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Abstract Computer simulations of biomolecules such as molecular dynamics
simulations are limited by the time scale of conformational rearrangements. Several
sampling techniques are available to search the multi-minima free energy landscape
but most efficient, time-dependent methods do generally not produce a canonical
ensemble. A sampling algorithm based on a self-regulating ladder of searching cop-
ies in the dihedral subspace is developped in this paper. The learning process using
short- and long-term memory functions allows an efficient search in phase space while
combining a deterministic dynamics and stochastic swaps with the searching copies
conserves a canonical limit. The sampling efficiency and accuracy are indicated by
comparing the ansatz with conventional molecular dynamics and replica exchange
simulations.
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1 Introduction

Sampling the conformational variability of biomolecules permits to better understand
their underlying functions. Molecular dynamics (MD) simulations are often preferred
to stochastic sampling methods such as monte carlo because the connection in time
of the sampled configurations allows us to ascertain time-dependent properties such
as characteristic correlation functions derived from experiments.
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The time step in molecular dynamics simulations needs to be of the order of the
highest frequency motion which for molecular systems correspond to 10−15 s (vibra-
tion of covalent bonds). The dynamics of biomolecules is characterized by diverse
regimes of time scale going up to the second for the smooth bending of nucleic
acids (Mesirov et al. 1996) or the folding of proteins (Thirumalai 1995). In addition,
most degrees of freedom are highly discontinuous in relation to combined rotamer
preferrences (Gauche+, Trans, Gauche−) and to hard-core repulsion between atoms.
As a result, biomolecular free energy surfaces are rugged and highly anisotropic, with
many maxima, minima and saddle points, implying a frequent kinetic trapping into
its sub-minima (Beveridge et al. 2004). The small time step thus prevents the capture
of many facets of biomolecular complexity from a continuous molecular dynamics
trajectory, i.e. there is a time scale problem.

The lack of ergodicity due to kinetic trapping at room temperature can be reduced
by the methods of replica (Hansmann 1997; Fukunishi et al. 2002), where stochastic
exchanges of conformation with replicas of the system that run simultaneously but
with a faster dynamics (increased temperature, Hansmann 1997 or artificially modi-
fied energy function, Fukunishi et al. 2002; Curuksu et al. 2009) provide new starting
points on the energy surface.

An important question then is how to get some good starting points efficiently. On
one hand the method becomes prohibitively time consuming when using a non specific
increase of the dynamics (temperature) in the searching-replicas. On the other hand,
using a specifically modified potential energy function may increase the dynamics
only for some kinetically trapped conformations, and be inefficient for others.

In this paper, a method taking full advantage of the replica exchange formalism
is derived using a sampling based on learning (Glover 1989), where the ladder of
replicas (with a modified energy function) collects sufficient information from the
target-replica to propose adapted solutions when this target replica is trapped.

This is made possible by tracking the current sampling of dihedral rotamers in the
target replica and recording its cumulative history. The sampling scheme has been
implemented and compared with different procedures for learning in the searching
replicas on a dinucleotide nucleic acid system. The robustness of the method is indi-
cated by an accurate sampling of dihedral clusters after short simulation time when
compared to converged reference simulations. An increase in sampling efficiency
more than 10-fold is obtained when compared to a conventional molecular dynamics
simulation and non-specific (temperature) replica exchange simulations. In larger bio-
molecular systems the method can be applied to mutiple dihedral angles to promote
global conformational rearrangments. This is illustrated by the study of a small poly-
peptide where all φ/ψ backbone dihedral angles in the central 10-residues segment
are scaled and define the adaptive replica coordinate.

2 Background

Some early adaptive sampling techniques consisting in recognizing conformations
sampled before were based on the iterative update of an umbrella potential, using
the weighted histogram analysis method (Kumar et al. 1992) in the course of the
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simulation. An adaptive umbrella sampling algorithm (Bartels et al. 1997) using the
potential energy as the umbrella parameter (formally equivalent to multicanonical
sampling, Berg et al. 1991; Wang et al. 2001) was developed to uniformly sample
the potential energy surface (PES). Due to the non-specific restraint and the iterative
procedure, a long convergence time is a natural drawback for complex systems. Even
after convergence residual free energy barriers may impede fast transition between
important conformational states (Bartels et al. 1997). In that case, selecting parame-
ters in the potential energy function to explore a specific conformational subspace is
a useful solution. Adaptive biasing force schemes go into this direction (Darve et al.
2001; Henin et al. 2010).

Learning processes during MD, consisting to deform the PES or FES (free energy
surface), were also pioneered by the local elevation method (LE, Huber et al. 1994)
where Gaussian potentials are cumulated to penalize conformations previously visited.
The amplitude of the restraint is updated proportionally to the number of time a param-
eter set (dihedral values in Huber et al. 1994) has been sampled before. Metadynamics
(Laio et al. 2002) raises energy wells based on the effective FES as the simulation
proceeds and permits to estimate the (imaged) FES once the simulation converges
–see also self-healing umbrella sampling (Marsili et al. 2006).

Self-modification of the energy surface during MD can also consist in introducing
biasing potentials in the PES such that the surface near a minimum is raised (Hyperdy-
namics, Voter 1997) and the surface near a barrier or saddle point is left unaffected (or
lower as in Gao et al. 2006). Hyperdynamics hence evolves as the simulation proceeds
without any advanced knowledge of the hypersurface shape. However it requires either
to calculate the Hessian matrix or to minimise its first derivatives numerical approxi-
mation at each step (Voter 1997). This can be avoided by relying on a threshold boost
energy value and preset biasing potentials as in accelerated MD (Hamelberg et al.
2004). Still these two parameters have to be fine tuned using short pre-production runs
and thus cannot guarantee an optimal sampling.

Multicopy search based techniques are a common way to improve sampling and
a self-regulating conformational sampling on the PES was developed (Bitetti-Putzer
et al. 2006) by propagating replicas of an identical system which compete against each
other. To do so Bitetti-Putzer et al. made the replicas share a history dependent vari-
able, i.e the PES deformation operator, and its sum over all replicas was subject to a
holonomic constraint. Methods based on the exchange of conformations between some
parallel replicas (Hansmann 1997), and hence exchange of the thermodynamic states,
are also attractive compared to other generalized ensemble approaches because no
pre-production runs are required for the determination of the replica weight factors.
Moreover a Boltzmann-weighted distribution should be obtained in one (unbiased)
replica. The method becomes prohibitively time consuming if temperature is used as
the replica coordinate (as in Hansmann 1997). In contrast a non-ergodic sampling can-
not be avoided if very specific parameters of the energy function are used as the replica
coordinate (Fukunishi et al. 2002). For these reasons, the unbiased replica (target tem-
perature and unmodified force field) may better be seen as a client in a scheme where
the replica ladder responds effectively as a function of the current state and history
recorded in the unbiased replica. The goal of the current development is to propose
a self-regulatory scheme with enhanced transition in the dihedral angle distribution
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function. This function is broadly defined, i.e. it can include all or just a subset of
dihedral angles. The lost of efficiency on searching the entire conformational space,
compared to competing replicas on the PES (Bitetti-Putzer et al. 2006), is replaced by
a faster search on the dihedral phase space.

Dihedral angles have already been used to define a coarse grain phase space in
molecular dynamics simulations related to peptide folding and refinement (Chen et al.
2005) and as simple constraints to successfully fold a protein (Ripoll et al. 2004).
They were also used in recent replica exchange simulations to induce global confor-
mational rearrangments such as protein folding (Kannan et al. 2009) and DNA bending
(Curuksu 2009).

3 Theory and method

3.1 Deterministic dynamics

In biomolecular simulations, classical dynamics can be described by the Hamiltonian
or Newtonian approach because the potential energy U depends only on cartesian
coordinates. As an alternative to stochastic sampling of all-atom systems such as
monte carlo approaches, the molecular dynamics algorithm uses the classical Newton
equations of motion to solve deterministically the dynamics of these systems.

For a large number of atoms a numerical integration of Newton equations has to be
carried-out using a finite difference approximation, e.g. the Verlet algorithm

q(t + δt) = 2q(t) − q(t − δt) + q̈(t)δt2 + O (δt4) (1)

where q̈(t) is computed from the matrix of forces acting on each atom in three dimen-
sions and thus depends on the chosen expression U for the force field. From the
definition of entropy and the equipartition theorem, it is straightforward to show that
the state-probability of a molecular system with a given volume and coupled to an
infinite heat reservoir at temperature T is proportional to the Boltzmann weight

wB(q, p) = e−H(q , p)/kB T (2)

where H is the Hamiltonian (total energy) function and kB is Boltzmann constant.
However, the trajectory generated by Newtonian dynamics implies the existence of
a stability function L(t0 → t) that characterizes a time evolution of the probability
density function ρ in phase space, noted ρt (q, p)

ρt (q, p) = L(t0 → t).ρ0(q, p) (3)

and the Liouville theorem asserts that the total time derivative of ρt vanishes:

dρt (q, p)

dt
= δρt (q, p)

δt
+ i Lρt = 0 (4)
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where iL is the Liouville operator. A formal solution for L(t0 → t) gives:

L(t0 → t) = e−i Lt (5)

As time diverges the probability density function becomes stationary

δρt (q, p)

δt
= 0 (6)

so that

L(t0 → t) = 1 (7)

which represents an equilibrium ensemble, noted ρens(q , p). For a given stationary
probability density function ρens , the ergodic theorem (Birkhoff 1931) equates the
expectation value over the ensemble with the average over time

〈A〉ens =
∫

A ρens(q , p) = lim
τ→∞

1

τ

τ∫

0

A(q, p, t) dt = 〈A〉time (8)

The validity of using Eq. 8 depends on whether the time evolution in (3) is Markovian
and thus on the ability of the integrator to sample all important states in a given amount
of time. However the time step δt in equation (1) needs to be of the order of the high-
est frequency motion (vibration of covalent bonds) for numerical stability and model
accuracy. Given the ruggedness of the energy landscape discussed in the introduction
and that high energy conformations are unlikely (Eq. 2), this small time step prevents a
continuous MD trajectory from visiting all relevant states in the phase space, meaning
that Eq. 8 generally fails (broken ergodicity).

3.2 Stochastic sampling from replicas

To reduce the time spent within kinetic traps, one can extend equation (1) by intro-
ducing a stochastic term �(t)δ(t, nτ0) that essentially provides new starting points in
configuration space:

q(t + δt) = [ f (q(t), q(t − δt), q̈(t)) � �(t)δ(t, r τ0) ] (9)

where � is an exclusive ‘or’ operator, the function f is the right hand side of (1), δ is
the Kronecker delta, τ0 is a chosen relaxation time and r is an integer.

The conformations �(t) can be obtained by a stochastic swap of conformations
coming from parallel simulations with faster dynamics according to the replica
exchange ansatz. A faster dynamics can be achieved by increasing the temperature
(Hansmann 1997) or be focused on some degrees of freedom such as dihedral angles
by introducing a biasing potential in the force field (Kannan et al. 2009; Curuksu et al.
2009) that destabilizes one of the rotamer values Gauche+, Trans or Gauche−.
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The replica exchange scheme consists in a periodic test for the exchange (every
τ0 period) and an acceptance criterion satisfying the detailed balance equation of
micro-reversibility. Given a set of simultaneous conformations for each replica

C = {C1,C2, . . . ,Cn} (10)

where n is the number of replicas, the weight of state C in the generalized ensemble
of all replicas is:

WG E (C) = exp

(
n∑

i=1

βi H(Ci )

)
(11)

where βi = 1
kB Ti

. The detailed balance equation imposed on the swap of conforma-
tions, tested when δ(t, rτ0) = 1, is:

WG E (C) ω(C → C ′) = WG E (C
′) ω(C ′ → C) (12)

where C′ is a set of simultaneous conformations in which the swap has been carried-
out and ω a transition probability, of going from set C to the new set C′ or back. This
can be solved by the Metropolis criterion

ω(C → C ′) = min(1, e
)


 = βi (Ui (q j )− Ui (qi ))− β j (U j (q j )− U j (qi )) (13)

The term of kinetic energy K (p) has cancelled-out since particle velocities are rescaled
to correspond to their respective temperature in each replica after the exchange (e.g.

by
√

Tnew
Told

, Fukunishi et al. 2002).
In (13) the acceptance probability decreases exponentially with the difference in

temperatures and potential energies, and will be significant only if the histograms of
potential energy between replicas i and j overlap. Keeping a constant temperature and
introducing in the force field a different biasing potential vi for the different replicas
increases the acceptance probability since the expression for 
 simplifies into:


 = β (Ui (q j )− Ui (qi )+ U j (qi )− U j (q j ))

= β (vi (q j )− vi (qi )+ v j (qi )− v j (q j )) (14)

i.e. 
 now depends only on the part of the Hamiltonian vi that differs between the
replicas. The added term vi defined in (15) is chosen with increasing strength ξ along
the ladder of replicas and exchanges are attempted only between neighbor replicas in
order to maximize the acceptance probability. One replica is simulated without added
biasing potential and referred to as the target replica.
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3.3 Adaptive replicas

3.3.1 Short term memory function

Assuming we do not know the phase space in advance, the selection of new starting
points in Eq. (9) has to rely on a self-regulating biasing scheme. The transition between
the main rotamer substates Gauche+, Trans and Gauche− can be accelerated in the
ladder of searching replicas by a biasing potential which destabilizes these substates
(Curuksu et al. 2009):

vk(dx) = ξ ×
⎧⎨
⎩
((dx − r)2 − (R − r)2)2 if r < dx < R
(R − r)4 if dx < r
0 otherwise

(15)

vk(dx) is a one- or two-dimensional biasing potential which has the shape of a quasi-
Gaussian with flat ceiling and destabilizes the rotamer values defined within radius r .
dx is the distance of the rotamer value at time t to the center of the ceiling, r is the radius
of the ceiling and R the radius of the base (larger surface than the ceiling). Six different
sets of the biasing potential parameters (0◦, 30◦, 60◦, 90◦); (60◦, 90◦, 120◦, 150◦);
(120◦, 150◦, 180◦, 210◦); (180◦, 210◦, 240◦, 270◦); (240◦, 270◦, 300◦,330◦); (300◦,
330◦, 360◦, 390◦), where first and fourth values indicate the base width, cover the three
rotamers Gauche+, Trans and Gauche− and the regions in-between. This base width
of 90◦ is chosen to be much larger than the libration of dihedrals in a given substate
in experimental structures of biomolecules.

Hence the subspace of each biased dihedral k is discretized into an array of met-
avariables corresponding to the six regularly spaced intervals defined above. In two
dimensions the subspace (k1, k2) is discretized into a (6 × 6) matrix. A dynamical
allocation of the biasing potential defined by (15) can be carried-out on the fly on
these metavariables. An autocorrelation coefficient a(k) computed at every time step
is evaluated in the target replica (using a tolerance index <10−2) to decide whether
to switch the position of the biasing potential on the metavariable visited in the target
replica:

a(k) =
∑τ

1 〈σ 2
k,m〉∑Nm

1

∑τ
1 〈σ 2

k,m〉 (16)

where for each dihedral angle k, 〈σ 2
k,m〉 is the variance over the relaxation time τ of

the dihedral value with respect to the mean inside the metavariable m. 〈σ 2
k,m〉 is com-

puted independently for each metavariable whenever they are visited. Nm is the total
number of visits recorded inside the metavariable m. The convergence of a(k) → 1
characterizes a convergence of the metavariable average value. When this happens the
position of vk(dx) is switched to this metavariable m in order to promote the sampling
of other metavariables in the searching replicas.

The denominator in (16) is kept in memory for each metavariable independently of
the other metavariables and thus referred to as short term.

123



924 J. Curuksu

3.3.2 Long term memory function

Several positions of metavariables which are accessible in the phase space are deter-
mined on the fly by the short term memory function, however some metavariables
located far away from the ones visited can be ignored. Moreover inside a metavariable
the shape of the energy well can be complex enough to prevent excursion to some
sub-minima of these wells. A smoothing procedure of the energy surface by addition
of Gaussian-like function centred close to the sampled rotamer value was initially
proposed in (Huber et al. 1994).

gk(l, t) = wG ×
t∑

i = 1

exp

(
− (kl(i)− kl)

2

2 σG

)
(17)

where, for each dihedral angle k, l is a sub-interval defined by centre kl and width σG .
The widthσG is chosen small enough to not mask any distinct sub-minima (σG = 22.5◦
as recommended in Huber et al. 1994). The energy penaltywG added by each Gaussian
unit in the sum of (17) is chosen to be many orders of magnitude lower than energy
barriers for dihedral transitions (wG ∼ 10−5 kcal/mol). The introduction of time-
dependent Gaussian functions, in the spirit of Metadynamics (Laio et al. 2002), is
possible because each added unit has an infinitesimal height wG and thus do not vio-
late the detailed balance equation of microreversibility upon replica exchange (Bussi
et al. 2006a). The functions gk are cumulated over the entire potential energy surface
visited during the sampling and kept in memory. They flatten the most visited areas
such that any kinetic trap will tend to disappear as the simulation proceeds (Bussi et al.
2006b). In light of the work of (Roitberg et al. 2007) on the replica exchange equations
and because each added unit has an infinitesimal height, the following equation holds:

ω(Ci ⇔ C j ) = min( 1, e 
 )


 = β (vi (q j ) − vi (qi ) + v j (qi ) − v j (q j )

+ gi (q j ) − gi (qi ) + g j (qi ) − g j (q j )) (18)

3.4 Molecular dynamics simulation details

The ansatz has been implemented as a Fortran subroutine in Amber, a package for bio-
molecular simulations (Case et al. 2004), and then applied to a nucleic acid dinucleotide
d(ApA) kept via distance restraints into a B-DNA helical arrangement (parmbsc0
parameters used for the potential energy, Perez et al. 2007). In the following the
ansatz is referred to as the learning enhanced sampling scheme (LESS). The equa-
tions of motion were integrated using 1 femtosecond MD moves in explicit water and
physiological KCl ions with periodic boundaries. The Velocity Verlet integrator (see
Leach 1996) was used. The system was coupled to a heat reservoir with the Berendsen
algorithm (Ryckaert et al. 1977) in order to simulate the canonical NVT ensemble of
conformations. The same starting conformation obtained after a short stage of thermal
equilibration was used for each replica simulation.
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A conventional temperature replica exchange MD simulation was used for refer-
ence, with a temperature range spanning 300–535 K (exponential scaling) over 26
replicas. Based on published estimates for the transition energy between nucleic acid
backbone substates (Curuksu et al. 2009), a LESS simulation with five replicas and
Emax levels for the biasing potential vi of 0 (target replica), 1, 3, 6 and 10 kcal/mol
was carried-out. The height of the Gaussian units wG was fixed at 10−5 kcal/mol.

For comparaison the simulation of a 5 replicas system containing only the short
term memory function and a 2 replicas system containing only the long term memory
function were carried out (two replicas were used in the latter because the long term
memory function is identical in all replicas except the target replica).

Subsequently, the method was applied to a small protein of 20 residues (Trp-cage
protein, PDB-ID: 1L2Y, Neidigh et al. 2002) by scaling all backbone dihedral angles
in the 10 central residues and compared to conventional molecular dynamics simula-
tions. Same Emax levels for the biasing potential and number of replicas were used
as for the d(ApA) system. The MD protocol was also identical except that the NPT
(constant pressure) ensemble of conformations was simulated. Also for the Trp-cage
simulation, the SHAKE algorithm (Ryckaert et al. 1977) was used to constrain bond
vibrations involving hydrogen atoms and allow a time step of 2 femtoseconds.

A computer code in Fortran that can be compiled as a subroutine in the Amber
package as well as input files for the Trp-cage simulations can be downloaded freely
from http://www.lcvmwww.epfl.ch/~curuksu/less.

4 Results

The pair of dihedral angles ε (C4′ − C3′ − O3′ − P) and ζ (C3′ − O3′ − P − O5′)
in d(ApA) was used to evaluate the accuracy of the sampling scheme. The coupled
ε/ζ crankshaft backbone motion implies the presence of two important metastable
substates in nucleic acids called BI: ε/ζ = t/g− and BII: ε/ζ = g–/t (Djuranovic
et al. 2004).

In the conventional MD simulation only two substates closed to the BI starting
state are sampled after 25 ns (Fig. 1). Both substates around the BI conformation plus
additional states in the BII conformation are sampled in the lowest temperature replica
of the temperature replica exchange (Fig. 1) with proportions given in Table 1. The
energy barriers for dihedral transitions in the d(ApA) system used here could only be
efficiently overcome in the temperature replica exchange MD simulation. This type of
non-specific replica exchange using fewer replicas (6 and 16) and thus a lower range
of temperature indexes also produced an ε/ζ sampling througth the BII state but were
still not converged after 20 ns (not shown). The LESS ansatz with five replicas pro-
duces an ε/ζ sampling which is in agreement with the reference temperature replica
exchange simulation already after 5 ns as shown in Fig. 1 and Table 1. This is however
obtained at a fraction of the computational cost (25 vs. 520 ns in term of effective com-
putation). A cluster analysis of the phase space coverage indicates that the positions
of the centroids are in good agreement as well, Table 1.

Without the fine tuning effect of the long term memory function gk , the sampling
scheme shows important differences in the phase space coverage after 5 ns. In partic-
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Fig. 1 Comparison of the phase space distribution of ε/ζ dihedral angles in the dinucleotide model with
conventional molecular dynamics during 25 ns at 300 K (left), the conventional temperature replica exchange
ansatz during 20 ns in the target replica (centre) and the LESS ansatz during 5 ns in the target replica (right).
The same number of sampled ε/ζ pairs is reported in each sample. Colored ellipses were obtained from a
cluster analysis using the two dimensional direct least-square fitting of Fitzgibbon et al. 1999

Table 1 Analysis of the ε/ζ phase space distribution in the dinucleotide model

Ansatz Trans/Gauche− Gauche−/Gauche− Gauche−/Gauche+
TREMD (ref.) 196/282 247/292 281/83

CMD 195/280 249/289 –/–

LESS 188/278 251/293 283/89

S-memory 189/281 223/289 283/90

L-memory 188/278 249/295 283/82

TREMD (ref.) 0.53 0.16 0.32

CMD 0.74 0.26 0.0

LESS 0.58 0.08 0.34

S-memory 0.29 0.06 0.65

L-memory 0.66 0.13 0.21

Position of the centroids (in degrees, up) and proportions (down) were computed by k-means partitioning in
R. TREMD, temperature replica exchange (25 replicas) used as a reference; CMD, conventional molecular
dynamics (25 ns); LESS, learning enhanced sampling scheme (5 replicas); S-memory, LESS ansatz without
long term memory function (5 replicas); L-memory, optimized LESS ansatz (see text) without short term
memory function (2 replicas)

ular the BII state is over-sampled and the ε-centroid value of the second BI cluster is
too low, Table 1.

The second test, regarding the effect of the absence of short term memory
function vk , is equivalent to a 2-replicas system (scaled vs. unscaled) since the short
term memory function vk is the only term that differs between the force fields of the
searching replicas. Using the same unit height wG for gk as used for fine tuning in
the complete LESS scheme (10−5 kcal/mol) has no effect on the dynamics after 5 ns
(not shown). The phase space coverage in the searching replica is almost identical
to the target replica and nearly every (>95%) exchange attempt is accepted. Fur-
ther tests were carried out by increasing the wG value from 10−5 to 10−3 kcal/mol.
For wG = 10−3 kcal/mol, the gk function induces many transitions in the searching
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Fig. 2 Comparison of the phase space distribution of ε/ζ dihedral angles in the dinucleotide model in the
target replica of the LESS ansatz without the long term memory function (left), the 2-replicas LESS ansatz
without the short term memory function and a unit height for the Gaussian functions of 10−3 kcal/mol
(centre) and 5.10−4 kcal/mol (right). The same number of sampled ε/ζ pairs is reported in each sample.
Colored ellipses were obtained from a cluster analysis using the two dimensional direct least-square fitting
of Fitzgibbon et al. 1999

replica but almost no exchange with the target replica, Fig. 2. An optimal sampling
could be found for wG = 0.5.10−3 which permits transitions in the searching replica
but also sufficient exchanges with the target replica for providing new starting points
in the phase space. The self-regulating 2-replicas approach could in principle be highly
efficient in term of computational resources used but this approach would need many
prior tests for determining the optimalwG value for each chosen set of rotamers. Using
an infinitesimaly small value of wG as done in the complete LESS sampling scheme,
only to fine tune the sampling of the main rotamers Gauche+, Trans and Gauche−
promoted by the short term memory function, is in contrast a general approach for any
set of rotamer variables.

To illustrate the potential applications of the method, the Trp-cage mini protein
was chosen as a test system. Trp-cage mini protein is one of the smallest polypeptide
that adopts a simple fold, consisting in a short α helix, a 3,10 helix and a stabilizing
C-terminal poly-proline stretch (Neidigh et al. 2002). However, already for this system
size molecular dynamics simulations are limited by the scaling of current softwares and
computer architectures, e.g. an increased efficiency is not observed beyond 32 proces-
sors with SANDER or 64 processors with PMEMD (components of the AMBER suite,
Case et al. 2004), during our benchmark tests on slightly larger systems (not shown).
Hence we compare the sampling obtained after 5 ns in the reference replica of LESS
using five replicas, with five conventional MD simulations of 5 ns each started with a
different distribution of initial velocities. Indeed the production of 25 ns would take
roughly five times longer on current computer architecture. For the Trp-cage simula-
tion the pair of dihedral angles φ(Ci−1 −Ni −Cαi −Ci ) andψ(Ni −Cα i −Ci −Ni+1)

was scaled in LESS using Eq. 15 for each of the 10 central residues.
We found that already after 2 ns some conformations with a rmsd <6Å of the

native fold (Neidigh et al. 2002) are sampled in the target replica of LESS (Fig. 3) and
these become increasingly sampled afterward. In contrast the minimum rmsd value
is still >7Å after 5 ns in five independent simulations using conventional molecular
dynamics. In addition, the target replica of LESS continues to sample both near-native
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Fig. 3 Cα backbone root mean square deviation (rmsd) for the Trp-cage model with respect to the native
conformation (Neidigh et al. 2002) in the target replica of the LESS ansatz (black line) and in five indepen-
dent simulations of conventional molecular dynamics (colored lines). Representative simulation snapshots
of the Trp-cage structure for three regimes of rmsd value (from left to right: 12, 9 and 6 Å) are shown as
superposed stick and cartoon models. An horizontal hair dashed line indicates a rmsd value of 6 Å. Note a
minimum rmsd value in LESS generally lower by 2 Å compared to conventional molecular dynamics

and more extended (rmsd values between 8 and 10 Å) conformations regularly during
the simulation. This is in sharp contrast with conventional molecular dynamics where
kinetic trapping impedes any fast transition between extended and partially folded
conformations, indicated by steady rmsd values between 8 and 14 Å (Fig. 3) on the
nanosecond time scale. As a result the current method can be used to estimate the
relative probability of the sampled metastable conformations. Future work will go
into this direction.

5 Conclusion

The proposed learning-enhanced sampling based on replicas is an extension of rep-
lica exchange approaches with a biasing potential by including a self-regulation of
competing replicas. The results show that a trade off between a short term memory
function that promotes transitions between large volumes in phase space (metavari-
ables) and a long term memory function that corrects this sampling by smoothing the
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local energy landscape is more efficient and generalizable than one of these techniques
taken alone. The current approach is amenable to structure refinement of complex
biomolecular systems containing non canonical dihedral substates. In particular the
enhanced transition in backbone dihedral angles of DNA and proteins can induce more
global conformational rearrangments, such as DNA bending (Curuksu 2009) and pro-
tein folding (Kannan et al. 2009). In this study we found that the enhanced transition
in backbone dihedrals of the ten central residues in the Trp-cage mini protein leads to
conformations close to the native fold in less than 5 ns. In the current method these
conformations are sampled altogether with more extended structures, which allows to
estimate their relative probability. Future work in this direction will consist in com-
paring the performance on different biomolecular systems and with respect to other
approaches based on non-adaptive replica exchange (Kannan et al. 2009; Curuksu
et al. 2009).

The theoretical development relies on several assumptions concerning convergence
issues on which research by several laboratories is still on-going. The first (long term
memory function) is that the inclusion of time dependent Gaussian functions preserves
a canonical distribution in the unscaled, target replica. This is assumed because each
Gaussian unit has an infinitesimal height (Bussi et al. 2006a) and the exchange equa-
tion (18) is derived from probability density functions including every biasing potential
(Roitberg et al. 2007). The second (short term memory function) is that the alternative
sampling of metavariables converges toward equilibrium after many switches between
these substates (Maragakis et al. 2006). This situation is assumed in the target replica
when the autocorrelation coefficient defined for each visited metavariable becomes
stationary.

One drawback of the theory behind the method is its limitation to the dynamics of
all-atom systems with explicit water, since in implicit solvent and coarse grain sim-
ulations the total number of degrees of freedom is likely to be of the same order as
the number of dihedral angles. Still a consensus in the modeling community is that
multi-scale modeling will dominate the scene as larger and larger biomolecular sys-
tems are investigated, and efficient algorithms such as the one proposed in this paper
are needed to enhance the synergy of models at different scales.
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