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Abstract

Recently, several studies have started to explore covert visuospatial attention as a control
signal for brain—computer interfaces (BCIs). Covert visuospatial attention represents the
ability to change the focus of attention from one point in the space without overt eye
movements. Nevertheless, the full potential and possible applications of this paradigm remain
relatively unexplored. Voluntary covert visuospatial attention might allow a more natural and
intuitive interaction with real environments as neither stimulation nor gazing is required. In
order to identify brain correlates of covert visuospatial attention, classical approaches usually
rely on the whole «-band over long time intervals. In this work, we propose a more detailed
analysis in the frequency and time domains to enhance classification performance. In
particular, we investigate the contribution of « sub-bands and the role of time intervals in
carrying information about visual attention. Previous neurophysiological studies have already
highlighted the role of temporal dynamics in attention mechanisms. However, these important
aspects are not yet exploited in BCL. In this work, we studied different methods that explicitly
cope with the natural brain dynamics during visuospatial attention tasks in order to enhance
BCI robustness and classification performances. Results with ten healthy subjects demonstrate
that our approach identifies spectro-temporal patterns that outperform the state-of-the-art
classification method. On average, our time-dependent classification reaches 0.74 £ 0.03 of
the area under the ROC (receiver operating characteristic) curve (AUC) value with an increase
of 12.3% with respect to standard methods (0.65 % 0.4). In addition, the proposed approach
allows faster classification (<1 instead of 3 s), without compromising performances. Finally,
our analysis highlights the fact that discriminant patterns are not stable for the whole trial
period but are changing over short time intervals. These results support the hypothesis that
visual attention information is actually indexed by subject-specific & sub-bands and is time
dependent.

(Some figures may appear in colour only in the online journal)

1. Introduction both the visual responses elicited by external stimuli and the

excitability of their visual cortex in a fully endogenous way.

Covert visuospatial attention represents the ability to focus
attention at one point in space without overt eye movements
[1]. Recent studies have started to exploit covert visuospatial
attention as a control signal for brain—computer interface
(BCI). These studies demonstrated that subjects can modulate

1741-2560/12/045011+09$33.00

The former modality is mainly based on steady-state visual
evoked potential paradigms, where subjects are instructed
to focus their attention on lights flickering at predefined
frequencies. Although BClIs relying on external stimulation
may reach good classification accuracy [2, 3], these paradigms
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might be tiring and irritating, especially over long periods of
time.

A much more flexible and spontaneous approach is to
exploit voluntary covert visual attention whereby neither
stimulation nor gazing is required. This approach fits
especially well in a navigation task when BCI is used to control
devices (i.e. a telepresence robot or a wheelchair) in a natural
environment. In this framework, the BCI user could command
the device to turn by spontaneously orienting his/her attention
to a particular location in space.

Different neurophysiological studies have demonstrated
the involvement of a-band in voluntary visual attention tasks
[4-8]. Usually, subjects are instructed to focus attention at
one specific location in space indicated by a cue. The related
synchronization of the ¢-band in the parieto-occipital regions
seems to reflect an inhibition mechanism in the retinotopical
spatial organization of the visual cortex. In particular, Rihs
et al [6] demonstrated that this behavior is highly selective and
topographically specific with respect to the attended locations
(e.g., in the case of two lateralized locations, an ipsilateral «
synchronization occurs in order to suppress irrelevant stimuli
in the unattended side of the visual field). BCIs based on
covert visuospatial attention exploit these changes in «-power
in order to discriminate over two or more attended locations
[9-11].

Nevertheless, the full potential of this BCI paradigm
remains relatively unexplored. In fact, standard methods do
not take into consideration the possible modulations of «
sub-bands, nor the time evolution of the signals after the
instructional cue.

The aim of this study is to compare different analysis
methods to exploit covert visual attention in BCI. Therefore,
we propose four different analysis approaches. Starting
from the standard method, firstly we increase the frequency
resolution within the w-band. The intuition is that only sub-
bands are carrying discriminative information as is the case
of sensory-semantic and memory processes [12] and the
modulation of p-rhythms during motor imagination tasks
[13]. To our knowledge, this is the first time a voluntary
modulation of o sub-bands has been taken into account
for covert visuospatial attention. Secondly, we hypothesize
that attention-related patterns are evolving over time and
consequently a time-dependent approach would enhance
BCI performances. Previous neurophysiological studies have
already highlighted the role of temporal dynamics in attention
mechanisms [7, 14—19]. However, these important aspects are
not yet exploited in the current BCI systems. In this work, we
studied different methods that explicitly cope with the natural
brain dynamics during visuospatial attention tasks in order to
enhance BCI robustness and classification performances.

2. Data collection

2.1. Participants

Ten healthy volunteers (age 27.6 £ 1.7; three female; eight
right handed) participated in this study. All participants had
normal or corrected-to-normal vision. No attention problems

have been reported. Subjects did not have any previous
experience with covert visuospatial attention paradigms. The
study was approved by the local ethics committee and carried
out in accordance with the principle of the Declaration of
Helsinki.

2.2. Visual paradigm and task

In this study, we exploited a visual attention paradigm based
on two target locations (left and right). A white fixation cross
in the middle of the screen (size 3.12°) and two circles
(to-be-attended locations) at the bottom-left and bottom-
right positions (distance 12°, size 3.12°) were displayed
continuously. At the beginning of each trial, participants were
instructed to gaze at the fixation cross. After 2000 ms (fixation
period), a green symbolic cue (size 3.12°) appeared at the
middle of the screen for 100 ms (cue period). The participants
had to focus their attention on the to-be-attended location
indicated by the cue, without moving the eyes (covert attention
period). After a random time between 3000-5000 ms, a red
target (size 3.12°) appeared always at the correct target location
for 1000 ms (farget period) to inform participants of the trial
end. No additional discrimination task was required on the red
target. Participants were instructed to blink (if necessary) only
after the target appeared. Note that in this work we restricted
the analysis period until 3000 ms after the cue in order to avoid
any visual evoked stimulation. Figure 1 shows the schematic
representation of the protocol with the time intervals adopted.

The visual layout was based on previous works both
in neurophysiological [6, 7, 20] and in BCI studies [9-11].
Specifically, the choice of the target positions (angle and
distance) was made to exploit the retinotopical organization
of the visual cortex to obtain robust scalp signals [21].

Each participant performed a total of 200 trials in five
different runs on the same day (session). The mean duration of
each run was 6.06 £ 0.14 min. After each run, participants had
a break of 5 min. Equal numbers of stimuli for both classes
(left and right) were randomly presented.

2.3. Electrooculogram artifact removal

The electrooculogram (EOG) was recorded by means of three
electrodes: two placed either side of the eyes and one at
the glabella. Vertical and horizontal EOG components were
computed with a bipolar derivation in the frequency range of
1-7 Hz (Butterworth filter, order 3). We manually discarded
trials where any of the two EOG components had an amplitude
higher than 50 V. The average number of discarded trials
across subjects was 15.6% =+ 7.8% (equally distributed over
the two classes and runs).

2.4. EEG data acquisition and processing

Signals were acquired with an active 64-channel EEG system
(Biosemi, Amsterdam, Netherlands) at 2048 Hz. The 64
electrodes were placed according to the standard international
10-20 system. Data were downsampled at 512 Hz and the
dc component was removed. A Laplacian spatial filter was
applied to the data in order to highlight the activity of the local
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Figure 1. Schematic trial representation. The fixation period starts 2000 ms before the cue. The cue (100 ms duration) indicated the side
where to focus attention. After 3000-5000 ms, the circle corresponding to the correct target location becomes red (for 1000 ms). The
analysis period lasted for 3000 ms. In the figure, the cue and the red circle are larger than in reality for visualization purposes.

sources. We used a configuration based on eight neighbors
weighting the contribution of each neighbor according to
the distance from the target electrode. The aforementioned
montage represents an extension of the standard Laplacian
configuration reported in the literature [22]. Afterward, in each
trial we selected the analysis period (up to 3000 ms after the
cue, see figure 1). No baseline correction was computed on the
signals.

In order to analyze the «-band in more detail (compared
to the literature), we applied seven narrow band-pass filters
(Butterworth filter, order 4, 3 Hz band window) centered at
the frequencies at integer values between 8 and 14 Hz. Based
on the literature [5-7, 20], we preselected channels in the
parieto-occipital regions of the brain (electrodes P7-8, PO7-8,
0O1-2). For each frequency-channel pair (defined as a feature),
we computed the envelope of the signal by using the absolute
value of the Hilbert transform.

3. Methods

The role of the «-power in covert visual attention tasks
has already been reported in many works [5, 6, 10, 23].
Previous analyses only considered the whole «-band and
whole attention period (time independent) in order to classify
visual attention tasks. The main aim of this work is to
understand how features evolve over time and to explore
different approaches to increase classification accuracy of this
specific mental task. In this section, we first present the analysis
and the statistical validation of the temporal evolution of the
features. Secondly, we describe the peculiarities of the four
different proposed approaches. Finally, we report the feature
selection and classification methods applied for each of them.

3.1. Feature evolution over time

Despite grand average studies that show a constant ipsilateral
activation over the whole trial period, this might not be the case
for single trial analysis. A key aspect is to understand how the
most discriminant features evolve over time and if it is possible
to identify intervals sharing common patterns. First of all, for
each frequency-channel pair, we used the Fisher score value in
order to identify the most discriminant features over the two
classes (left and right visual attention) sample by sample and,
for each sample, we selected those features that contributed
at least 15% to the overall sum. This procedure allowed us to
identify the sets of most discriminant features over the whole

trial period. Then, in order to study the stability of a given
set, we defined a consistency index that compares the set of
features selected at time ¢, 2, with those selected in the rest
of the trial ; (with j # t). Given a set £2,, the consistency
index p; is computed for each time point, or sample, based on
the formula

| N

1€2|

The index p; shows the proportion of features selected at time
t that recurs in the rest of the trial. More generally, it describes
temporal clusters that share a common set of discriminant
features.

We validated the most prominent clusters (time intervals
sharing at least half of the discriminant features) with a non-
parametric statistical test [24]. Random data were generated
from multivariate uniform distributions for the two task
conditions (attending left and right) for all channels and
frequency bands. The same procedure applied for real EEG
data was used to select the most discriminant features at each
time point on this random dataset. Clusters were selected
based on adjacent pixels with a p value greater than 0.5 (sets
sharing half of discriminant features). For each cluster, we sum
its weight. We performed 500 repetitions of this procedure.
The largest cluster sum was taken for each repetition to
obtain an empirical random distribution of the cluster weights.
Finally, only those clusters from the EEG data whose weights
were above 99% of the random distribution were considered
statistically relevant (p < 0.01).

pr = M

3.2. The four different approaches

Firstly, we studied the contribution of & sub-bands in carrying
visual attention information, by increasing the resolution in
the given frequency range. Secondly, we focused on the
evolution of the features over time. Splitting the attention
period into consecutive, non-overlapping, windows (of 150 ms
[14]) allowed us to perform a time-dependent feature selection
and classification. In particular, the selected window length
ensured at least one complete oscillation of each analyzed
frequency, i.e. 1.2 and 2.1 oscillation cycles at the lowest
(8 Hz) and highest (14 Hz) frequency bands. By comparing the
different approaches, we expect to have a better understanding
of the best method to classify covert visuospatial attention.
Table 1 summarizes the four different approaches
explored in this study. In the case of A0, we replicated the
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Figure 2. Data were processed in order to extract the envelope of
the signal in seven « sub-bands. Trials with EOG activity were
discarded. The dataset was split in training and test set with a
five-fold cross validation. According to the approach (A0-A3)
frequency and time averaging (*) was performed independently on
the training and test set. The training set was used to select the most
discriminant features and to train the classifiers. Finally, the test set
was used for performance evaluation.

Table 1. The four different approaches studied in this work. Whole
period refers to analysis computed for the entire attention period
(0-3000 ms). Time windows correspond to analysis computed
separately for each interval. In the case of A0, an additional
frequency average was performed.

Frequency  Feature Classification Classification
resolution  selection training testing
A0 o«-band Whole period Whole period Whole period
Al o sub-bands Whole period Whole period Whole period
A2 « sub-bands Whole period Whole period Time windows

A3 « sub-bands Time windows Time windows Time windows

standard method generally used in the literature, where we
computed one single feature per channel representing the
whole a-band power over the whole attention period [9, 10]. In
this approach, any time information was discarded. In A1, we
performed a more detailed frequency analysis (seven o« sub-
bands) while keeping the same time window for comparison
purposes. In A2, we still used the whole attention period for
selecting features and training the classifier as in A1. However,
we investigated the performances of this classifier if tested
on different time windows. Finally, in A3 we used a fully
time-dependent approach by selecting features and training
the classifier for each time window.

To test the different approaches we did a five-fold
cross validation where the dataset was split five times into
80% for feature selection and training and 20% for testing.
The independence between training and testing sets ensured
avoiding the circularity problem [25]. Figure 2 illustrates
schematically the analysis method. The following sections
provide more details about each step.

3.3. Feature selection and classification

First of all, we computed the Fisher score value of each feature
in the whole attention period (approaches A0, Al and A2) or
in different time intervals (approach A3). The features that
contribute more than 15% to the overall sum (of the whole
attention period or of each time interval) were selected as input
for classification. Note that for AO, A1 and A2, the selection
was totally time-independent since data were averaged over
the whole trial period (0—3000 ms). Conversely, in the case of
A3, we performed a separate time-dependent selection in each
time window (150 ms).

The features selected in the previous step were used
as an input to a quadratic discriminant analysis (QDA)
with a diagonal covariance matrix estimation. For the time-
independent approaches (A0, Al and A2), one single classifier
was trained with data of the whole attention period and tested
globally (A0, A1) or locally (A2) in each time window. In the
case of the fully time-dependent approach (A3), we trained a
separate classifier for each time window. Then each classifier
was tested separately in its own interval. The dimensionality
of the classifiers was equal to the number of features selected
(see table 3) and varies across subjects, approaches and time
windows (in the case of approach A3).

In order to evaluate classification performances under the
different conditions, we used the area under the ROC (receiver
operating characteristic) curve (AUC) value and its standard
error computed according to [26]. In the case of A2 and A3,
we computed the AUC per window in order to evaluate the
classifier(s) response in each time interval.

4. Results

In this section, we first present the time evolution of signals
during the visual attention period averaged across subjects.
Secondly, we report the evolution and consistency over time
of the discriminant features. Finally, we compare the number
of features selected and the classification results for the four
aforementioned methods (A0, A1, A2, A3).

4.1. Grand average behavior

Topographic maps in figure 3 show the evolution of the
envelope of the signal (grand average over all subjects) in
the o-band for different time windows. The maps represent
the difference between the two conditions (focusing attention
on the right versus left targets). An ipsilateral synchronization
with respect to the mental task is evident in the parieto-occipital
regions. The synchronization appears from 600 ms after cue
and holds until the end of the attention period (3000 ms). The
activity appears to be strongly lateralized. Table 2 depicts the
p-values computed using a paired-sample #-test under the two
conditions (left and right attention) for each time interval and
channel. Statistically significant differences for most of the
channels occur from 600 ms after the cue. These results are in
line with previous studies [6, 7, 10, 23].
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Figure 3. The evolution of the envelope of the signals in the «-band (814 Hz). The topographic maps represent the difference between two
attention conditions (attending to the right or to the left) in six different time windows. The signals were averaged across subjects.

Table 2. The evolution of the p-values computed using a paired-sample #-test under the two conditions over the trial period and for a subset
of parieto-occipital channels. Statistically significant results are reported in bold.

Time intervals (s)

Channels —03t0 —0.15 0.0-0.15 0.6-075 09-1.05 18-195 2.7-2.85
PO7 0.24 041 <005 <005 <005  <0.05
PO3 0.73 012 <005 <005 <005  <0.05
ol 0.64 0.06  <0.05 0.07 0.39 0.09
POz 0.37 022 <005 <005 <005  <0.05
oz 0.58 0.42 0.55 0.08 012  <0.05
02 0.34 064 <005  <0.05 042  <0.05
PO4 0.51 0.11 021 <005 <005  <0.05
POS 0.14 <0.05 <005 <005 <005  <0.05

4.2. Feature evolution over time

Figure 4 depicts the consistency index for each subject, which
reflects the proportion of features in a given set (vertical axis)
that are also present in other time points. Values are normalized
between 0 (blue) and 1 (red). As shown in figure 4, sets of
features are clustered in time intervals. Statistically significant
clusters (p < 0.01) are highlighted with a black border. The
non-parametric statistical test has been performed with respect
to set of features selected from random data.

The first and most important outcome is that none of
the subjects showed a stable set of discriminant features over
the whole trial period. In fact, for all subjects only short
time intervals where features are consistent can be identified.
Interestingly, these intervals seem to have different lengths and
occur at different times across subjects. Furthermore, features
selected later (after ~1500 ms) are generally stable until the
end of the trial (i.e. subjects s1, s4 and s6). For instance, for
subject s1 the set of features selected at t = 1000 ms (vertical
axis) are highly discriminant only for a short interval centered
at this time point. In addition, features selected at t > 2000 ms
are consistent until the end of the trial (along the horizontal
axis). Conversely, for subject s10 the feature discriminability
presents a different temporal dynamic. In fact, for this subject
only short time windows sharing the same features can be
identified in the whole trial period (0-3000 ms). This behavior
is in line with previous studies [6, 9, 10].

These findings support our hypothesis of an evolving
pattern during a visual attention task, which represents the
main motivation for a time-dependent approach.

Table 3. Minimum, maximum and averaged number of features
selected across subjects and approaches. In the case of A3 each
window within the trial period was considered. The total number of
possible features before selection was 17 (number of channels) for
AQ and 119 (channels x frequency bands) for the other approaches.

No. of selected features

Minimum Maximum Average
A0 1 3 1.9
Al 7 13 9.7
A2 7 13 9.7
A3 7 8 7.9

4.3. Number of features selected

The number of selected features varies across subjects and
approaches. Table 3 illustrates the minimum, maximum and
average number of features selected in each approach. In
particular, for A3 each time window is considered. Note that in
the case of AQ, the original number of features was 17 (number
of channels) while for the other approaches was 119 (channels
x frequency bands). Since the number of features determines
the dimensionality of the classifier, it is worth noting that the
number of features after selection is similar for approaches
Al, A2 and A3.

4.4. Comparison of classification performances

In figure 5, we report the comparison for the four
aforementioned methods. In the case of A2 and A3, where
we tested the classifiers over time windows, the maximum
AUC is reported. The first outcome is that just by increasing
the frequency resolution (from AO to Al) AUC reaches
on average 0.70 + 0.04, corresponding to an increase of
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Figure 4. The consistency over time of the sets of selected features. The color code reflects the degree to which two samples share common
features. Blue means that no features are in common; red means that the two samples are sharing the same features. The value is normalized
between 0 and 1.
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Figure 5. AUC comparison between the four different approaches (AO—A3) for each subject with the standard error. Maximum AUC over
time is reported for A2 and A3 approaches.
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Table 4. Comparison of averaged performances, with standard error,
for each approach with respect to the others. Columns represent the
reference approach, rows the compared one. Positive values
correspond to an increment in classification performances measured
by AUC. Increments indicated in bold are statistically significant

(p < 0.05).

A0 Al A2

Al 6.5% + 2.7%
A2 5.0% £ 4.4%
A3 12.3% £2.3%

—1.5% £ 2.4%

56% +£19% 7.7% +2.6%

6.5% =% 2.7%. Individually, the increment can be more
dramatic as in the case of s3, s4, s7 and s10 where we report a
gain of 11.9%, 16.6%, 12.5% and 22.0%, respectively.

Furthermore, our results demonstrate that a fully time-
dependent approach (A3) achieves the highest performances.
The best AUC is observed for subject s6 (0.86+0.03) and the
worst for s10 (0.59£0.05). As depicted in figure 5, approach
A3 improved the performance of every subject compared to
the current state-of-the-art approach AQ. On average, the AUC
value reaches 0.74+0.03 with an increase of 12.3% =+ 2.3%.
Table 4 reports the averaged gain of each method with respect
to the other approaches in more detail.

Itis worth noting that the performance of A3 is statistically
superior to all other methods. Likewise, the difference in
the performance of Al with respect to AO is statistically
significant. The comparison has been validated with a paired,
two-side Wilcoxon statistical test (p < 0.05).

In figure 6(a) we present the time evolution of the AUC in
the two time-dependent approaches A2 and A3 averaged across
subjects. Both curves quickly increase in the first second and
stabilize for the rest of the attention period. With approach
A3 the AUC reaches a higher value (as already expected
from figure 5) but in less time. The performance increment
of approach A3 is statistically significant.

In figure 6(b) we show the time needed for approaches
A2 and A3 to reach the same AUC level as approach AQ. Also
in this case, the fully time-dependent approach is more than
2 s faster (on average) with respect to the whole classification
period (approach A0). In other words, we can reach the same
level of performance as in the literature, within only 1 s instead
of 3 s. This provides further evidence that time-dependent
classifiers can capture better and faster the evolution of the
signals in a visual attention task.

5. Discussion

In order to determine the best method for single trial
classification of covert visuospatial attention we have
compared four different approaches. Starting from a classical
approach where data have been studied in the a-band (8-
14 Hz) and in a broad time period, as in the literature
[4-6, 8-10, 20], we performed a more detailed analysis in
both time and frequency domains in order to better investigate
the evolution of the patterns involved in visual attention tasks.

Analysis on the grand average (figure 3) shows an
ipsilateral increment of the a-power in the parieto-occipital
regions, which is coherent with the literature [5, 6, 10].

However, the comparison between A0 and Al suggests
that only selective sub-bands of the whole «-band are
discriminative and informative for classification. Based
on these findings, we hypothesize that the well-known
contribution of «-power during attention represents, in fact,
a voluntary modulation of particular @ sub-bands. Although
many works studied covert visual attention mechanism in the
broadband frequency range (from §- to y-bands) [27-31],
to our knowledge this is the first time sub-bands of « are
examined separately. Moreover, these results are in line with
previous neurophysiological studies on the role of individual «
frequencies in sensory-semantic and memory processes [12].

Increasing frequency resolution is not the only way to
reach better classification performances, as demonstrated by
approaches A2 and A3. Time evolution of the signals seems to
play a significant role in visual attention tasks. Evidence from
different studies [7, 14—19] seems to identify temporal aspects
in visual attention mechanisms. In particular, two temporal
phases are generally highlighted in these works: shift and
sustained attention phases. Analysis on the feature distribution
over time (figure 4) supports this conclusion. First of all, none
of the subjects exhibited any set of features that were stable for
the whole trial period. Second, for most of the subjects (i.e. s1,
s2, s4, s5, s6, s7) late periods in the trial are characterized by
more consistent discriminant features, which may correspond
to the sustained phase of attention. Nevertheless, in figure 4 we
show the possibility of identifying even earlier time intervals
with stable patterns in most cases (e.g., for subjects s1-8),
probably related to the shift of attention. Furthermore, our
temporal analysis gives us the possibility of tracking the
patterns evolution also within these rather stable phases (as
in the case of subjects s1, s4 and s6). We can hypothesize that
these intervals of stability reflect the natural time-course of a
top—down visual attention task [7, 16, 32]. Future work will
be devoted to the study of the nature of these stable features
in order to verify the temporal involvement of specific « sub-
bands and brain regions.

The possibility of identifying different phases during
covert visuospatial attention tasks supports our intuition
of a time-dependent approach for feature selection and
classification. In fact, our classification results suggest that A3
can track data evolution over time better than other approaches,
yielding a higher classification performance in less time.
Moreover, the selection of optimal time windows (subject
by subject) might further enhance performance. In fact, as
shown in figure 4, time intervals with stable features can have
different length and occur at different times. Similarly, the
best classification intervals are specific for each subject. We
hypothesize two reasons for this: on one hand it might depend
on different visuospatial paths followed by subjects to reach
the final locus of attention (target location). This hypothesis is
supported by the well-known retinotopical spatial organization
of the visual cortex [6, 9, 11]. On the other hand, it may be
due to the individual’s ability to maintain attention over long
periods of time. As a matter of fact, figure 4 shows that only
four subjects out of ten are able to generate discriminable
and consistent features at the end of the trial (s, s4, s6
and s7). Nevertheless, the classification accuracy reported in
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Figure 6. (a) Time evolution of the AUC for A2 and A3 approaches. The AUC is averaged across all subjects and standard error is reported
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figure 5 shows that our time-dependent approach A3 can deal
with possible fluctuations of attention better than standard
approach AO.

In addition, both temporal analysis and classification
performances show that our approach is not biased by the cue
stimulus. In fact, in figure 4 none of the subjects presents early
intervals (before ~500 ms) with significant stable features.
Moreover, the best classification intervals occur only after
~500 ms of the beginning of the trial (figure 6). These results
support the robustness of our method with respect to evoked
potentials driven by the cue stimulus.

Generally, the average increase in performance of our
time-dependent approach A3 (12.3 £ 2.3% with respect to
AQ) is a fundamental improvement, which could allow covert
visual attention to be used as a viable control signal for BCIL.
In addition, the described method is fully compliant with the
requirements for an online implementation. Moreover, the
short time (30 min on average) needed to train a subject is
in line with other classical BCI paradigms using voluntary
modulation of brain activity (i.e. p-rhythm modulation for
motor imagery-based BCI [33, 34]). The next challenge is to
demonstrate that subjects can learn how to better modulate
their o activity over sessions. This learning effect was
demonstrated in classical motor imagery BCIs [35-37], but
there is currently no evidence in the literature for covert visual
attention.

A fully time-dependent approach such as A3 seems to be
the best method for covert visuospatial attention classification.
However, the main drawback of this approach is that it
is designed to fit synchronous protocols, since the time
localization plays an important role for classification. This
might be a limitation in some BCI applications where a
continuous and asynchronous control is required (i.e. brain-
controlled robots and neuroprostheses [33, 34, 38, 39]).
Nevertheless, our fully time-dependent approach (A3) can
still be applied in asynchronous paradigm where subject’s
attention is cyclically forced back to the center of the screen
after delivering each mental command. This solution allows
us to cope with the natural brain dynamics in visuospatial

attention task ensuring high classification performances and
without compromising the continuous control required by the
application.

6. Conclusion

This study suggests that single trial classification of covert
visuospatial attention may be enhanced by a more detailed
analysis both in the frequency and time domains. We
propose a new method that relies on « sub-bands and
time-dependent classification. For the first time, we have
demonstrated that modulations of « sub-bands during covert
visuospatial attention can be successfully exploited to increase
BCI classification accuracy. Moreover, our time-dependent
approach can capture the temporal dynamics of visual attention
already reported in the literature. In this respect, this method
allows the decoding of visual attention despite the fact that
the subject cannot sustain stable patterns of brain activity
over the whole attention period. Finally, this approach assures
good classification performances for all subjects and—more
importantly—leads to an increase of 12.3% (on average) with
respect to classical methods reported in the literature.
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