffness it should use. We propose a method
by which the teacher can modulate the stiffness of the robot
in any direction through physical interaction. The system is
incremental and works online, so that the teacher can instantly
feel how the robot learns from the interaction. We validate
the proposed approach on two experiments on a 7-Dof Barrett
WAM arm.

I. INTRODUCTION

In order for robots to help humans in everyday task they
must be equipped with interfaces that allow their operators
to teach them useful tasks without knowledge of robot pro-
gramming languages. The Programming by Demonstration
(PbD) paradigm aims at endowing robots with the capability
to learn tasks from demonstrations. Traditionally, PbD has
provided means of learning kinematic aspects of a task. It
then relied on a stiff position controller to execute the tasks.
While many tasks can and have been taught this way, there
are tasks which can benefit from or even require control of
dynamic interaction with the environment. As an example
of simple task belonging to this category, consider the task
of transporting a bottle full of liquid towards a glass, and
then pouring the contents of the bottle into the glass. Such
a task can be performed using only kinematic constraints.
However, if sudden perturbations (i.e. a person pushing the
robot while reaching for the glass) can be expected, a stiff
controller will respond with high forces, which can cause the
liquid to spill. It would thus be desirable to control the way
that the robot responds to positional perturbations. This can
be achieved using impedance control [1], where the objective
is to control the mechanical impedance of the robot, i.e.
the dynamic relation between positional perturbations and
restoring forces. Mechanical impedance is usually specified
as a first or second order differential equation, with the
objective of making the robot’s end effector behave as
a mass-spring-damper system1. By letting the impedance
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1Using a virtual, specified inertia in the case of a second order differential
equation, and the intrinsic inertia of the robot in the case of a first order
differential equation.

Fig. 1. The figure shows a human teacher physically interacting with the
robot to make it less stiff. This is done by perturbing it around the current
equilibrium point.

parameters vary, different behaviors can be achieved to
accommodate the requirements in different stages of the
task. Thus, the impedance parameters can be made a part of
the task constraints. In this framework, a task is specified
by a kinematic profile and an impedance profile. In this
work we propose a system that allows a teacher to teach
varying stiffness profiles for such tasks. The focus is on
learning varying stiffness, and the proposed system makes
no assumption as to how the kinematic profile is learned.
Therefore, the availability of a learned kinematic profile will
be assumed throughout this paper.

As the motivation of PbD is to make it easy for users
without knowledge of programming to teach tasks to their
robots, any interface which is used in the teaching process
for PbD should be intuitive. With this in mind, we developed
a teaching interface for variable stiffness inspired by the
way humans convey such information between each other. In
dance and other sports, when the teacher wishes to convey
to the student that she should relax, she may say ’relax’
and at the same time wiggle the limb that is too stiff. Our
PbD approach to teaching varying stiffness is based on the
same idea, see Fig. 1. The robot is initially set to move
along a desired trajectory with a high stiffness. The teacher
intervenes along the trajectory to decrease stiffness when
needed. This is done by wiggling the robot’s end effector
around its equilibrium position, see Fig. 1. The robot learns
to become more compliant by computing the difference
between the desired and current end-effector position. The
larger the amplitude of the wiggling, the more compliant the
robot will become.

Online update of the stiffness provides the teacher with a
direct haptic feedback and allows her to feel the effect of her
interaction. The teacher can then evaluate the extent to which
her teaching was successful and decide whether to stop or
continue teaching. The wiggling motion can only be used to
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decrease the stiffness of the robot. However, if the stiffness
is decreased to much accidentally, this can be compensated
through a second round of teaching during which smaller
perturbations are imposed. This is possible because the
system incrementally2 adapts the stiffness according to the
provided perturbations.

In the following section, we present an overview of related
research. Following that, in Section III we present the prob-
lem statement. This is followed by a detailed description of
the learning system and the online adaptation of the stiffness
in Section IV. Then, we present a validation of the approach
on a 7-dof Barrett WAM in a via-point trajectory following
task and a pouring task in Section V. We conclude the paper
with a discussion of the results and an outlook into future
directions of research in Section VI.

II. RELATED WORK

Learning variable impedance control policies has been
formulated as an optimal control (OC) problem in [2] and [3].
These works specify the task constraints as a cost function
and optimize the control actions subject to the dynamics of
the robot. This has the advantage that the impedance profile
is tailored to each robotic platform. The cost functions used
in the optimization typically include a task performance term
and an energy term. Thus, the resulting policies are trade-
offs between task performance and energy consumption. [3]
further uses inverse optimal control to infer a task-based cost-
function in order to transfer variable impedance policies be-
tween different systems. In [4] analytical solutions to optimal
control of variable stiffness for maximizing link velocity is
reported. Closely related to optimal control is reinforcement
learning (RL), which has been used for learning variable
impedance policies in [5]. In [6], an EM-based reinforcement
learning algorithm initialized by human demonstrations is
presented. In contrast to these approaches, in our work, the
robot relies on an expert that indicates what stiffness should
be used by physical interaction. This has the advantage that
the potentially cumbersome task of specifying the optimality
criteria is avoided. However, finding a teacher that is capable
of delivering appropriate instruction may be difficult in some
situations, e.g. tasks involving high velocity movements. The
OC, RL and PbD approaches are hence complementary.

As stated in the introduction, PbD aims at deriving control
policies automatically from a (usually small) set of demon-
strated data. The demonstrated data contains examples of
desirable state-to-action pairs, and may vary in dimension-
ality depending on the number of degrees of freedom and
the sensory modalities considered. For a detailed review
of PbD, refer to [7]. A recent trend in PbD tackles the
problem of teaching force-based control policies [8], [9]. In
this work, we follow a similar approach, in that the robot is

2The system is incremental in two senses: 1) within each demonstration,
as the teacher can increase the variance of the imposed perturbations until
the robot responds with the desired compliance and 2) between different sets
of demonstrations, as the pertubations perceived during previous teaching
rounds are combined with the current demonstration.

implicitly3 taught the forces that it should exert in response to
perturbations. This is in stark contrast to classical approaches
in PbD that usually relied on kinematic information only.

PbD relies on interfaces that the teacher can use to provide
demonstration data. One common approach for providing
demonstrations is to use the robot’s own body and sensors
when demonstrating. This can be done e.g. via kinesthetic
teaching or teleoperation. In robot teleoperation, master-slave
systems for motion control, force control and more recently
impedance control [10] have been suggested. The latter has
to the best of our knowledge not yet been used for providing
demonstrations for learning, and presents an interesting area
to explore.

Humans can control the impedance of their limbs through
co-contraction of agonist-antagonist muscle pairs. An appa-
ratus for measuring human limb stiffness was presented in
[11] and used for examining hypothesis regarding human arm
movement control. Similar setups have since then been used
in a number of experiments, including [12] which reports that
humans modulate stiffness to deal with instabilities due to
interactions. A bio-inspired algorithm for concurrent tuning
of trajectory, force and impedance was presented in [13]. Our
approach uses a human teacher to communicates stiffness to
the robot, but does not attempt to imitate or reproduce human
impedance. The strategies used by humans to modulate
impedance are interesting and may provide valuable insight
for selecting impedance for robots. However, direct imitation
of a human stiffness profile on a robot is inappropriate, due
to the significant differences in kinematics and dynamics.

In [14], an approach to use variability demonstrated (kine-
matic) data to infer a suitable varying stiffness is proposed.
The general idea of that approach is: the more variations
the less stiff the system should be. Stiffness was hence
inversely proportional to the variance along the trajectory.
This approach is based on the assumption that if a large
variability is demonstrated in a part of the movement, then
the accuracy of that part is not likely to be crucial for the
task [15]. Thus, a low stiffness can be used for reproducing
that part of the task. Conversely, if demonstrations were
consistent in a part of the movement, then this part should
be followed strictly, i.e. with a high stiffness. Our work uses
a similar approach for determining the stiffness based on
the covariance of spatial data, but differs in that stiffness
is learned from data supplied online. This a significant
difference, as the teacher can feel the stiffness assumed by
the robot through haptic interaction, and adapt the teaching
accordingly.

Incremental learning in PbD endows the robot with the
capability to improve its task reproduction by receiving
instructions from the teacher while it is performing the task.
Tactile guidance was used to refine motion policies in [16].
In [17], an incremental approach for adjusting the motion
policy encoded in a Hidden Markov Model is presented. A
specialized impedance controller with a so-called refinement

3The force response to perturbations follow from the stiffness that the
robot is taught. Note that we do not treat teaching of task-based contact
forces in this work.
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tube is presented, which allows for motion control with
partial compliance so that the teacher can refine the motion
by physical coaching. Note that while [17] uses impedance
control in their system, no learning of task-appropriate
impedance is involved. Our work is complementary to these
works as we propose a system that allows incremental
learning of the stiffness profile.

III. PROBLEM STATEMENT

Let F ∈ R3 and ι ∈ R3 denote the linear and angular parts
respectively of the total wrench on the robot’s end-effector.
Furthermore let x ∈ R3 denote the position of the robot’s
end-effector, and r ∈ R3 its orientation. Let ζ ∈ R6 and
ξ ∈ R6 denote the wrench and pose resepectively:

ζ =

[
F
ι

]
, ξ =

[
x
r

]
(1)

In impedance control the goal is to control the dynamic
relationship between wrench and the deviation ξ̃ = ξ − ξd
from the virtual desired pose ξd. In this paper, we the
consider an impedance of the form:

ζ = Φξ̃ −Ψ
˙̃
ξ (2)

The stiffness Φ and the damping Ψ are the parameters of
this impedance. We assume no coupling across position and
orientation and write:

Φ =

[
K 0
0 Kr

]
, Ψ =

[
D 0
0 Dr

]
(3)

where K and Kr ∈ R3×3 represent the translational and
the rotational part of the stiffness respectively. In this work,
we are concerned with the translational part of the stiffness
matrix. The rotational part of the stiffness and damping are
not learned, and are set to constant values in the presented
experiments. The translational part of the damping is set as
a function of the translational stiffness.

As mentioned in the introduction, this paper deals with
the learning of tasks with varying stiffness. More specifi-
cally, tasks considered in this paper are defined by a time-
dependent reference trajectory of desired pose and transla-
tional stiffness, {xdt ,Kt}Tt=o where T is the duration of the
task. We assume in this work that the robot already knows
the kinematic profile of the task, and tackle the question of
how to teach it a matching stiffness profile.

IV. DEMONSTRATION AND LEARNING OF VARYING
STIFFNESS

Unlike position, which can be demonstrated using e.g.
kinesthetic teaching and teleoperation, demonstrating stiff-
ness is non-trivial. The reason for this is that it is not a
physical quantity per se, but rather a relationship between
deviations from the virtual equilibrium point and the end
effector wrench (c.f. Eq. (2)).

A. Direct Demonstration Vs Abstract Communication of
Intent

In PbD, regression-based learning algorithms are often
used to generalize over the demonstration data set. During
the develoment of this work, we explored this approach for
learning stiffness. The main difficulty was the collection of
the demonstration data. The method we used was inspired by
the technique used for measuring human impedance [11]. Ex-
amining (2), it is clear that if the system is perturbed in one of
the eigendirections of the stiffness matrix, the resulting force
response will be in the same direction but with reversed sign.
Thus, the stiffness can be measured by applying perturbations
in the eigendirections and observing the resulting response.
To collect measurements of stiffness, the robot executed the
kinematic task profile while the teacher followed along the
movement, holding the end-effector. Periodically, the robot
paused the motion and asked for a stiffness demonstration
by applying positional perturbation to itself. The teacher then
physically demonstrated the appropriate restoring force. The
eigenvectors of the stiffness matrix represent the principal
directions of stiffness, and are hence of great importance to
the resulting behavior. A limitation of the above mentioned
approach to teach stiffness is that only the eigenvalues can
be learned, while the structure of the stiffness matrix must
be predefined.

To overcome this limitation, we changed approach and
developed a system that allows the teacher to modulate the
eigenvalues and the eigenvectors of the stiffness matrix. As
opposed to generalizing across examples of demonstrated
stiffness values, the robot learns stiffness by interpreting
perceived positional perturbations of its end-effector as de-
scribed in the introduction.

B. Stiffness Adjustment Based on Interactions

The way that the robot interprets spatial perturbations
for adjusting shares similarities with how variability of
a demonstration data set is used to set stiffness in [14].
The basic idea is that if the teacher imposes perturbations
with high variance in a direction, the robot should reduce
its stiffness in that direction. The symmetric and positive
definite stiffness matrix is built around the eigenvectors of
the covariance matrix of the perturbation data, with stiffness
along each eigenvector set to be inversely proportional to the
square root of the corresponding eigenvalue of the covariance
of the perturbations.

We introduce the notation x̃ = x − xd for representing
a perturbation data point. Let Ξ = {x̃j , tj)}Jj=0 denote the
set of observed perturbations with their corresponding time
stamps, where J is the number of provided perturbation data.
At time t, a stiffness matrix is assigned based on the data in
Ξ with time stamps in the range [t−S, t]. Thus, the stiffness
assignment is based on a sliding temporal window-view of
length S over the observed perturbation data. Let Lt and Ut
define the lower and upper bounds for the indices of data
points inside the temporal window:

Lt = max{j ∈ [1, 2 . . . J ] : tj < t− S} (4a)
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Fig. 2. Overview of the learning system. The stiffness is learned by
observing the position deviations from the desired reference point due to
the teachers interactions. The robot adapts its stiffness online, so the teacher
gets direct haptic feedback of the effect of his interaction. The teacher is
further helped by a graphical animation on a screen that represents the
current stiffness as an ellipsoid.

Ut = min{j ∈ [1, 2 . . . J ] : t ≤ tj} (4b)

We denote by Nt = Ut − Lt the number of data points in
the sliding window at time t. Let M1

t and M2
t denote the

first and second empirical moments of the spatial data in the
window:

M1
t =

1

Nt

Ut∑
j=Lt

x̃j (5)

M2
t =

1

Nt

Ut∑
j=Lt

x̃jx̃
T
j (6)

Furthermore let Σt = M2
t −M

1
t (M

1
t )
T denote the corre-

sponding covariance matrix. This covariance matrix is what
determines the stiffness commanded to the robot at time t.
The covariance matrix is symmetric and positive definite, so
it can be decomposed as Σt = QΛQT , where Λ is a diagonal
matrix composed of the eigenvalues λit > 0, i = 1, 2, 3, and
Q is a matrix containing the orthonormal eigenvectors in
its columns. The standard deviation of the data along each
eigenvector is given by σit =

√
λit, i = 1, 2, 3. The stiffness

matrix Kt is constructed using the same eigenvectors as the
covariance matrix :

Kt = QΓQT (7a)

with

Γ =

 γ(σ1
t ) 0 0

0 γ(σ2
t ) 0

0 0 γ(σ3
t )

 (7b)

where the eigenvalues are set inversely proportional to the
square root of the corresponding eigenvalue of the covariance
matrix:

γ(σi) =


k σ < σit

k − (k − k)
σi
t−σ
σ−σ σ ≤ σit ≤ σ

k σit < σ

(7c)

for i = 1, 2, 3. The admissible values for the stiffness in
any direction is bounded below by k and above by k. These,
along with the σ and σ are tunable parameters of the system.

The teaching process consists of perturbing the robot while
it is performing task, i.e. providing a stream of data points
which are added to Ξ. The data set is sorted in order by
increasing time, and new data is simply inserted in the
place corresponding to the time at which the perturbation
was perceived. The algorithm involves computing empirical
covariance of a potentially very large data set. Incremental
update of the covariance matrix from time t′ to time t
follows directly from the additive form of the first and second
moments:

M1
t =

Nt′

Nt
M1

t′ +
1

Nt

 Ut∑
i=Ut′

x̃i −
Lt∑

i=Lt′

x̃i

 (8a)

M2
t =

Nt′

Nt
M2

t′ +
1

Nt

 Ut∑
i=Ut′

x̃ix̃
T
i −

Lt∑
i=Lt′

x̃ix̃
T
i

 (8b)

and
Σt = M2

t −M
1
t (M

1
t )
T (8c)

Pseudo-code for the learning procedure is given in Algo-
rthm 1. At line 1, g(t) is introduced to denote the process
that at each time instant provides the desired position4. As
mentioned in section III, the availability of such a process
is assumed in this work. In lines 4-7 the update of the data
used for stiffness assignment is performed. It is vital that
data points are only added to Ξ if teaching is performed,
as the covariance would otherwise gradually decrease in
the absence of perturbations, with the effect that the robot
’forgets’ what it has been taught. In this work, we used no
detection of teaching but let the teacher switch between two
modes: teaching or not teaching. Lines 8-14 computes the
the stiffness matrix based on the current window view of Ξ.
Then appropriate damping5. Refer to Section III for details
on the construction of Φ and Ψ. An overview of the complete
system is given in Fig. 2.

V. EXPERIMENTS

Two experiments were conducted to evaluate the proposed
system. The first is designed to demonstrate that the system
can learn stifness variations both in direction and magnin-
tude, as instructed by the teacher. In the second experiment,
we illustrate the usefulness of the system by teaching a
stiffness profile for a task of pouring a drink into a glass.

A. Setup

The system for learning stiffness through interaction as
described in section IV-B was implemented in a control
module for a 7-dof Barrett WAM, using the RobotToolKit
(RKT) and ROS software frameworks6. For implementing

4The system can control for orientation at the same time as learning
the translational stiffness, but the inclusion of a desired orientation in the
reference trajectory is not required for learning translational stiffness.

5In this work, we designed the damping matrix to have the same
eigenvectors as the stiffness, with eigenvalues di =

√
ki.

6RobotToolKit is an open source collection of tools for robot simulation
and control developed by Eric Sauser. ROS (Robot Operating System) is
open source robot middleware developed by Willow Garage
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Algorithm 1 Online Learning of Variable Stiffness

1: Given g(t) = xdt , S, k, k, σ, σ
2: for t < Tf do
3: sense x̃ = x− g(t)
4: if teaching then
5: add deviation to data set: Ξ← Ξ ∪ {x̃, t}
6: sort Ξ in order of increasing time
7: end if
8: update Lt and Ut (Eq. 4)
9: update moments based on previous values (Eq. 8)

10: compute Σt and its eigenspace Q,Λ
11: compute Γ← diag([γ(σ1

t ), γ(σ2
t ), γ(σ3

t )]) (Eq. 7)
12: compute translational stiffness matrix Kt ← QΓQ
13: compute damping Dt and construct Φt,Ψt, (Eq. (3))
14: compute wrench ζt = Φtξ̃ −Ψt

˙̃
ξ

15: end for

(a) (b)

(c) (d)

Fig. 3. Top-left: The figure shows the layout of the via points for the first
task. The points should be taken from left to right, with selective compliance
in z-direction at the blue points and in x-direcion at the green point, as
indicated by the arrows. Figure top-right shows the graphical aid provided
to the teacher while teaching. The simulator mirrors the robot motions while
drawing a graphical representation of the current stiffness (the red ellipsoid).
Figure bottom-left and bottom-right shows a snapshots of the robot pouring
task during teaching and task reproduction.

the control objective (2), the following control law was used
for the actuator torques τc:

τ c = τ ff (q) + J(q)T ζ (9)

where q denotes the joint angles, J(q) the manipulator
jacobian and τ ff (q) a feedforward gravity compensation
term. The rotational stiffness was set to a diagonal matrix
with a constant rotational stiffness of 6 Nm/rad around all
three axes. The lower and upper bounds for stiffness k and
k where set to 50 and 350 N/m respectively. Empirically,
50 N/m is what the used setup needs to overcome static
friction. The upper bound was set as a safety precaution. The
parameters σ and σ where set to 0.005 and 0.05 respectively.
These parameters control the values at which the the stiffness
saturate and were set experimentally. The length S of the
sliding temporal window was set to 1 second. The teacher

could at the beginning of each task reproduction choose if
teaching was to be performed or not (cf. line 4 in Alg. 1) by
pressing a key on the keyboard.

As the focus of this work is not learning the kinematic task
profile, simple record-and-replay was used for generating
the desired pose trajectories. To this end, the robot was
put in gravity compensation mode, and guided through the
different motions by the teacher while the pose trajectory
was recorded.

The translational stiffness was fed to the controller at a
rate of 10 Hz. The translational damping was set to have the
same principal directions as the stiffness (cf. Eq. (7)) and
with eigenvalues dti = 2

√
γi(t), i ∈ {1, 2, 3}. The reference

point xd was updated at each iteration of the inner control
loop, which runs at 500 Hz.

A RKT simulator was set up to provide graphical aid to
the teacher while performing demonstrations by mirroring
the robot movement on a screen and drawing a graphical
representation of the current stiffness as an ellipsoid, see
Fig. 3b. The ellipsoid is shaped inversely to the stiffness, so
low stiffness in a direction is represented by the ellipsoid
being elongated in that direction.

B. Task 1: Via-point Trajectory

The purpose of this experiment is to illustrate the claim
that the proposed system can learn stiffness variations in se-
lective directions. The task consists in following a trajectory
passing through three via points. Fig. 3 shows the via points
in the robot’s workspace. The robot should be maximally
compliant in the z-direction at the blue via-points, and max-
imally compliant in the x-direction in the other directions.
This is a quantitative requirement in that the task constraints
state specifically that the robot should assume its minimum
allowed stiffness k for one and one only of the eigenvalues
at each of the via-points. Furthermore, the directions of
compliance at each via-point are specified to be aligned
approximately7 with the z-axis for the blue via-points and
the x-axis for the green via-point. In between the via-points,
the robot should stiffen up as quickly as possible8 to its
maximal stiffness in all directions. The reference trajectory
moves through the points with approximately constant speed.
The total duration of the task is 12 seconds.

The robot executed the task three times while the teacher
was providing input. Fig. 4a shows trajectory followed with-
out interaction in the XY-plane of the base coordinate system,
with the trajectories resulting from the teachers interaction
overlaid. As is clear from the figure, the teacher imposed
perturbations in the x-direction at the green via-point. Note
also the small amount of variance imposed in y-direction
at the blue via-points. These small perturbations are an
unintended bi-effect of the larger perturbations imposed in
z-direction at the same points, as can be seen in figure 4b.

7This requirement is only approximate since it can not be expected by
a human teacher to provide perturbations exactly aligned with a given
direction.

8The rate at which the stiffness can change is limited as an effect of the
sliding temporal window, refer to section IV-B
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Fig. 4. These figures show data from the via-point trajectory following experiment. (a) and (b): The figures show the reference trajectory with the
trajectories resulting from the teachers interactions overlaid in the xy-plane and xz-plane respectively. (c): Trajectory plotted as x-position over time. Note
the variance imposed by the teacher around the green via-point. (d): Trajectory along y-direction plotted over time. (e): Trajectory followed in z-direction
over time. Note the variance imposed by the teacher around the blue via-points. Figures (f) and (g) show the stiffness trajectories resulting from the teachers
interaction showed in (a)-(e). Figure (f) is a plot of the eigenvalues of the stiffness matrix over time.

Figures 4c, 4d and 4e show the trajectories followed along
each direction x,y,z of the base coordinate system over time.
Even though the via-points were originally defined by space
coordinates, they are implicitly anchored in time since the
trajectories are time dependent. The times at which the via-
points are marked are simply the times at which the reference
trajectory pass through these points. As can be seen in these
figures, the trajectory from the teaching rounds generally
has a bias error when compared to the reference trajectory.

This is bias is due to the teacher holding the end-effector
and following along even when not imposing perturbations.
Note that this bias does not affect the stiffness as only the
covariance of the perturbations is used for determining the
stiffness (cf. Alg. 1).

In Fig. 4f, the stiffness eigenvalues resulting from the
teaching is plotted over time. The plot clearly shows that
maximum compliance is only reached in one direction at
each of the via points. In Fig. 4f, the stiffness matrix is
plotted as an ellipsoid at a series of points along the motion
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trajectory. The ellipsoids are built around the eigenvectors of
the stiffness matrix, with low stiffness along an eigenvector
illustrated by the ellipsoid being elongated in that direction.
As can be seen in this figure, the direction corresponding
to the lowest eigenvalue is approximately z-direction at the
blue via-points and approximately x-direction at the green
via-point. The human teacher being unable to impose per-
turbations exactly along the desired directions is the reason
for the directions being only approximately correct.

C. Task 2: Pouring a drink

This task was chosen to show how the proposed system
can be used to teach a realistic task that benefits from a
varying stiffness profile. The task consists first transporting
a bottle full of soda toward a glass. Once above the glass, the
robot was to pour the drink. We state the following desired
qualitative characteristics for this task:

1) During the reaching phase, the robot should be compli-
ant in all directions, as position errors are not crucial
and correcting for position errors with high stiffness
can result in high accelerations of the end-effector
which spills the drink out of the bottle.

2) In the pouring phase, the robot should stiffen up in
all directions, since the drink should be poured into
the glass, even if moderately strong perturbations are
encountered.

3) In the third stage, when the robot is reaching away
from the glass, it is again desirable that a low stiffness
is used, for the same reason as mentioned for the
reaching stage.

The reference trajectory was acquired using record and
replay. The total duration of the task is 25 seconds, and the
critical pouring phase starts 10 seconds into the task and
ends 6 seconds later.

The refinement of the pouring task consisted in decreasing
stiffness in all directions in the reaching phase, letting
the robot be stiff while pouring, and again decreasing the
stiffness after the pouring phase. Since the stiffness was to
be decreased in several directions at each point along the
reaching phases, three rounds of teaching were performed.
During each round, the teacher concentrated on introducing
variance in along the three coordinate-axes x,y and z of the
base coordinate system. The x,y,z components of the trajec-
tories from the teaching rounds are swon in figures 5a, 5b and
5c. Note that the teacher did not impose as high variations in
x-direction as in y, and z-direction. The reason for this is that
the motion of the task was approximately aligned with the
x-axis throughout the entire reaching phase. Perturbing the
robot heavily along the planned direction of motion makes it
hard for the teacher to respect the intrinsic time dependency
of the task, thus risking to anchor the teaching in a part
of the motion where this was not intended. Respecting the
time dependency along other directions, especially those that
are orthogonal to the direction of motion, is easier as the
teacher can feel the robots desired motion and follow it while
perturbing in other directions.

The result of the relatively smaller perturbations in the
x-directions are directly visible in Fig. 5d, which shows
the stiffness eigenvalues resulting from the three teaching
rounds. Clearly, all three eigenvalues drop during the reach-
ing phases, while two of them drop much more than the first.
Fig. 5e shows the ellipsoid representation of the stiffness
matrices for a subset of the points along the followed trajec-
tory, again making it clear that the stiffness was principally
reduced in the XZ-plane. As expected, the robot assumed a
high stiffness at the beginning of the task and in the pouring
phase, since the teacher provided no interaction there.

VI. CONCLUSION

We have presented an online, incremental algorithm for
learning variable stiffness. The algorithm sets the stiffness
inversely proportional to the covariance of perturbation data
imposed by the teacher. The data taken into account for
determining the stiffness is taken from a sliding temporal
window over the set of all provided data. We wish to
emphasize that any interface for teaching stiffness should
provide haptic feedback to the teacher, as this is the way that
humans can evaluate stiffness. Our system offers an efficient
solution to this as the manipulator itself is used as haptic
display.

Throughout this paper, we have assumed that the robot
already knows a kinematic profile for the task. No assump-
tions have been made as to how this kinematic profile is
generated. This means that our system can be used as an
add-on to any other system learning robot motions. In this
paper, we considered only trajectories with explicit time
dependency. We plan to integrate the system in this paper
with our previous work for modeling motions as autonomous
dynamical systems [18] to allow robust teaching of tasks
without time dependency.

The mapping from the standard deviation of the perturba-
tions to stiffness in (7c) was chosen linear to make it easy for
the user to identify how the imposed perturbations affects the
stiffness. Using other mappings from the perturbations to the
stiffness is an approach yet to explore. Such a mapping could
be designed e.g. to ignore perturbations with low frequency.

In section IV-B it was explained that the presented system
is data driven. The empirical covariance matrix of subset
of the collected data is computed at each iteration. For our
experimental setup, the computation required was well within
the requirements of the 10Hz update frequency used for the
stiffness. The real drawback of the data-driven approach is
rather that all data points have to be saved in memory. In
future work, modeling the data using parametric models of
the underlying distribution will be explored, as this could
potentially eliminate the need of storing all the perturbation
data in memory.
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Fig. 5. Figures (a)-(c) shows the trajectory followed by the robot when unperturbed along with the trajectory followed during two teaching rounds overlaid.
Note that no perturbations were provided along the x-direction. Figures (d) and (e) show the stiffness resulting from these teaching rounds. Note that all
eigenvalues reach their maximum during the pouring phase which takes place at second 10 to second 16. As is seen in figure (e), the principal directions
in which the robot has reduced stiffness in the reaching phase lies in the yz-plane, while it remains fairly stiff along the x-axis.
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