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Abstract. The market of domestic service robots, and especially vacuum clean-
ers, has kept growing during the past decade. According to the International Fed-
eration of Robotics, more than one million units were sold worldwide in 2010.
Currently, there is no in-depth analysis of the energetic impact of the introduction
of this technology on the mass market. This topic is of prime importance in our
energy-dependant society. This study aims at identifying key technologies lead-
ing to the reduction of the energy consumption of a domestic mobile robot, by
exploring the design space using technologies issued from the robotic research
field, such as the various localization and navigation strategies. This approach is
validated through an in-depth analysis of seven vacuum-cleaning robots. These
results are used to build a global assessment of the influential parameters. The
major outcome is the assessment of the positive impact of both the ceiling-based
visual localization and the laser-based localization approaches.

1 Motivation

This study aims at analysing the impact of some research results on the energy con-
sumption of mobile domestic robots, with a focus on localization and navigation. Such
robots, and especially vacuum-cleaning robots, have become widespread. IRobot, one
of the top companies on this market, claims to have sold six million units of its “Roomba”
robot since the first release in 2002 [1]. In the present study, we analysed several do-
mestic robots. They have been selected to represent the various technologies used today
in robotics, and some of them include new features on the mass market, such as visual
localization.

The minimization of the energy consumption for such devices is an important and
broad topic to be considered, especially for such a growing mass-market and within
our energy-dependant society. A domestic robot should ideally be able to operate au-
tonomously indoors, without having to connect to the power grid. This implies to embed
the energy harvesters into the mobile robot or on a charging station, providing it with
energy extracted directly from the surrounding environment, as previously discussed in
[12]. The primary source of energy can be for example light, heat, or mechanical work
produced by humans, or any combination of them. In any case, the available energy
level is low and highly fluctuating, driving the need to spare energy at the level of the
complete system.

Therefore this paper presents an analysis of the performances of several existing
products, assessing the impact of the embedded technologies on energy consumption.
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1.1 Working Hypotheses

The total energy Etotal consumed by the system, expressed as a function of a set of gen-
eralized design parameters−→α , can be written as in Eq. 1, where ηcharger is the efficiency
of the charging electronics, Ttask is the time needed to complete the task, and probot (t)
is the instantaneous power of the robot.

Etotal (−→α ) =
1

ηcharger

∫ Ttask(−→α )

0
probot (t,−→α ) dt (1)

In this study, we want to explore the design space−→α in order to minimize Etotal (−→α ).
This can be achieved by using two strategies: either by reducing probot (t) over time, or
by reducing Ttask.

The instantaneous power probot (t) comes from the “useful” power on one side, and
from the losses on the other side. The required power is minimized by removing useless
functions or fusing together several functions, leading for example to a decrease in the
number of motors used. Losses are minimized by increasing the robot’s efficiency, for
example by reducing the numerous electrical and magnetic losses inside the motors,
as well as by reducing the Joule losses inside the electronics. For a mobile robot, the
energy lost when braking also accounts for a part of the total losses, and it can be
partially recovered by the addition of appropriate electronics. The overall control, such
as obstacle avoidance, is equally important, in order to follow a smooth trajectory and
avoid unnecessary brakings.

Another strategy is the minimization of the completion time Ttask. In this case, it is
often useless to increase the robot’s speed, because it will increase the instantaneous
power accordingly. Better planning and navigation are the key for this strategy to suc-
ceed. When complete coverage is required, as in cleaning, patrolling, or lawn-mowing
tasks, a path planning coupled with a localization strategy will cut down the coverage
time, compared to a random walk approach. Recent developments in the semiconductor
industry for mobile applications, coupled with algorithmic and mechatronic advances
such as the laser scanner of [8], have made the simultaneous localization and mapping
(SLAM) affordable for the mass market.

Reducing Ttask often comes at the price of extra sensors and computational power,
needed to achieve an efficient localization, which conflicts with the reduction of the
instantaneous power of the first strategy. In this article, we will mainly assess the effect
of the navigation strategy on the total energy, based on measures performed with real
mobile domestic robots.

1.2 Mobile Robots for Domestic Environments

Currently in the domestic environment, only a few mobile robots have been mass-produ-
ced. The first successful product, and now the most widespread, is the vacuum cleaner,
with first researches dating back to the 1980s [13], while the first prototype for domestic
use can be dated back to 1991 [11]. Up to now, studies have compared mobile domestic
robots only from an historical or purely technical point of view [6, 10].
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Other commercial applications include lawn-mowing, telepresence, pool, or gutter
cleaning [2]. In the literature, other examples like assistive [3] or rehabilitation robotics
[4] can also be found.

Most of the researche has focused on aspects like the navigation in dynamic en-
vironments [15] or the social acceptance [14]. The question of the energy-efficiency
was only considered lately, mainly pointing out the lack of regulations and standards,
compared to other home appliances [5]. Other researchers studied performance met-
rics, such as the coverage of several domestic mobile robots performing a random walk
[9]. The present study can be seen as an extension to robots performing more advanced
navigation strategies, and with the energy as the final consideration.

From the literature, it can be seen that the impact of some new technologies on
energy consumption remains yet unexplored. This study proposes to fill in the gap.

2 Experimental Analysis

The analysis was done using several robotic vacuum cleaners. After briefly explaining
our methodology in Sec. 2.1, following sections will detail the results.

2.1 Methodology

This study is based on a sample of seven robots, ranging from the low-cost deriva-
tives of the “Roomba” robot, to recent products embedding more complex sensors and
algorithms and costing up to 600 $. Robots 1 to 3 follow a random walk, using some
predefined behaviours (wall following, spirals, obstacle avoidance...). Robots 4 to 6 per-
form Ceiling Visual SLAM (CV-SLAM), implementing an algorithm similar to the one
described by [7]. The last one is fitted with a low-cost laser range scanner, performing
2D Laser SLAM [8]. A detailed description is available in Table 1, at the end of this
article.

We explored several performance metrics, in relation with the energy. Both the
global and instantaneous powers were measured during realistic scenarios. The evo-
lution of the coverage as a function of the time was also measured using an overhead
camera.

The experimental setup is depicted in Fig. 1. It recreates a two-room flat with a total
surface of 15.5 m2. A precision power analysis bench was used to measure the overall
power drawn by the charging station, whereas we used a wireless datalogger to measure
the robot’s in situ power probot (t).

2.2 Power Analysis

An in situ analysis of the consumed power was first performed, by placing an embed-
ded datalogger module between the battery and the robot itself. This module records
precisely the power consumed by the robot, during each step of the process. Statistical
results can be found in Table 2, at the end of this article. Informative plots are drawn in
Fig. 2.
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(a) Side view. (b) View from the overhead camera.
The white ellipse marks an area of dif-
ficult access.

Fig. 1: The experimental setup.

The robots performing CV-SLAM all use a dual-layer architecture, as revealed by a
detailed analysis of the electronics; a low-power controller is in charge of the sensors,
the motors, and other low-level functions, while an embedded processor performs the
image analysis and the subsequent pose estimation.

On Fig. 2a, the startup sequence of the cleaning process for Robot 7 (laser SLAM)
is clearly visible. Starting from the idle state, the following phases can be identified:
1) the laser’s spinning motor starts and stabilises; 2) the powerful suction fan starts; 3)
the main brush starts to rotate; 4) finally the robot starts the driving motors and begins
to clean. It can be deduced that the laser SLAM itself consumes about 1.9 W (6.3 %
of the total cleaning power), compared to the cleaning subsystem, which takes 23.8 W
(78.8 %). The mobility account only for 2.5 W (8.3 %). For this specific robot, the power
used for the navigation functions is marginal compared to the cleaning aperture.

Such a clear breakdown is however not always visible, for example in the case of
Robot 5 (Fig. 2b). The first small increase of power (black circle) is devised to be due
to the visual SLAM subsystem (camera and algorithm). It takes about 1.1 W of extra
power, 8.4 % of the total power. All the motors start together.

Fig. 3 plots the distribution of the power consumption of each robot for several
cases. Let us first consider the idle case, when the robot is turned on, but not moving.
The three robots performing CV-SLAM are, not surprisingly, among the top consumers,
as the embedded processor will need between 0.5 to 1 W of extra power, even when not
processing any images.

When considering the cleaning cases, things are completely different. The previous
increase, due to the extra processing power, is largely overwhelmed by the difference
due to the driving and cleaning motors. Thus, the addition of the SLAM represents
only a small part of the total consumption, when compared to the energy required for
moving and cleaning. As we will see in Sec. 2.3, SLAM-enabled robots benefit from
the speed-up of coverage, saving energy on the overall process.

A power analysis was also done directly at the plug of the recharge station. Com-
plete results are in Table 3, at the end of this article. A first discovery is the high idle
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(a) Robot 7: Carpet cleaning startup pro-
cesses. 1: laser 2: suction 3: brush 4: driving
motors.

(b) Robot 5: Cleaning on concrete. The
black circle pinpoints the startup of the CV-
SLAM process, just before the robot starts
moving.

Fig. 2: Plots of the in situ power measures.

Fig. 3: Task-related in situ power measured for each robot. More than 1000 samples have been
used for each data.

power of the base station, up to 3.5 W for the worst result (Robot 2). This is even worse
when the robot is connected to the base station. Even fully charged, the power con-
sumption is between 3.2 and 8.1 W. Unfortunately, this kind of appliance is not bound
by the European regulation 1275/2008, currently limiting the standby mode to 2 W. This
represents a serious concern for such mass-produced electrical appliances.

The efficiency of the recharge station ηcharger was computed as

ηcharger =
1

Etotal

∫ Ttask

0
probot (t) dt , (2)
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where Etotal is the energy consumed at the plug to recharge the robot, and probot (t) is
the in situ power measured on the robot during the whole process.

This figure of efficiency includes the intrinsic quality of the charger, as well as
the efficiency of the battery subsystem, and vary between 0.33 and 0.84 in our study.
The top two robots are not surprisingly the ones using Li-ion batteries. Others use the
Ni-MH technology. In the case of two Ni-MH powered robots, more than 50 % of the
recharge power is lost.

2.3 Coverage Analysis

A cleaning robot, like some other domestic robots, should not only be low-power and
energy-efficient, but should also effectively cover the area to clean. Using a video track-
ing system, we have recorded the trajectories when cleaning the flat of Fig. 1a. A sample
of each trajectory is shown in Fig. 4. It is very informative about the strategies taken by
each robot.

The evolution of the average coverage, as a function of the time, is plotted in Fig.
5. The SLAM-enabled robots are much faster than the others, which is confirmed by
the completion time shown in Fig. 6. Robot 6, which is the slowest among the robots
performing SLAM, is still three times faster than the random-walk fellows.

Regarding the total coverage, the SLAM-enabled Robot 4, and in a less measure
Robot 5, underperform compared to the others. Looking back at the image analysis, it
appears that some places are harder to reach. One of these places is between the sofa,
the intermediate wall, and the bin (white ellipse in Fig. 1b). In about 50 % of the runs,
robots 4 and 5 were unable to reach this place, losing accordingly part of the coverage.
On the contrary, Robot 6 was 100 % successful on a total of 11 runs, as its path planning
uses thinner bands, as one can see in Fig. 4f, compared to the coarser displacements of
the two others. While some time is lost by this strategy, it gains greatly in robustness.

2.4 Final Comparison

The central question of this study is the influence of design parameters on the energy
consumption, and especially the navigation strategy. To answer this question, we now
proceed to a comparison of the coverage strategy, with respect to the energy. For this,
we define the specific energy, which is the energy needed to cover 1 m2 of floor. It
equals

Especific =
1

Aeffective

∫ Ttask

0
probot (t) dt , (3)

where Aeffective is the surface effectively covered, as deduced from the previous cover-
age analysis. Fig. 7 clearly shows the effectiveness of the SLAM-enabled robots over
random walk methods, counterbalancing the increase of power by a reduced Ttask. How-
ever, no clear conclusion can be drawn between CV-SLAM and Laser SLAM robots.
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Random navigation

(a) Robot 1 (b) Robot 2 (c) Robot 3

Ceiling Visual SLAM

(d) Robot 4 (e) Robot 5 (f) Robot 6

Laser SLAM

(g) Robot 7

Fig. 4: Sample of the trajectories.
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Fig. 5: Evolution of the average coverage over one hour.

Fig. 6: Cleaning time for each robot.

Fig. 7: The specific energy, in J m−2, for each robot.
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3 Conclusion

This study has presented a methodological evaluation of the energy-efficiency of repre-
sentative vacuum-cleaning robots, with the aim of designing energy-efficient domestic
mobile robots in the future.

If we take a systemic approach, the whole energy chain has to be considered, start-
ing from the charging up to its final usage. As noticed in this study, the efficiency of
commercial charging stations is rather low, with important losses in the electronics. Li-
ion batteries, when properly used, also benefit from the efficiency of the energy storage.
But as they are more expensive compared to Ni-MH technology, and need dedicated
recharge electronics, their adoption is for now limited in such devices.

Based on in situ and global power measurements of existing products, the influence
of some technologies could be determined. From this analysis, it is determined that
robots required to fully cover an area have a clear advantage, from the energy point
of view, if they can rely on an embedded SLAM system. Ceiling Visual SLAM and
Laser SLAM are clearly advantageous for energy consumption: they reduce the cover-
age time, and they have a relatively small impact on the instantaneous power. However,
no conclusion could be drawn between the two SLAM systems.

Regarding the total coverage, some of the SLAM-enabled robots underperformed
compared to the others. This results from the path planning strategy, as some locations
can be missed if only a coarse displacement is performed. It is believed that such prob-
lems are a matter of fine tuning the system. To add a visual SLAM-based navigation into
a product, the price is mainly driven by the cost of the processor and camera boards. As
the smartphone market expands, the cost of such components is rapidly decreasing. Old
processors, like the iMX.31 used by Robot 5, can now be negotiated for less than 10 $.

The energy taken by the displacement and the cleaning aperture are much higher
than the localization subsystem. The reduction of the energy consumption will come
also through an optimization of the mechatronics. For example, Robot 5 uses only one
motor to drive the three brushes, compared to the three motors needed by robots 4 and
6. Moreover, the idle consumption is clearly not optimised, leading to huge losses if the
device remains connected all day long. The effect of a braking energy recovery device
should also be studied, as the kinetic energy is for now definitively lost when breaking.

Acknowledgments. This research was supported by the Swiss National Science Foun-
dation through the National Centre of Competence in Research Robotics. Most of the
robots have been provided by the Swiss National Television (TSR). We also thank
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