Piezoresistive effect in epoxy-graphite composites

N. Serra, T. Maeder, P. Ryser

Laboratoire de Production Microtechnique, EPFL

nathalie.serra@epfl.ch, http://lpm.epfl.ch

Study of the piezoresistive response in thick-films made of epoxy-graphite

Important parameters: - particle size effect

- matrix effect on stability

→ Study of the creep of the sample

Experimental:

- •Bi-component composite:
 - \bullet Epoxy matrix: Epotek 377, Martens Plus \rightarrow critical property: glass transition temperature T_g
 - Filler: graphite with ellipsoidal shape and particle size of 4 and 15 μ m (95% of the particles have a major axis smaller than 4 μ m resp. 15 μ m), named KS4 and KS15

- Resistive thick-film Wheatstone bridge deposited on alumina substrate by screen-printing process \to calculation of the gauge factor (GF) longitudinal (GF $_{\! L})$ and transverse (GF $_{\! T})$
- Fabrication of longitudinal and transverse beams

Fig 1. Beams for longitudinal (left) and transverse (right) gauge factor

Particle size effect

Higher resistivity → higher GF

Tunneling effect: smaller *spherical* particles present more junctions leading in theory to a smaller GF

GF_{L 4 μm} > GF_{L15 μm}
can be explained by the morphological aspect (ellipsoidal) and the different aspect ratio being higher for the biggest particles [1]. For the same volumic concentration GF should be smaller

[1] Ambrosetti G. On the insulator-conductor transition in polymer nanocomposites, Thesis n°4612 EPFL, 2010

Matrix effect

Influence of T_g : Epotek 377: low T_g (~90°C) Martens Plus: high T_g (~200°C)

Fig 3, GF, at RT, 65°C and 100°C vs. Graphite (KS4) volumic concentration for Epotek 377 (a) and Martens Plus (b)

At $T \sim T_g$, dilatation of epoxy in z direction: matrix stiffness drops \rightarrow high strains in the composite leading to higher GF_L values [2]

High T_q epoxy, effects shifted = improved stability

[2] Grimaldi et al. Gauge factor enhancement driven by heterogeneity in thick-film resistor, Journal of Applied Physics 2001, vol 90

Creep:

For 1 cycle (unloaded/loaded/unloaded); for each epoxy, the same beam (longitudinal) is used at 25°C, 50°C and 80°C

Fig 4. Signal vs. time for 12% vol of graphite in Epotek 377 and Martens Plus at 25°C (a), 50°C (b) and 80°C (c

- Epotek 377: when T increases close to T_g (see graphs (b) and (c)), increase of the matrix dilatation: higher GF_L values and relaxation effects of the matrix \rightarrow strong instabilities in the signal (drifts)
- Martens Plus: not perfect but presents better stability regarding the creep (T_a)

Conclusion

Particle size has more effect than in resistivity measurements

Importance of T_g in thermomechanical stability and creep study \rightarrow Promising results for low-cost mechanical sensors

