Multi-Objectives, Multi-Period Optimization of district networks Using Evolutionary Algorithms and MILP: Daily thermal storage

> Samira Fazlollahi, Supervisor: François Maréchal

Industrial Energy Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL) Veolia Environnement Recherche et Innovation (VERI)

Outline

- Motivation and objective
- District energy system optimization: Method
 - Structuring phase
 - Multi-objective nonlinear optimization phase
- Daily thermal storage: Model
- Illustrative example
- Conclusion

 (\mathbf{f})

Objective and motivation (1)

• Design a district energy system:

✓ To develop a computational framework for Multi-Period, Multi-objective optimization of district energy system

✓To integrate the daily thermal storage in the optimization model

✓To study the influence of a thermal storage on operating condition and capital investment

A computational framework for Multi-Period, Multi-objective optimization of district energy system:

Integration of a thermal storage

Main steps of methodology

 (\mathbf{f})

Structuring phase

Goal: to collect and manipulate the required data:

- ✓ Available equipments
 - Conversion technologies
 - Backup technologies
- ✓ Supply and demand profiles:
 - Energy sources
 - Energy demand: Typical days
 - Heating
 - Hot water
 - Cooling
 - Electricity

Multi-objective nonlinear optimization phase

S.Fazlollahi, F.Marechal, Multi-objective, multi-period optimization of biomass conversion techi integer linear programming (milp). Applied Thermal Engineering, 2011.

ing evolutionary algorithms and mixed

Structuring

 \mathbf{O}

Daily thermal storage

Daily thermal storage: Model

Decision variables:

- Heat availability in each temperature interval
- Charging and discharging rate in each time step
- Temperatures of the storage tank
- The initial heat load of each temperature interval in to

Parameters:

- ✓ Maximum capacity of the storage system: Q^{max}
- ✓Number of temperature intervals
- ✓Investment cost

 (\mathbf{f})

• Energy balance of the storage system

Q: Reference heat load (parameter) **f**: Utilization rate (variable)

1. Limits on charging and discharging rate

$$F_{\min_{S}} \times y_{S_{p}^{c}} \leq \max(f_{S_{T,p}^{c}}) \leq F_{\max_{S}} \times y_{S_{p}^{c}}, \forall p = 1, ..., N_{p}$$

$$F_{\min_{S}} \times y_{S_{p}^{h}} \leq \max(f_{S_{T,p}^{h}}) \leq F_{\max_{S}} \times y_{S_{p}^{h}}, \forall p = 1, ..., N_{p}$$

$$\bigcup \text{Utilization rate}$$

T: temperature intervals p: time steps

2. Cyclic constraint

Reference heat charging

$$\sum_{p=1}^{N_p} \sum_{T=1}^{N_T} (f_{S_{T,p}^c} \times \dot{Q}_{S_{T,p}^c}^- - f_{S_{T,p}^h} \times \dot{Q}_{S_{T,p}^h}^+) \times \square p = 0$$

Total charging load

3. Initial heat load

4. Heat load availability in each intervals

$$Q_{T}^{0} + \sum_{p=1}^{N_{p}} (f_{S_{T,p}^{c}} \times \dot{Q}_{S_{T,p}^{c}}^{-} - f_{S_{T,p}^{h}} \times \dot{Q}_{S_{T,p}^{h}}^{+}) \times \square p \ge 0,$$

$$\forall T = 1, ..., N_{T}, \forall p = 1, ..., N_{p}$$

0

Illustrative example

Illustrative example: Structuring phase

Goal: Design the energy system in a district with 3000 inhabitants

- provide heat and hot water demand
- electricity as an opportunity

Table	3:	CO_2	Intensity	and	Price	of	available	resour	\cos

Resources	$\triangle CO_2$:	Price: $[31]$
	[kg/MJ]	$[\in/MJ]$:
Electricity	0.3071[32]	0.0198
Natural Gas	0.0641	0.0092
Biomass	0	0.0036
SNG	0	0.0099

Table 5: Reference	e capacity of	each equipments	with the	corresponding ranges
--------------------	---------------	-----------------	----------	----------------------

Equipment	Reference:	Ranges:	β_s	α_s	O&M	
	$[MW_{th/el}]$	$[MW_{th/el}]$	$[{\rm {\small {\in }/kW/an}}]$	$[\mathrm{k} {\in} /\mathrm{an}]$	$[\in/\mathrm{MWh}]$	
Boiler (NG)	42_{th}	$[0 \ 210]$	14	84	3.5	[20]
Boiler (BM)	42_{th}	$[0 \ 210]$	14	84	10.4	[20]
Engine (NG)	5_{el}	[0 100]	25	15	10	[15]
Engine (BM)	5_{el}	[0 50]	25	15	10	[15]
SNG^*	20_{bm}	$[0 \ 200]$	67	10^{3}	40	[36]
Gasifier [*]	20_{bm}	$[0 \ 200]$	64	10^{3}	1	[36]
Gas turbine(NG)	20_{el}	$[0 \ 200]$	73	14	50	[15]
Gas turbine(BM)	20_{el}	$[0 \ 200]$	73	14	50	[15]
Steam turbine	30_{el}	$[0 \ 200]$	32	272	10	[20]
BRC	2_{el}	$[0 \ 20]$	38.5	96	30	[37]

BM: Biomass, NG: Natural gas

*It is based on the fuel consumption

<section-header>

Structuring phase: Typical days

S. Fazlollahi, S. L. Bungener and F. Maréchal. *Multi-Objectives, Multi-Period Optimization of district heating networks: Selection of typical days. The 22nd European Symposium on Computer Aided Process Engineering (ESCAPE), London, 2012.*

Illustrative example: Multi-objective optimization results

<u>evaluate</u> and <u>select</u> a solution(s)

Configuration of a selected solution :

- •Incinerator integrated with steam turbine [26 MWth]
- •Biomass boiler [23 MWth]
- •Coal boiler [30 MWth]
- •Backup natural gas boiler

16

Illustrative example: Daily units operation

Outlet power [MW]

Structuring \checkmark **Optimisation** \checkmark Post-processing 17

Illustrative example: Daily units operation

 \odot

Illustrative example: Daily units operation

- 7.5 % reduction in the total investment cost Natural gas boiler 69 MW \longrightarrow 18 MW
- **19%** reduction in the annual operating cost
- 14 % reduction in the annual coal consumption
- **15.8** % CO2 emission reduction

20

 \mathbf{b}

Optimizing the operation and investment strategy
 →Operating strategy
 →Storage tank volume
 →Storage tank management strategy

21

()

Conclusion

Motivation

- Integrating the daily thermal storage in the Multi-Period & Multi objective optimization model of district energy system:
 - →Design
 - →Operation
 - →Environomic objectives
- The illustrative example shows the influence of a thermal storage on sizing and operating condition of the system
 - Decrease the install capacity
 - Remove the fluctuation of operating condition

Thank you for your attention

Industrial Energy Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL) Veolia Environnement Recherche et Innovation (VERI)

