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a b s t r a c t

The ultimate strength of reinforced concrete slabs is frequently governed by the punching shear capacity,
which may be increased with addition of traditional fitments such as reinforcing steel, headed studs or
shear heads. In addition to these traditional methods of strengthening against punching, steel fibre rein-
forcement has proved to be an effective and viable alternative. The addition of fibres into the concrete
improves not only the shear behaviour but also the deformation capacity of reinforced concrete slabs.
This paper presents a mechanical model for predicting the punching strength and behaviour of concrete
slabs reinforced with steel fibres as well as conventional reinforcement. The proposed model is validated
against a wide number of available experimental data and its accuracy is verified. On this basis, a simple
design equation for the punching shear capacity of steel fibre reinforced concrete (SFRC) slabs is
proposed.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Given their construction and architectural advantages, rein-
forced concrete flat slabs are commonly used in medium height of-
fice buildings, residential buildings and parking stations. The flat
soffit makes the formwork and reinforcement substantially simpler,
allowing for easy placement and installation and offers lower over-
all storey heights. The ultimate strength of a reinforced concrete flat
slab is usually governed by the punching shear capacity at its slab–
column connections. This failure mode is typically brittle and can
lead to progressive collapses and loss of the entire structure [1–
4]. A number of alternatives are available for increasing the punch-
ing shear capacity, such as the use of closed stirrups, bent-up bars,
shear studs or post-installed shear reinforcement. More recently,
the use of fibre reinforced concrete (FRC) for increasing the punch-
ing shear capacity has been studied (e.g. [5–10]). These studies have
confirmed an increase in the punching shear strength of FRC slabs
as well as an increase in their deformational capacity and this
enhancement is mostly due to the bridging action of the fibres after
the cracking of the concrete matrix (shown in Fig. 1).

Current code provisions for slab–column connections, such as,
for example, ACI 318-11 [11], JSCE [12], and the fib Model Code
2010 [13,14], have been developed for normal concrete structures
and their application to FRC slab–column connections is not
always straightforward, particularly for empirical design formulae.
To this end, several specific models for punching shear of FRC

slab–column connections have been proposed over the last decades.
Narayanan and Darwish [6] provided a design equation for the
punching shear capacity of SFRC slab considering the strength of
the compressive zone above the top of the inclined cracks, the
pull-out shear forces on the fibres along the inclined cracks and
the shear forces carried by dowel and membrane actions. Harajli
et al. [8] proposed an empirical design equation for the punching
shear capacity of SFRC slab–column connections based on a best
fit linear regression of the coupled contribution of concrete and
fibres. Choi et al. [15] performed a theoretical study to propose a
design equation based on a FRC failure criteria. The formula pro-
posed considers the assumption that yielding of tensile reinforce-
ment occurs prior to punching shear failures, which is valid for
thin slabs with large span to thickness ratios. The contributions of
compressive and tensile zones at the critical section were taken into
account and the punching shear capacity of both zones was as-
sumed to be controlled by tensile cracking, rather than compressive
crushing. More recently, Higashiyama et al. [16] proposed a design
equation based on the JSCE model for assessing the punching shear
capacity of normal concrete slab–column connections. The equation
takes into account the fibre pull-out strength to estimate the contri-
bution of the fibres and considers the perimeter of the critical sec-
tion depending on the quantity of fibres and their properties.

2. Punching shear strength based on the critical shear crack theory

2.1. Critical shear crack theory

The ultimate punching shear strength and deformation capacity
of reinforced concrete slabs can be estimated using the mechanical
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model of the critical shear crack theory (CSCT), as has been pre-
sented by Muttoni [17] for slabs without transverse reinforcement
and Fernández Ruiz and Muttoni [18] for slabs with transverse
reinforcement. According to the CSCT, the opening of a critical
shear crack reduces the strength of the inclined concrete compres-
sive strut carrying shear and eventually leads to the punching
shear failure. Thus, as the opening of the critical shear crack in-
creases with slab rotations, the punching shear strength decreases.
According to Muttoni and Schwartz [19], the width of the critical
shear crack (w) can be assumed to be proportional to the slab rota-
tion (w) multiplied by the effective depth of the member (d); that
is, w / wd as illustrated in Fig. 2.

A failure criterion for the punching shear strength of reinforced
concrete slabs without transverse reinforcement was proposed by
Muttoni [17] as

VR;c

b0d
ffiffiffiffi
fc

p ¼ 3=4
1þ 15 wd

dg0þdg

ð1Þ

where w is the maximal rotation of the slab; d is the effective depth
of the slab; b0 is the control perimeter at a distance of d/2 from the
face of the column; fc is the compressive strength of concrete; dg is
the aggregate size, and dg0 is a reference aggregate size set to
16 mm. The failure criterion of Eq. (1) takes into account the influ-
ence of the concrete strength and the crack roughness by consider-
ing the maximum aggregate size dg.

To determine the ultimate punching shear strength and the
deformational capacity, the load–rotation relationship of the slab

must be known. As shown in Fig. 3, the intersection between the
estimated load–rotation relationship and the failure criterion de-
fined by Eq. (1) corresponds to the predicted ultimate failure load
and rotation. For complex cases, this relationship can be obtained
by carrying out a non-linear numerical simulation of the flexural
behaviour of the slab, for instance using non-linear finite-element
analysis (NLFEA). The load–rotation for axisymmetric cases can also
be obtained analytically after some simplifications considering a
quadrilinear or bilinear moment–curvature relationship for the
reinforced concrete cross-section [17]. This approach allows taking
into account the contribution of the fibres to the flexural strength in
a simple manner. To that aim, an effective tensile strength of the FRC
at the cross-section can be adopted to calculate the quadrilinear
moment–curvature relationship, as illustrated in Fig. 4.

The expressions for the quadrilinear moment curvature rela-
tionship presented in Fig. 4a can be calculated assuming the mate-
rial behaviours for the concrete and for the steel presented in
Fig. 4c and e. Prior to yielding of the flexural reinforcement, the ac-
tual stress distribution over the cross section in Fig. 4b is idealized
through a linear stress–strain relationship for the concrete in the
compressive zone and an average strength is assumed for the
FRC in the tensile zone, Fig. 4c. To calculate the ultimate flexural
capacity, the actual stress distribution in Fig. 4c is idealized assum-
ing an equivalent rectangular compressive stress block and an
average tensile strength of FRC, Fig. 4e. Following a similar proce-
dure as that described in Muttoni [17] and included in Appendix C,
the following expressions are obtained:

EI0 ¼
Ech3

12
ð2aÞ

EI1 ¼ qbEsd
3 1� c

d

� �
1� c

3d

� �
ð2bÞ

c ¼ qb
Es

Ec
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ec

qbEs

s
� 1

 !
ð2cÞ

mcr ¼
fcth

2

6
ð2dÞ

mR ¼ qd2fy 1� b1ðqfy þ fct2;f h=dÞ
2ðaccfc þ fct2;f Þ

� �

þ h2fct2;f

2
1� qfyd=hþ fct2;f

ðaccfc þ fct2;f Þ

� �
1þ qfyd=hþ fct2;f

ðaccfc þ fct2;f Þ
ð1� b1Þ

� �
ð2eÞ

Fig. 1. Post-cracking behaviour of fibre-reinforced concrete. Matrix and fibre
contributions.

Fig. 2. Critical shear crack developing through the theoretical compression strut.

Fig. 3. Assessment of punching shear strength and deformation capacity according
to the CSCT.
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where b is an efficiency factor that accounts for the orthogonal layout
of the reinforcement and the reduction in the ratio between torsional
and flexural stiffness of the slab after cracking, with a value b = 0.6
proposed by Mutonni [17]; EI0 and EI1 refer to the uncracked and
cracked bending stiffness respectively; Es and Ec are the young mod-
ulus of steel and concrete respectively; fct is the tensile strength of
the FCR, mcr is the cracking moment per unit of width; and mR is
the nominal moment capacity per unit of width. The parameter
b1 = xpl/c defines the depth of the equivalent rectangular stress block
(Fig. 4c). Some approaches account for a constant value of the param-
eter b1 (for instance, b1 = 0.85 [20]). Other approaches propose this
parameter as a function of fc, for instance b1 = 0.80 � (fck � 50)/400
as proposed in the draft of Model Code 2010 [13,14], which is the
formulation adopted hereafter. Likewise, the factor acc that accounts
for long term effects on the compressive strength and unfavourable
effects due to the load conditions is adopted as proposed in the draft
of Model Code 2010 [13,14]. The characteristic curvatures of the mo-
ment–curvature diagram can thus be calculated as

� vcr ¼
mcr

EI0
¼ 2f ct

hEc
ð3aÞ

vTS ¼
fct

6qbhEs
ð3bÞ

� v1 ¼
mcr

EI1
� vTS ð3cÞ

� vy ¼
mR

EI1
� vTS ð3dÞ

For the axisymmetric slab presented in Fig. 5, its load versus
local-deflection response can be calculated analytically after some
simplifications. The tangential cracks and the radial curvature are
concentrated in the vicinity of the column. Outside the critical shear
crack located at a radius r0, the radial moment and the radial curva-
ture decrease rapidly. Therefore, it is assumed that the correspond-
ing slab portion deforms following a conical shape with a constant
slab rotation w, as shown in Fig. 5a. The equilibrium of forces is per-
formed along the cross sections defined by the inclined cracks in
Figs. 5b and c and it is expressed through Eq. (4) [17].

V
Du
2p
ðrq � rcÞ ¼ �mrDur0 � Du

Z rs

r0

mu dr ð4Þ

vt ¼ �
w
r

for r > r0 ð4aÞ

vr ¼ vt ¼ �
w
r0

for r 6 r0 ð4bÞ

The expression for the load–rotation relationship can be calculated
by assessing the radial moment acting in the slab at a distance of r0

from the centerline of the column and integrating the moment dis-
tribution in the tangential direction considering the quadrilinear
moment–curvature relationship given in Fig. 4. This is discussed
in detail in Mutonni [17], with the resulting load–rotation relation-
ship given by

V ¼ 2p
rq � rc

�mrr0 þmRhry � r0i þ EI1w ln
r1

ry

� �	 

þ EI1vTShr1 � ryi

�

þmcrhrcr � r1i þ EI0w ln
rs

rcr

� �	 
�
ð5Þ

where the operator hxi is x for x > 0 and 0 for x 6 0 and mr is the ra-
dial moment per unit of length acting on a transversal cross section
at a distance of r0 = rc + d (neglecting moment shift due to the verti-
cal component of fibre stresses and calculated adopting the
simplified average stress distribution illustrated in Figs. 4c and e,
where the crack opening w1 and w2 were assumed as 1.0 mm and
3.0 mm respectively). Definition of other parameters can be con-
sulted in Appendix D of this paper. By applying a number of simpli-

fying assumptions, Muttoni [17] showed that Eq. (4) is
approximated well by the expression

V ¼ Vflex
w

1:5 rsfy

dEs

 !2=3

ð6Þ

where rs is the distance from the column axis to the line of contra-
flexure of the bending moments; fy is the yield strength of the flex-
ural reinforcement; and Es is the modulus of elasticity of the
reinforcing steel. From Eq. (5), the flexural strength (Vflex) can be
estimated for the case of a plastic regime as

Vflex ¼ 2pmR
rs

rq � rc
ð7Þ

where mR refers to the nominal moment capacity (bending
strength) per unit width.

2.2. Punching shear strength of FRC slabs

As the CSCT model, described above, is based on the application
of a physical–mechanical modelling approach, the punching shear
behaviour of FRC slabs can be easily incorporated in a physically
consistent manner. Along the failure surface defined by the critical
shear crack, shear is carried by the coupled action of the concrete
and the fibres, as proposed by Muttoni and Fernández Ruiz [21].
Therefore, the punching shear strength can be calculated as the
sum of both contributions as

VR ¼ VR;c þ VR;f ð8Þ

where VR,c and VR,f are the contributions of the concrete and fibres,
respectively, at the point where the angle of rotation wR corre-
sponds to the ultimate condition (refer Fig. 6).

As observed in Fig. 6, the contribution of the concrete and fibres
are both functions of the critical shear crack, which is assumed to
be proportional to the slab rotation angle and the effective depth.
The crack opening for a segment of the failure surface at a distance
n from the soffit of the slab can be estimated using the kinematic
assumption of the CSCT [18], as illustrated in Fig. 7a and given by

wðw; nÞ ¼ jwn ð9Þ

where w is the opening of the critical shear crack and j is a coeffi-
cient relating total rotation and critical crack width opening. A
value of j = 0.5 for the coefficient of proportionality is adopted
hereafter, as proposed for normal reinforced concrete slabs with
transverse reinforcement by Fernández Ruiz and Muttoni [18].
According to this reference, this value provides good agreement to
test results in terms of strength and deformational capacity of slabs
with the kinematics assumed in Fig. 7a (where the height of the
compression chord is neglected). On the basis of Eq. (9), the contri-
bution of fibres can be calculated by integrating the fibre bridging
stress corresponding to each crack width across the critical failure
surface assumed at an angle of 45� with the soffit of the slab. There-
fore, the fibre contribution is expressed as a function of the slab
rotation and the position of the fibres in the slab as illustrated in
Fig. 7b

VR;f ¼
Z

Ap

rtf ðwðnÞÞdAp ¼
Z

Ap

rtf ðw; nÞdAp ð10Þ

where Ap is the horizontally projected area of the punching shear
failure surface, as shown in Fig. 7b.

2.3. Crack opening-fibre bridging stress relationship

A suitable crack opening-fibre bridging stress relationship
needs to be defined according to Eq. (10). Some simplified relation-
ships based on material testing are proposed in the first complete

L.F. Maya et al. / Engineering Structures 40 (2012) 83–94 85
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draft of Model Code [13,14] for conventional FRC. A number of
sophisticated and more accurate models based on deterministic
and micromechanical models are also available in the scientific lit-
erature, such as those of Aveston and Kelly [22], Lim et al. [23], Li
et al. [24] and Voo and Foster [25]. In particular, the Variable

Engagement Model (VEM) proposed by Voo and Foster describes
the behaviour of randomly oriented steel fibre reinforced compos-
ites subjected to uniaxial tension. According to this model, the ten-
sile strength provided by the fibres over a plane of unit area is
given by

rtf ¼ Kf af qf sb ð11Þ

where Kf is the global orientation factor; qf is the fibre volume; sb is
the bond stress between the fibres and the concrete matrix; and af

is the aspect ratio of the fibres and is defined as the ratio between
the length (lf) and diameter (df) of the fibre (af = lf/df). The orientation
factor Kf is a function of the crack opening w and can be determined
through probabilistic analysis. For the case of randomly oriented fi-
bres where all fibres are pulled out from the matrix and there is no
fibre fracture, Voo and Foster defined the global orientation factor as

Kf ¼
1
p

arctan ae
w
df

� �
1� 2w

lf

� �2

ð12Þ

where ae is an engagement parameter that can be taken for usual
cases as ae = 3.5. The parameter was calibrated using a uniform
bond approach along the fibre length and verified against a wide
range of experimental data by Voo and Foster [25,26]. The interfa-

Fig. 4. Quadrilinear moment–curvature relationship: (a) moment–curvature diagram; (b) actual stress distribution over the cross section prior to flexural yielding; (c)
adopted material laws prior to flexural yielding; (d) actual stress distribution over the cross section at ultimate flexural strength; and (e) adopted material laws for calculation
of flexural strength.

Fig. 5. Axisymmetric slab: (a) geometrical parameters; (b) forces in concrete and reinforcement acting on the slab portion; (c) internal forces acting on the slab portion.

Fig. 6. Coupling of matrix and fibres contributions to punching shear capacity.
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cial bond strength between the matrix and the fibre sb is defined as
a function of the concrete compressive strength and given by

sb ¼ kb

ffiffiffiffi
fc

p
ð13Þ

The bond factor kb is determined by the fibre and matrix type. In the
absence of single fibre pullout test data, it may be taken as 0.8 for
end-hooked steel fibres, 0.6 for crimped steel fibres, and 0.4 for
straight steel fibres [27]. Therefore, the total punching shear contri-
bution of fibres can be derived from Eqs. (9)–(13) and is

VR;f ¼
Z

Ap

rtf w;nð ÞdAp

¼
Z 2p

h¼0

Z d

n¼0

1
p arctan ae

jwn
df

� �
1�2jwn

lf

� �2

af qf sb

 !
rcþnð Þdhdn

ð14Þ

where h is the angle with reference to the axis of the support region.
Eq. (14) can be integrated leading to a close-form solution that al-
lows one to calculate the fibre contribution, as derived in Muttoni
and Fernández Ruiz [21]. However, this general approach is typi-
cally not necessary for most practical applications. For typical FRC
concrete slabs, crack widths remain below the crack opening at
which the maximal fibre bridging stress is reached. In fact, for fibre
dosages typical in slabs and beams, the fibre bridging stresses are
fairly constant at the failure surface as is illustrated in Fig. 7b.
Therefore, an average fibre bridging stress can be adopted. In so
doing, the fibre contribution can be calculated by multiplying this
average bridging stress times the area of the failure surface, and
thus

VR;f ¼
Z

Ap

rtf ðw; nÞdAp ¼ Aprtf ðw;hcÞ ð15Þ

where hc is the control distance from the soffit of the slab and Ap is
the horizontally projected area of the punching shear failure surface.

As proposed by Muttoni and Fernández Ruiz [21], the average bridg-
ing stress can be estimated considering the crack opening at a con-
trol distance d/3 from the soffit of the slab, which is function of
the slab rotation, according to the kinematic assumption adopted
in the CSCT. That is

VR;f ¼ Aprtf w ¼ wd
6

� �
ð16Þ

3. Model validation

Experimental data available in the literature was used for verifica-
tion of the proposed mechanical model and consisted of 140 SFRC
slab–column connections tested in 13 different studies. The results of
the validation are presented in Table 1 and the dimensions and proper-
ties of the specimens are summarized in Appendix A. Likewise, the val-
ues of the ratio between the measured punching shear strength and the
estimated punching shear strength are included in Appendix A.

The best level of approximation is achieved by considering Eq.
(1) for concrete (matrix) contribution, the direct integration of
Eq. (14) for the fibre contribution, and the quadrilinear moment–
curvature curve for the load–rotation relationship. The average
ratio between measured-to-predicted punching shear strength
following this strategy is 1.08 with a coefficient of variation of
0.09, as shown in Fig. 8a.

Instead of using the general integration of the fibre bridging
stresses, the contribution of fibres can be assessed through Eq.
(16) (average fibre bridging stress). In so doing, the average ratio be-
tween measured-to-predicted punching shear strength is 1.09 with
a coefficient of variation of 0.08, thus leading to very similar results
(Fig. 8b).

In simplifying the model further to the load–rotation relation-
ship defined by Eq. (6), the required calculations are reduced con-
siderably and the method is more suitable for that of typical

Fig. 7. (a) Assumed distribution of crack widths along the failure surface and (b) fibre bridging stress along the failure surface.

Table 1
Test data and strength predictions.

References Model CSCT-VRf,In (Eq. (14)) CSCT-VRf,simplied (Eq. (16))

Load–rotation Quadrilinear Quadrilinear Simplified(Eq. (6))
Elements tested VRtest/VRcalc VRtest/VRcalc VRtest/VRcalc

Mean COV Mean COV Mean COV

Cheng and Parra-Motesinos [10] 10 1.09 0.08 1.10 0.08 1.13 0.08
Theodorakopoulos and Swamy [28] 20 1.08 0.06 1.09 0.07 1.14 0.07
Alexander and Simmonds [7] 6 1.09 0.11 1.09 0.11 1.09 0.11
De Hanai and Holanda [29] 9 1.02 0.08 1.07 0.06 1.11 0.06
Swamy and Ali [5] 15 1.11 0.06 1.11 0.06 1.18 0.09
McHarg et al. [9] 4 1.08 0.05 1.08 0.05 1.17 0.07
Suter and Moreillon [30] 11 1.11 0.07 1.11 0.07 1.16 0.07
Nguyen-Minh et al. [31] 12 1.11 0.06 1.12 0.05 1.16 0.06
Harajli et al. [8] 10 0.96 0.07 1.00 0.06 1.02 0.06
Yaseen [32] 14 1.11 0.08 1.13 0.08 1.18 0.07
Narayanan and Darwish [6] 12 0.98 0.07 1.02 0.06 1.05 0.06
Higashiyama et al. [16] 12 1.10 0.12 1.10 0.12 1.09 0.12
Wang et al. [33] 5 1.14 0.06 1.15 0.07 1.21

All elements 140 1.08 0.09 1.09 0.08 1.13 0.09

L.F. Maya et al. / Engineering Structures 40 (2012) 83–94 87
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designs. Using this simplified load–rotation relationship, together
with Eq. (16) (average fibre bridging stress), the average ratio be-
tween measured-to-predicted punching shear strength is 1.13 with
a coefficient of variation of 0.09 (Fig. 8c).

4. Role of fibres on the punching shear strength

A series of the elements tested by Swamy and Ali [5] were
selected to gain a better understanding of the predicted effect of
the steel fibre volume on the punching shear strength of slab–
column connections. The selected test elements had identical
geometrical dimensions and fibre type and the concrete compres-
sive strength was similar for all batches. The failure criteria and the
estimated load rotation relationships for the elements selected are
presented in Fig. 9a. As is shown in Fig. 9b, the proposed model
predicts well the increase of the punching shear strength with
the increase of the fibre volume. Furthermore, an increase in the
quantity of similar fibres provides for an increase in the deforma-
tional capacity. As the concrete contribution to the punching
strength decreases with the increase of the slab rotation, the
weight of the fibre contribution becomes more relevant to the
resistance mechanism. The predicted concrete and fibres contribu-
tions to the punching shear strength for elements tested by Swamy
and Ali ([5] are shown in Fig. 9b, with an excellent correlation ob-
served between the model predictions and the test results.

5. Code-like formulation

For design purposes a code-like formulation is developed in
accordance with the simpler approach proposed above, i.e. the

load–rotation relationship estimated by Eq. (6) and average fibre
bridging stress according to Eq. (16). Regarding the shear compo-
nent carried by the concrete, VRd,c, Eq. (1) has to be replaced by
the failure criterion proposed by Muttoni [17], using characteristic
values to reach a target lower fractile value of 5% and considering
partial safety factors. This is given as

VRd;c

b0d
ffiffiffiffi
fc

p ¼ 2
3cc

1
1þ 20 wd

dg0 þ dg

ð17Þ

where cc is the partial safety factor of concrete and equal to 1.5
according to the European practice. The introduction of a suitable
safety format and partial safety factors is discussed in Muttoni

Fig. 8. Punching shear strength predictions for SFRC slabs: (a) CSTC for concrete contribution, VEM integration (Eq. (14)) for fibres contribution and quadrilinear load–
rotation relationship; (b) CSTC for concrete contribution, VRf,simplified Eq. (16) for fibres contribution and quadrilinear load–rotation relationship; and (c) CSCT for concrete
contribution, VRf,simplified (Eq. (16)) for fibres contribution and load–rotation relationship through Eq. (6).

Fig. 10. Punching shear strength predictions for SFRC slabs using the design
formulation proposed.

Fig. 9. Punching shear strength as a function of the fibre volume: (a) CSCT failure criteria and load–rotation relationships for elements tested by Swamy and Ali [5]; (b)
experimental and predicted punching shear strengths.

88 L.F. Maya et al. / Engineering Structures 40 (2012) 83–94
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and Fernández Ruiz [21]. The fibres contribution is assessed by
calculating the average fibre bridging stress at the control distance
from the soffit of the slab, as stated in Eq. (16).

Fig. 10 shows the ratio between the experimentally measured
punching shear strength and the punching shear strength calcu-
lated through the proposed design formula for the experimental
database (all safety factors were set to 1.0 for comparison to test
results). The average value of the ratio between effective and pre-
dicted punching strength increases to 1.27, with a coefficient of
variation of 0.10. A satisfactory safety level for the design formula-
tion was assessed, being the ratio for the 5% lower fractile equal to
1.04.

6. Comparison to other prediction models

The experimental data is used to assess the strength predictions
according to the models proposed by Narayanan and Darwish [6],
Harajli et al. [8] and Higashiyama et al. [16], and the results ob-
tained are shown in Fig. 11. The expressions used for the compar-
ison are detailed in Appendix B of this paper. The results of these
three empirically-based models show a significant degree of scat-
ter when compared to the available test dataset, with relatively
low average test to predicted model ratios and high standard devi-
ations. This large scatter leads to rather low values for the 5th per-
centile target fractile (0.65 for Narayanan and Darwish, 0.56 for
Harajli et al. and 0.74 for Higashiyama et al.), which in all cases
are below 1.0. Moreover, the largely empirical background of these
models is inconsistent with the new approaches for punching
shear currently adopted in codes provisions, such as the one
adopted in the Model Code 2010 [13,14], where more physical
models are considered to describe behaviour.

7. Conclusions

This paper presents an analytical approach for assessing the
punching shear strength of steel fibre reinforced concrete slab–col-
umn connections. Unlike most design formulations available in the
literature, a physical–mechanical model based on the critical shear
crack theory is proposed.

1. The contribution of concrete and fibres are considered coupled
through the main hypothesis of the critical shear crack theory
(CSCT), which establishes that the shear critical crack opening
is proportional to the product of the rotation of the slab and
the effective depth of the member.

2. The contribution of the concrete to the punching shear strength
takes into account the main geometric and mechanical param-
eters and reproduces accurately the pronounced size effect.

3. For assessing the fibre contribution to the punching shear
strength, a crack opening-fibre bridging stress relationship is
required. According to the approach for fibre reinforced concretes
adopted in most of the current design codes, calibration of mate-
rial parameters needs to be done on the basis of test results. Alter-
natively, the Variable Engagement Model proposed by Voo and
Foster can be used to assess the tensile behaviour of fibre rein-
forced concretes.

4. The proposed approach was compared to 140 slab–column con-
nection tests reported in the literature. The proposed prediction
model exhibits a good agreement with the test results and
properly represents the influence of the fibres on the punching
strength of FRC slab–column connections.

5. A simplified approach suitable for typical designs is proposed
that leads to good estimates of the punching shear strength
and sufficient safety.

6. A number of empirical design formulas show significant scatter
when compared to test results and lead potentially to unsafe
estimates of the punching shear strength.

Appendix A

See Table A1.

Appendix B

B.1. Model by Narayanan and Darwish [6]

Eq. (B.1) presents the simplified expression developed by
Narayanan and Darwish [6] to estimate the ultimate punching
shear strength of FCR slabs.

Vu

bpf d
¼ ksð0:24f spf þ 16qþ mbÞ ðB:1aÞ

fspf ¼
fcf ;cub

20�
ffiffiffi
F
p þ 0:7þ

ffiffiffi
F
p

ðB:1bÞ

bpf ¼ b0;1:5dð1� 0:55FÞ ðB:1cÞ
ks ¼ 1:6� 0:002h ðB:1dÞ

where ks is the size effect factor that depends on the slab depth h;
F = kblfqf/df is the fibre parameter considering; kb is the bond factor;
qf is the fibre volume, and lf and df are the length and diameter of
fibre, respectively. The ultimate split cylinder strength of steel fibre
reinforced concrete fspf is calculated assuming a compressive cube
strength of the fibre reinforce concrete equivalent to fc/0.8. The ver-
tical fibre pull-out stress along the inclined crack mb is calculated as
0.41sF, where the fibre–matrix interfacial bond stress sb is assumed

Fig. 11. Punching shear strength predictions for SFRC slabs (a) Model proposed by Narayanan and Darwish [6]; (b) Model proposed by Harajli et al. [8]; and (c) Model
proposed by Higashiyama et al. [16].
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Table A1
Experimental data base and strength predictions.

Specimen h (mm d (mm) bc
a (mm) fc (MPa) q (%) qf (%) Vexp (kN) Vexp

VR;est1

b Vexp

VR;est2

c Vexp

VR;d

d

Cheng and Parra-Montesinos [10]
S1 152 127 152 47.7 0.98 0.00 433 1.10 1.19 1.38
S2 152 127 152 47.7 0.66 0.00 379 1.16 1.22 1.42
S3/FRC 152 127 152 25.4 0.98 1.00 386 1.01 1.09 1.25
S4/FRC 152 127 152 25.4 0.66 1.00 389 1.15 1.20 1.37
S5/FRM 152 127 152 59.3 0.98 1.50 530 1.03 1.12 1.27
S6/FRM 152 127 152 57.9 0.66 1.50 444 1.03 1.03 1.16
S7/FRC 152 127 152 31.0 0.98 1.50 522 1.15 1.23 1.41
S8/FRC 152 127 152 31.0 0.66 1.50 472 1.19 1.20 1.36
S9/FRC 152 127 152 46.1 0.98 1.50 530 0.94 0.93 1.03
S10/FRC 152 127 152 59.1 0.66 1.50 503 1.12 1.12 1.12

Theodorakopoulos and Swamy [28]
FS-1 125 100 150 35.4 0.56 0.00 173.5 1.10 1.20 1.40
FS-2 125 100 150 34.0 0.56 0.50 225 1.17 1.23 1.41
FS-3 125 100 150 35.6 0.56 1.00 247.4 1.07 1.09 1.19
FS-4 125 100 150 35.7 0.56 1.00 224.4 0.97 0.99 1.08
FS-5 125 100 150 38.0 0.37 1.00 198.1 1.08 1.15 1.15
FS-6 125 100 150 35.7 0.37 1.00 174.5 0.96 1.02 1.02
FS-7 125 100 150 36.6 0.37 1.00 192.4 1.06 1.12 1.12
FS-19 125 100 150 34.5 0.37 0.00 136.5 1.12 1.16 1.35
FS-20 125 100 150 37.0 0.37 1.00 211 1.06 1.10 1.10
FS-8 125 100 100 36.7 0.56 0.00 150.3 1.06 1.19 1.38
FS-9 125 100 100 35.6 0.56 1.00 216.6 1.06 1.12 1.26
FS-10 125 100 200 36.4 0.56 0.00 191.4 1.10 1.17 1.36
FS-11 125 100 200 34.2 0.56 1.00 259.8 1.07 1.11 1.11
FS-12 125 100 150 36.1 0.56 1.00 217.5 1.10 1.13 1.28
FS-13 125 100 150 33.5 0.56 1.00 235.5 0.96 0.99 1.00
FS-14 125 100 150 35.0 0.56 1.00 239.5 1.16 1.22 1.40
FS-15 125 100 150 31.2 0.56 1.00 238 1.12 1.13 1.26
FS-16 125 100 150 27.9 0.56 1.00 227.8 1.18 1.27 1.46
FS-17 125 100 150 46.8 0.56 1.00 268.4 1.20 1.23 1.40
FS-18 125 100 150 14.2 0.56 1.00 166 1.09 1.20 1.39

Alexander and Simmonds [7]
P11F0 155 132.7 200 33.2 0.50 0.00 257 0.95 0.98 1.15
P11F31 155 132.7 200 35.8 0.50 0.39 324 1.04 1.02 1.18
P11F66 155 132.7 200 35.0 0.50 0.84 345 0.98 0.97 1.04
P38F0 155 105.7 200 38.1 0.63 0.00 264 1.22 1.27 1.48
P38F34 155 105.7 200 38.4 0.63 0.43 308 1.21 1.21 1.40
P38F69 155 105.7 200 38.5 0.63 0.88 330 1.12 1.09 1.23

De Hanai and Holanda [29]
L1 100 80 80 23.1 1.56 0.00 137.2 1.10 1.14 1.31
L2 100 80 80 24.4 1.56 1.00 139.6 0.94 1.02 1.18
L3 100 80 80 28.1 1.56 2.00 163.6 0.89 1.00 1.16
L4 100 80 80 57.0 1.56 0.00 192.9 1.06 1.13 1.31
L5 100 80 80 59.7 1.56 1.00 215.1 0.98 1.07 1.24
L6 100 80 80 52.4 1.56 2.00 236.2 0.97 1.08 1.25
OSC S1 100 80 80 43.7 1.56 0.00 176.5 1.08 1.14 1.32
L7 100 80 80 36.6 1.56 0.75 182.5 1.12 1.20 1.38
L8 100 80 80 46.1 1.56 1.50 210.9 1.08 1.19 1.38

Swamy and Ali [5]
S-1 125 100 150 37.8 0.56 0.00 197.7 1.13 1.19 1.38
S-2 125 100 150 39.0 0.56 0.60 243.6 1.08 1.08 1.21
S-3 125 100 150 37.8 0.56 0.90 262.9 1.06 1.08 1.15
S-4 125 100 150 36.9 0.56 1.20 281.0 1.05 1.07 1.09
S-5 125 100 150 37.8 0.56 0.90 267.2 1.17 1.22 1.22
S-6 125 100 150 38.0 0.56 0.90 239.0 1.05 1.09 1.09
S-7 125 100 150 38.9 0.74 0.00 221.7 1.19 1.34 1.56
S-13 125 100 150 39.3 0.74 0.90 236.7 1.09 1.14 1.31
S-12 125 100 150 36.8 0.74 0.90 249.0 1.00 1.05 1.05
S-11 125 100 150 37.1 0.74 0.90 262.0 1.11 1.15 1.22
S-8 125 100 150 41.1 0.74 0.90 255.7 1.07 1.11 1.14
S-16 125 100 150 38.9 0.56 0.90 213.0 1.14 1.25 1.25
S-10 125 100 150 38.9 0.46 0.90 203.0 1.18 1.32 1.32
S-9 125 100 150 38.9 0.37 0.90 179.3 1.15 1.31 1.31
S-19 125 100 150 38.9 0.37 0.00 130.7 1.23 1.32 1.32

McHarg et al. [9]
NU 150 109 225 30.0 1.12 0.00 306.0 1.01 1.07 1.24
NB 150 109 225 30.0 2.18 0.00 349.0 1.08 1.24 1.44
FSU 150 109 225 41.5 1.12 0.50 422.0 1.12 1.15 1.32
FSB 150 109 225 41.5 2.18 0.50 438.0 1.12 1.22 1.39

Suter and Moreillon [30]
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Table A1 (continued)

Specimen h (mm d (mm) bc
a (mm) fc (MPa) q (%) qf (%) Vexp (kN) Vexp

VR;est1

b Vexp

VR;est2

c Vexp

VR;d

d

B1-01 120 90 60 99.0 0.87 0.00 262.0 1.12 1.21 1.41
B2-01 120 90 60 103.0 0.87 0.25 318.0 1.21 1.28 1.47
B3-01 120 90 60 108.0 0.87 0.51 343.0 1.16 1.20 1.37
B4-01 120 90 60 106.0 0.87 0.76 337.0 1.05 1.06 1.20
B5-01 120 90 60 107.0 0.87 1.02 369.0 1.05 1.05 1.17
B1-05 120 92 60 99.0 0.55 0.00 201.0 1.13 1.17 1.29
B3-05 120 92 60 108.0 0.55 0.51 286.0 1.22 1.26 1.26
B5-05 120 92 60 107.0 0.55 1.02 327.0 1.13 1.17 1.17
B1-06 120 88 60 99.0 1.29 0.00 252.0 0.95 1.04 1.20
B3-06 120 88 60 108.0 1.29 0.51 361.0 1.10 1.18 1.35
B5-06 120 88 60 107.0 1.29 1.02 402.0 1.05 1.10 1.24

Nguyen-Minh et al. [31]
A0 125 105 200 21.7 0.66 0.0 284.0 1.00 1.07 1.24
A1 125 105 200 22.3 0.66 0.4 330.0 1.04 1.11 1.28
A2 125 105 200 23.4 0.66 0.6 345.0 1.03 1.08 1.25
A3 125 105 200 25.3 0.66 0.8 397.0 1.10 1.15 1.32
B0 125 105 200 21.7 0.66 0.0 301.0 1.19 1.28 1.49
B1 125 105 200 22.3 0.66 0.4 328.0 1.17 1.22 1.41
B2 125 105 200 23.4 0.66 0.6 337.0 1.13 1.16 1.33
B3 125 105 200 25.3 0.66 0.8 347.0 1.08 1.09 1.25
C0 125 105 200 21.7 0.66 0.0 264.0 1.15 1.24 1.44
C1 125 105 200 22.3 0.66 0.4 307.0 1.19 1.24 1.43
C2 125 105 200 23.4 0.66 0.6 310.0 1.13 1.15 1.31
C3 125 105 200 25.3 0.66 0.8 326.0 1.00 1.09 1.24

Harajli et al. [8]
A1 55 39 100 29.6 1.12 0.00 58.8 1.05 1.08 1.25
A2 55 39 100 30.0 1.12 0.45 63.6 0.98 1.01 1.16
A3 55 39 100 31.4 1.12 0.80 73.1 0.99 1.03 1.18
A4 55 39 100 24.6 1.12 1.00 64.7 1.03 1.09 1.24
A5 55 39 100 20.0 1.12 2.00 58.3 0.86 0.91 1.04
B1 75 55 100 31.4 1.12 0.00 91.8 0.94 1.00 1.13
B2 75 55 100 31.4 1.12 0.45 105.9 0.94 1.02 1.16
B3 75 55 100 31.8 1.12 0.80 108.4 0.87 0.94 1.08
B4 75 55 100 29.1 1.12 1.00 108.8 0.96 1.04 1.19
B5 75 55 100 29.2 1.12 2.00 134.5 1.00 1.10 1.27

Yaseen [32]
S11 60 44 100 35.4 1.61 0.50 89.5 1.02 1.09 1.26
S12 60 44 100 49.1 1.61 0.50 102.5 1.02 1.09 1.25
S13 60 44 100 55.1 1.61 0.50 129.5 1.24 1.31 1.51
S14 60 44 100 65.1 1.61 0.50 141.0 1.26 1.34 1.54
S21 60 44 100 42.2 1.61 0.00 93.3 1.13 1.18 1.36
S22 60 44 100 48.8 1.61 0.25 98.0 1.04 1.11 1.28
S23 60 44 100 52.4 1.61 0.75 125.5 1.15 1.23 1.40
S24 60 44 100 53.3 1.61 1.00 138.0 1.19 1.26 1.44
S31 60 44 100 49.2 1.61 0.50 98.0 1.06 1.13 1.30
S32 60 44 100 49.2 1.61 0.50 100.0 1.06 1.13 1.30
S33 60 44 100 52.8 1.61 0.50 117.5 1.19 1.27 1.46
S34 60 44 100 49.5 1.61 0.50 110.0 1.13 1.21 1.40
S41 60 44 75 51.1 1.61 0.50 88.5 1.02 1.09 1.25
S42 60 44 150 50.8 1.61 0.50 135.0 1.05 1.10 1.27

Narayanan and Darwish [6]
S1 60 45 100 43.3 1.84 0.00 86.5 1.06 1.12 1.29
S2 60 45 100 52.1 1.84 0.25 93.4 0.99 1.06 1.22
S3 60 45 100 44.7 1.84 0.50 102.0 1.07 1.15 1.32
S4 60 45 100 46.0 1.84 0.75 107.5 1.05 1.13 1.29
S5 60 45 100 53.0 1.84 1.00 113.6 0.99 1.05 1.20
S6 60 45 100 53.0 1.84 1.25 122.2 1.00 1.06 1.21
S7 60 45 100 47.0 1.60 1.00 92.6 0.87 0.93 1.06
S8 60 45 100 45.3 2.08 1.00 111.1 1.00 1.08 1.24
S9 60 45 100 43.5 2.30 1.00 111.3 1.01 1.09 1.25
S10 60 45 100 47.6 2.53 1.00 111.3 0.96 1.03 1.19
S11 60 45 100 29.8 1.84 1.00 82.1 0.90 0.98 1.13
S12 60 45 100 32.4 1.84 1.00 84.9 0.90 0.98 1.12

Higashiyama et al. [16]
t100-0.67 100 70 100 24.6 0.85 0.67 137.5 1.20 1.18 1.36
t140-0.67 140 110 100 24.6 0.54 0.67 210.2 1.07 1.07 1.14
t180-0.67 180 150 100 24.6 0.40 0.67 297.6 1.07 1.07 1.07
t100-0.72 100 65 100 42.4 0.91 0.72 140.8 1.18 1.18 1.22
t140-0.72 140 105 100 42.4 0.57 0.72 213.2 1.04 1.04 1.04
t180-0.72 180 145 100 42.4 0.41 0.72 290.7 0.99 0.99 0.99
t100-0.91 100 65 100 21.6 0.91 0.91 120.8 1.15 1.16 1.33
t140-0.91 140 105 100 21.6 0.57 0.91 183.1 0.96 0.95 1.06

(continued on next page)
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as 4.15 N/mm2. Furthermore, the authors proposed a basic critical
perimeter b0,1.5d, initially located at distance of 1.5 times the col-
umn side from the column face.

B.2. Model by Harajli et al. [8]

Harajli et al. [8] derived an empirical equation to predict the
punching shear strength of SFRC slabs. In the expression proposed
the effect of the fibre type and the length to diameter ratio lf/df is
not explicitly taken into account.

Vu

b0;0:5dd
¼ ðfþ 0:096Vf Þ

ffiffiffiffi
fc

p
ðB:2aÞ

f ¼min

1
6 1þ 2

bc

� �

1
12

asd
b0;0:5d

þ 2
� �

1
3

8>>>>>>>><
>>>>>>>>:

ðB:2bÞ

Where bc is the ratio of long side-short side of column; and as is 40 for
interior columns, 30 for edge columns and 20 for corner columns.

B.3. Higashiyama et al. [16]

A design equation in accordance with the approach for shear
adopted in the Japanese standard specifications for concrete struc-
tures was recently proposed by Higashiyama et al. [16]. The design
equation considers the fibre pull-out strength vb and the perimeter
of the basic critical section b0 empirically modified by the fibre fac-
tor F, as proposed by Narayanan and Darwish [6].

Vu

bpf d
¼ bdbpbrðfpcd þ mbÞ ðB:3aÞ

fpcd ¼ 0:20
ffiffiffiffi
fc

p
6 1:2 MPa ðB:3bÞ

bpf ¼ b0;0:5dð1� 0:32FÞ ðB:3cÞ

bd ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1000

d
4

r
6 1:5 ðB:3dÞ

bp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
100q3

p
6 1:5 ðB:3eÞ

br ¼ 1þ 1
1þ 0:25b0;col=d

ðB:3fÞ

where b0,col is the perimeter of the column or loading pad and the
critical section is located at a distance of d/2 from the column face.

Appendix C

This appendix presents the development of the expressions for
the load–rotation relationship following a similar procedure as
that described in Muttoni [17]. For an isolated slab element it is as-
sumed that the deflected shape outside the critical shear crack is
conical. Thus, the curvature in tangential direction is

vt ¼ �
w
r

for r > r0 ðC:1Þ

In turn, the curvatures inside the shear critical crack may be as-
sumed constant and equal in both directions, so the deflected shape
in this region is spherical:

vr ¼ vt ¼ �
w
r0

for r 6 r0 ðC:2Þ

The internal forces described in Figs. 4b and c can be calculated
using the abovementioned curvatures and according to the
quadrilinear moment–curvature relationship. The main parameters
defining this relationship are the stiffness before and after cracking,
EI0 and EI1 respectively; the cracking moment mcr; the moment
capacity mR, and the tension stiffening effect vTS.

Before cracking, it is assumed a linear behaviour of the concrete
and the following terms are obtained neglecting the effect of the
reinforcement

EI0 ¼
Ech3

12
ðC:3Þ

mcr ¼
fcth

2

6
ðC:4Þ

� vcr ¼
mcr

EI0
¼ 2f ct

hEc
ðC:5Þ

After cracking and assuming linear-elastic behaviour of the steel
reinforcement and the concrete the following expression is obtained:

EI1 ¼ qbEsd
3 1� c

d

� �
1� c

3d

� �
ðC:6Þ

where c is the depth of the compressive zone:

c ¼ qb
Es

Ec
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ec

qbEs

s
� 1

 !
ðC:7Þ

and b is an efficiency factor that accounts for the orthogonal layout
of the reinforcement and the reduction in the ratio between

Table A1 (continued)

Specimen h (mm d (mm) bc
a (mm) fc (MPa) q (%) qf (%) Vexp (kN) Vexp

VR;est1

b Vexp

VR;est2

c Vexp

VR;d

d

t180-0.91 180 145 100 21.6 0.41 0.91 231.2 0.83 0.83 0.85
t100-0.63 100 70 100 27.8 0.85 0.63 152.3 1.30 1.28 1.45
t100-0.94 100 70 100 31.1 0.85 0.94 147.9 1.16 1.16 1.27
t100-1.03 100 70 100 30.4 0.85 1.03 158.9 1.24 1.24 1.35

Wang et al. [33]
S1 120 100 200 17.4 0.98 0.00 255.0 1.07 1.13 1.31
S2 120 100 200 19.6 0.98 1.00 290.0 1.08 1.15 1.33
S3 120 100 200 20.2 0.98 1.50 315.0 1.12 1.19 1.37
S4 120 100 200 15.0 0.98 1.00 285.0 1.17 1.26 1.45
S5 120 100 200 14.9 0.98 1.50 310.0 1.24 1.33 1.54

Average 1.08 1.13 1.27
COV 0.09 0.09 0.10
5% 0.94 0.98 1.05

a Length or radius of the loading pad.
b Refined model: VR,cal calculated using Eq. (1) for concrete contribution and Eq. (14) for fibres contribution. A quadrilinear moment–curvature relationship for the

reinforced concrete cross section was adopted.
c Simplified model: VR,cal calculated using Eq. (1) for concrete contribution and Eq. (16) for fibres contribution. Eq. (6) was adopted for the moment–curvature relationship.
d Design formulation: VRd,cal calculated using Eq. (17) for concrete contribution and Eq. (16) for fibres contribution. Eq. (6) was considered for the load–rotation relationship.
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torsional and flexural stiffness of the slab after cracking, with a va-
lue b = 0.6 proposed by Mutonni [17].

The moment capacity mR is calculated assuming a perfectly
plastic behaviour of the reinforcement after yielding, a rectangular
stress block for concrete in the compressive zone, an average ten-
sile strength of the FRC, and neglecting the effect of the compres-
sive reinforcement.

mR ¼ qd2fy 1� b1ðqfy þ fct2;f h=dÞ
2ðaccfc þ fct2;f Þ

� �

þ h2fct2;f

2
1� qfyd=hþ fct2;f

ðaccfc þ fct2;f Þ

� �
1þ qfyd=hþ fct2;f

ðaccfc þ fct2;f Þ
ð1� b1Þ

� �
ðC:8Þ

The decrease in the curvature due to the tension stiffening effect,
vTS, is considered as a constant contribution through the following
expression:

vTS ¼
fct

6qbhEs
ðC:9Þ

In turn, the curvatures v1 at the beginning of the stabilized cracked
regime and vy at yielding are given by:

� v1 ¼
mcr

EI1
� vTS ðC:10Þ

� vy ¼
mR

EI1
� vTS ðC:11Þ

The four segments that defined the quadrilinear moment–curvature
relationship correspond to four differentiated regions in the slab
shown in Fig. 4. Each of these regions may be determined and
delimited by the radiuses calculated substituting Eqs. (C.5), (C.10),
and (C.11) into Eq. (C.1):

A first zone within the reinforcement is yielding, plastic radius
ry:

ry ¼ �
w
vy
¼ w

mR

EI1
� vTS

6 rs ðC:12Þ

A zone in which cracking is stabilized, radius r1:

r1 ¼ �
w
v1
¼ w

mcr

EI1
� vTS

6 rs ðC:13Þ

and a zone up to which the concrete is cracking, cracking radius
rcr:

rcr ¼ �
w
vcr
¼ wEI0

mcr
6 rs ðC:14Þ

For the slab portion presented in Fig. 4c, the equilibrium equation
can be stated as:

V
Du
2p
ðrq � rcÞ ¼ �mrDur0 � Du

Z rs

r0

mu dr ðC:15Þ

where the radial moment mr at r = r0 is calculated according to the
quadrilinear moment–curvature relationship shown in Fig. 4a and
using the curvature given in Eq. (C2) Thus, the load–rotation rela-
tionship can be expressed as:

V ¼ 2p
rq � rc

�mrr0 þmRhry � r0i þ EI1w ln
r1

ry

� �	 

þ EI1vTShr1 � ryi

�

þmcrhrcr � r1i þ EI0w ln
rs

rcr

� �	 
�
ðC:16Þ

where the operator hxi is x for x > 0 and 0 for x 6 0.

Appendix D

The following symbols are used in the paper:

Ap horizontally projected area of the punching shear
failure surface

Ec modulus of elasticity of concrete
Es modulus of elasticity of reinforcement
EI0 flexural stiffness before cracking
EI1 tangential flexural stiffness after cracking
F fibre parameter (kblfqf/df)
Kf global orientation factor for the Variable Engagement

Model
V shear force
Vflex shear force associated with flexural capacity of the slab
VR punching shear strength
VRd design punching shear strength
VR,c concrete contribution to punching shear strength
VR,calc calculated punching shear strength
VRd,c design concrete contribution to punching shear

strength
VR,f fibre contribution to punching shear strength
VR,test measured punching shear strength
b0 perimeter of the critical section
b0,col perimeter of the column
bc Length or radius of the loading pad or column
bpf modified perimeter of the critical section in fibre

reinforced concrete slabs
c distance from extreme compression fibre to neutral

axis
d effective depth
df diameter of a fibre
dg maximum diameter of the aggregate
dg0 reference aggregate size
fc average compressive strength of concrete (measured

in cylinder)
fct,f tensile stress in fibre reinforced concrete
fspf ultimate split cylinder strength of steel fibre reinforced

concrete
fy yield strength of reinforcement
h depth of the slab
hc control distance from the soffit of the slab
kb bond coefficient
lf length of a fibre
mcr cracking moment per unit width
mr radial moment per unit width
mt tangential moment per unit width
mR nominal moment capacity per unit width
r radius
r0 radius of the critical shear crack
r1 radius of the zone in which cracking is stabilized
rc column radius
rcr radius of cracked zone
rq radius of load introduction at the perimeter
rs radius of isolated slab element
ry radius of yielded zone
xpl depth of the equivalent rectangular compressive stress

block
w critical shear crack opening
Du angle of a slab sector
acc factor that accounts for long term effects on the

compressive strength and unfavourable effects from
the way load is applied

(continued on next page)
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ae fibre engagement parameter for Variable Engagement
Model

af fibre aspect ratio lf/df

as constant related to the column location in the
structure

b efficiency factor of bending reinforcement for stiffness
calculation

b1 factor relating depth of equivalent rectangular
compressive stress block to neutral axis depth

bc ratio of long side-short side of column
j coefficient relating total rotation and critical crack

width opening
ks size effect factor
n distance (vertical) of a point with respect to the soffit

of the slab
mb vertical fibre pull-out stress
q reinforcement ratio
qf fibre reinforcement ratio (in volume)
rtf fibre bridging stress
sb bond strength
v1 curvature in stabilized cracking
vcr curvature at cracking
vr curvature in radial direction
vt curvature in tangential direction
vy yielding curvature
vTS decrease in curvature due to tension stiffening
w rotation of slab outside the column region
cc partial safety factor for concrete
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