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The homotopy theory of coalgebras over a comonad

Kathryn Hess and Brooke Shipley

Abstract

Let K be a comonad on a model category M. We provide conditions under which the associated
category MK of K-coalgebras admits a model category structure such that the forgetful functor
MK → M creates both cofibrations and weak equivalences.

We provide concrete examples that satisfy our conditions and are relevant in descent theory
and in the theory of Hopf–Galois extensions. These examples are specific instances of the
following categories of comodules over a coring (co-ring). For any semihereditary commutative
ring R, let A be a dg R-algebra that is homologically simply connected. Let V be an A-coring that
is semifree as a left A-module on a degreewise R-free, homologically simply connected graded
module of finite type. We show that there is a model category structure on the category MA of
right A-modules satisfying the conditions of our existence theorem with respect to the comonad
−⊗A V and conclude that the category MV

A of V -comodules in MA admits a model category
structure of the desired type. Finally, under extra conditions on R, A and V , we describe fibrant
replacements in MV

A in terms of a generalized cobar construction.
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1. Introduction

Let M be a model category and let T be a monad acting on M. There are well-known and
very useful conditions under which it is possible to transfer the model category structure from
M to the category MT of T-algebras in M so that the forgetful functor MT →M creates both
weak equivalences and fibrations [22, Lemma 2.3]. In particular, the category M should be
cofibrantly generated for the results of [22] to be applicable.

Let K be a comonad acting on M. Dualizing the hypotheses of [22, Lemma 2.3] does not
provide realistic conditions under which to transfer the model category structure from M to the
category MK of K-coalgebras, primarily because ‘cosmall’ objects, and thus fibrantly generated
model categories, are rare. To avoid this problem, we instead generalize [9, Section 2] and take
an approach that is inspired by the construction of factorizations and liftings by induction on
degree, which is familiar to practitioners of rational and algebraic homotopy theory. As long as
the class of weak equivalences in M admits a filtration by ‘n-equivalences’ that are compatible
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in a reasonable way with the comonad K (cf. axioms (WE1) and (K0)–(K6) in Section 5), we can
guarantee the existence of a model category structure on MK such that the forgetful functor
MK →M creates both weak equivalences and cofibrations. One advantage to our approach
is that it enables us, under reasonable conditions, to describe fibrant objects and fibrations
explicitly, rather than simply characterizing them in terms of the right lifting property.

Our main theorem (Theorem 5.8) could certainly easily be dualized, giving rise to an
existence theorem for model category structure on MT such that the forgetful functor MT →M
creates both weak equivalences and fibrations, for nice enough monads T, even if M is not
cofibrantly generated. Such a theorem would be complementary to the results in [22].

1.1. Organization of the paper

We sketch the basic theory of comonads and their coalgebras in the next section of this
paper. In particular, we recall conditions under which categories of coalgebras are complete
(Propositions 2.7 and 2.10). Since our main theorem is easiest to apply when the underlying
model category is injective, that is, when its cofibrations are exactly the monomorphisms,
we devote Section 3 to proving an existence result for injective model category structures
(Theorem 3.6), which we then apply to showing that, for any commutative ring R, the
category MA of right modules over any differential graded (dg) R-algebra A admits an
injective model category structure, in which the weak equivalences are the quasi-isomorphisms
(Proposition 3.11).

In Section 4, we recall from [9] the notion of a Postnikov presentation of a model category and
the related general existence theorem for model category structures in which the cofibrations
and weak equivalences are created by a left adjoint (Theorem 4.7). We can then state and prove
our main theorem (Theorem 5.8) in Section 5, providing conditions on M and K under which
the category MK of K-coalgebras admits a model category structure such that the forgetful
functor MK →M creates both cofibrations and weak equivalences. We show, moreover, that if
M satisfies a certain ‘Blakers–Massey-type’ condition, and its class of weak equivalences verifies
two reasonable extra conditions, then the existence theorem for model category structure on
MK holds under conditions on K that are somewhat easier to check (Proposition 5.14).

In the last two sections of the paper, we apply our existence theorem to a concrete class
of examples that is relevant to both descent theory [10] and the theory of Hopf–Galois
extensions [9]. Let R be a semihereditary commutative ring, let A be a dg R-algebra, and
let V be an A-coring, that is, a comonoid in the category of A-bimodules. We show that if
A and R⊗A V are both homologically simply connected, and V is A-semifree on an R-free
graded module of finite type, then the category MV

A of right V -comodules in the category of
right A-modules admits a model category structure such that the forgetful functor MV

A →MA

creates both cofibrations and weak equivalences (Theorem 6.2). Under further conditions on
R, A and V , we prove that fibrant replacements in MV

A can be built using certain generalized
cobar constructions (Theorem 7.8).

It is worth noting that while the proof of the existence of model category structure on MV
A

requires that the left A-module structure of V satisfy certain properties, we need to impose
conditions on the right A-module structure of V in order to construct nice fibrant replacements.

We plan to provide further classes of explicit applications of Theorem 5.8 in future work,
including categories of comodules over comonoids in pointed simplicial sets and categories
of comodule spectra over suspension spectra. These cases are much harder to study, as the
underlying categories are neither Cartesian nor additive.

1.2. Related work

In [19], Quillen established the first model category structure on a particular category of
coalgebras over a comonad, the category of 1-connected, cocommutative dg coalgebras over Q.
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Almost 30 years later, in [6, Theorem 7.6] Blanc provided conditions, complementary to
those given here, under which a ‘right’ model category structure could be transferred from
an underlying model category to a category of coalgebras. In an unpublished paper from the
same period [8], Getzler and Goerss proved the existence of a model category structure on
the category of dg coalgebras over a field. Hinich then generalized Quillen’s work, defining a
simplicial model category structure on the category of unbounded cocommutative coalgebras
over a field of characteristic zero, but where the class of weak equivalences was strictly smaller
than that of quasi-isomorphisms [12].

In 2003, Aubry and Chataur proved the existence of model category structures on (certain)
cooperads and coalgebras over them in unbounded chain complexes over a field [3]. Smith
established results along the same lines in [24] in 2011. In 2010, Stanculescu used the dual
of the Quillen path-object argument to establish a model structure on comonoids given a
functorial cylinder object for comonoids [26]. In 2009, the first author showed that in a
Cartesian model category, such as topological spaces, simplicial sets or small categories, the
category of comodules inherits a model structure from the underlying category because the
category of comodules is equivalent to a slice (or over) category [9, 1.2.1]

In his 2003 thesis [14], Lefèvre showed that for any twisting cochain τ : C → A such that
twisted tensor product C ⊗τ A is acyclic, there is a model category structure on the category
of unbounded, coconnected C-comodules such that the functor ComodC →ModA induced
by τ creates weak equivalences and cofibrations. Finally, Positselski [18] recently published
a book in which he defined a model category structure on the category of comodules over a
curved dg coalgebra over a field, in which the class of weak equivalences is strictly stronger
than that of quasi-isomorphisms.

1.3. Notation and conventions

(i) Let C be a small category, and let A,B ∈ ObC. In these notes, the set of morphisms
from A to B is denoted C(A,B). The identity morphism on an object A will also often be
denoted by A.

(ii) A terminal (respectively, initial) object in a category is denoted e (respectively, ∅).
(iii) If L : C � D : R are adjoint functors, then we denote the natural bijections

C(C,RD)
∼=−→ D(LC,D) : f �−→ f �

and

D(LC,D)
∼=−→ C(C,RD) : g �−→ g�

for all objects C in C and D in D.

2. Comonads and their coalgebras

Definition 2.1. Let D be a category. A comonad on D consists of an endofunctor K :
D→ D, together with natural transformations Δ : K → K ◦K and ε : K → IdC such that Δ
is appropriately coassociative and counital, that is, K = (K,Δ, ε) is a comonoid in the category
of endofunctors of D.

Example 2.2. If L : C � D : R is a pair of adjoint functors, with unit η : IdC → RL and
counit ε : LR→ IdD, then (LR,LηR, ε) is a comonad on D.

There is a category of ‘coalgebras’ associated to any comonad.
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Definition 2.3. Let K = (K,Δ, ε) be a comonad on D. The objects of the Eilenberg–
Moore category of K-coalgebras, denoted DK, are pairs (D, δ), where D ∈ ObD and δ ∈
D(D,KD), which is appropriately coassociative and counital, that is,

Kδ ◦ δ = ΔD ◦ δ and εD ◦ δ = IdD.

A morphism in DK from (D, δ) to (D′, δ′) is a morphism f : D → D′ in D such that Kf ◦ δ =
δ′ ◦ f .

The category DK of K-coalgebras is related to the underlying category D as follows.

Remark 2.4. Let K = (K,Δ, ε) be a comonad on D. The forgetful functor

UK : DK −→ D

admits a right adjoint

FK : D −→ DK,

called the cofree K-coalgebra functor, defined on objects by FK(X) = (KX, ΔX) and on
morphisms by FK(f) = Kf. Note that K itself is the comonad associated to the (UK, FK)-
adjunction.

Since our goal is to establish a model category structure on DK when D is itself a model
category, we need to recall how limits of K-coalgebras are constructed. Colimits pose no
problem, as they are created by the forgetful functor.

We begin with an important special case of limits.

Lemma 2.5 [4]. Let K = (K,Δ, ε) be a comonad on D. Any K-coalgebra (D, δ) is the
equalizer in DK of the diagram

FKD
Kδ

⇒
ΔD

FK(KD).

Under the following condition on the functor underlying the comonad K, the category of
K-coalgebras actually admits all equalizers.

Definition 2.6. Let J denote the category with ObJ = N and

J(n,m) =

{
{jn,m} : n � m,

∅ : n < m,

where jm,m = Idm for all m.
A functor F : C→ D preserves limits of countable chains if there is a natural isomorphism

τ : F ◦ lim
n

=⇒ lim
n
◦FJ

of functors from the diagram category CJ to D.

Proposition 2.7 [4]. Let K = (K,Δ, ε) be a comonad on a complete category D. If K
commutes with countable inverse limits, then DK admits all equalizers and is therefore
complete.
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Proof. Barr and Wells [4] prove the dual result for coequalizers of algebras over a monad.
To give the reader some intuition for the nature of limits in DK, we provide a sketch of the
dual to the proof in [4].

Let (C, γ)
f

⇒
g

(D, δ) be a diagram in DK. Consider the following diagram in D :

C
γ �� KC

Kγ ��
ΔC

�� K2C

B0

b0

��

KB0

Kb0

��

εB0��

K(γb0)

��������������� ΔCKb0

���������������
K2B0

K2b0

��

B1

β1

���������������

b1

��

KB1

Kb1

��

εB1��

Kβ1

�������������� ΔB0Kb1

��������������
K2B1

K2b1

��

B2

β2

���������������

b2

��

KB2

Kb2

��

εB2��

Kβ2

�������������� ΔB1Kb2

��������������
K2B2

K2b2

��

...

��

...

��

...

��

Here, b0 : B0 → C is the equalizer of C
f

⇒
g

D in D, while if i > 0, then Bi is the limit of the

part of the diagram above it and into which it maps. The morphisms bi and βi are the natural
cone maps from the limit.

If B = limi�0 Bi, and

β = lim
i�1

βi : B −→ lim
i�1

KBi−1
∼= KB,

then (B, β) is a K-coalgebra, which equalizes (C, γ)
f

⇒
g

(D, δ). For the details of the (dual)

argument, we refer the reader to [4].

Remark 2.8. Let K = (K,Δ, ε) be a comonad on D such that K commutes with countable
inverse limits, via a natural isomorphism τ : K ◦ limn ⇒ limn ◦KJ. As is certainly well known
to those familiar with comonads, the forgetful functor UK then also commutes with countable
inverse limits. Indeed, if

· · · pn+2−−−→ (Cn+1, γn+1)
pn+1−−−→ (Cn, γn)

pn−→ · · · p1−→ (C0, γ0)

is a tower of K-coalgebra morphisms, then the morphism

(γn)n�0 : (Cn)n�0 −→ (KCn)n�0

of towers in D induces a morphism in D

lim
n

Cn
limn γn−−−−−→ lim

n
KCn

τ−1

−−→∼= K(lim Cn),

which is a K-coalgebra structure on limn Cn. Both coassociativity and counitality follow from
the universal property of the limit and the naturality of τ , which together imply that

lim
n

ΔCn
◦ τ = τ ◦ τ ◦Δlimn Cn

: K(lim
n

Cn) −→ lim
n

K2Cn
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and

lim
n

εCn
◦ τ = εlimn Cn

: K(lim
n

Cn) −→ lim
n

Cn.

It follows that limn(Cn, γn) = (limn Cn, τ−1 ◦ limn γn).

Once we know how to construct equalizers of K-coalgebra morphisms, we can easily describe
products and pullbacks, using the formulas of the next lemma.

Lemma 2.9. Let K = (K,Δ, ε) be a comonad on D.

(1) Products of cofree K-coalgebras exist. In particular,

FKX × FKY ∼= FK(X × Y )

for all X,Y ∈ ObD.
(2) For any K-coalgebra (D, δ), the product (D, δ)× FKX is the equalizer of the diagram

FKD × FKX
Kδ×Id

⇒
ΔD×Id

FK(KD)× FKX,

if it exists.
(3) For any morphism f : X → Y in D and any morphism g : (D, δ)→ FKY of K-

coalgebras, the pullback of FKf and g is the equalizer of the diagram

(D, δ)× FKX
FKf◦p2

⇒
g◦p1

FKY,

if it exists. Here, p1 : (D, δ)× FKX → (D, δ) and p2 : (D, δ)× FKX → FKX are the natural
projection maps.

Proof. (1) This isomorphism follows from the fact that FK is a right adjoint.
(2) Since limits commute with limits, this formula for (D, δ)× FKX is a consequence of

Lemma 2.5.
(3) This is the standard description of a pullback as an equalizer.

Under a reasonable condition on the category on which a comonad K acts, the category of K-
coalgebras is complete under an even milder condition on K than preservation of inverse limits.
Recall that a category is well powered if the subobjects of any object form a set, rather than
a proper class. Any locally presentable category is well powered [2]. Recall that a morphism
g : B → C in any category C is a monomorphism if for all pairs of morphisms f, f ′ : A→ B
with target B,

gf = gf ′ =⇒ f = f ′.

Proposition 2.10 [1]. Let K = (K,Δ, ε) be a comonad on a well-powered category D.
If K preserves monomorphisms, then DK is complete.

Adámek proves this proposition by providing an explicit ‘solution set’-type construction of an
equalizer of K-coalgebras.
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3. Injective combinatorial model structures

In this section, we provide conditions under which a model category admits a Quillen-equivalent
injective model category structure, that is, a model category structure in which the cofibrations
are exactly the monomorphisms. The injectivity condition is important in this paper as it
simplifies considerably the existence proof for model category structures on categories of
coalgebras.

We then apply our existence theorem to establishing that categories of differential graded
modules over differential graded algebras that are degreewise flat over the ground ring admit
injective model category structures.

3.1. The existence theorem

We apply Smith’s argument for constructing combinatorial model categories to establish
the existence of an injective model category structure. We follow Lurie’s version of the
argument [15, A.2.6.8], but see also [5, 1.7] or [20, 4.3].

Let M be a category endowed with a ‘standard’ combinatorial model (SCM) structure
(see Definition 3.4). In Theorem 3.6, we establish the existence of an injective combinatorial
model (ICM) structure on M with the same weak equivalences and cofibrations exactly the
monomorphisms.

There is an ICM structure on a category M only if the class of all monomorphisms in M is
generated by a set. To state conditions under which there is a such a generating set, we need
the following standard notions.

Definition 3.1. Let C be a category. For every pair of monomorphisms

A
a−→ X

b←− B

with a common codomain, let

A ∪B := A
∐

A×
X

B

B,

the pushout of A← A×
X

B → B, where A×
X

B is the pullback of a and b.
The category C has effective unions if each of the natural morphisms

A �� A ∪B

��

B��

X

is a monomorphism, for every pair of monomorphisms A
a−→ X

b←− B.

Definition 3.2. If X is a set of morphisms in a category C, then X-inj is the class of
morphisms in C satisfying the right lifting property with respect to X, while X-cof is the
class of morphisms satisfying the left lifting property with respect to X-inj. In other words, a
morphism p : E → B is in X-inj if for any commuting diagram in C

A
f ��

i

��

E

p

��
X

g �� B
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where i ∈ X, there is a morphism h : X → E such that ph = g and hi = f , while a morphism
j : Y → Z is in X-cof if for any commuting diagram in C

Y
f ��

j

��

E

p

��
Z

g �� B,

where p ∈ X-inj, there is a morphism h : Z → E such that ph = g and hj = f

Lemma 3.3 [5, 1.12]. Let C be a category. If

(1) C is locally presentable,
(2) subobjects in C have effective unions, and
(3) the class of monomorphisms is closed under transfinite composition,

then there is a set of monomorphisms I in C such that the class of all monomorphisms is equal
to I-cof.

Recall that a model structure is combinatorial if it is cofibrantly generated and the underlying
category is locally presentable.

Definition 3.4. A combinatorial model structure such that any cofibration is a monomor-
phism is a standard combinatroial model (SCM) structure if the underlying category M satisfies
the hypotheses of Lemma 3.3.

We need one more definition before constructing the injective model structure on M.

Definition 3.5 [15, A.1.2.2]. A class of morphisms in a category is weakly saturated if it
is closed under pushouts, transfinite compositions and retracts.

Theorem 3.6. Let M be a category with an SCM structure with weak equivalences W.
Let C denote the class of monomorphisms in M. If W ∩ C is weakly saturated, then there is a
combinatorial model structure on M with weak equivalences W and cofibrations C.

Terminology 3.7. We refer to the model category structure of the theorem above as the
associated injective combinatorial model (ICM) category structure on M.

Proof. We check the conditions from A.2.6.8 in [15].

(1) C is weakly saturated and generated by C0.
We take C0 to be the set of monomorphisms I, the existence of which follows from Definition 3.4
and Lemma 3.3. Condition (1) then holds by definition since C = I-cof is weakly saturated by
[15, A.1.2.7].

(2) C ∩W is weakly saturated.
This condition is the hypothesis of our theorem.

(3) W is accessible.
This follows from [20, 4.1] or [15, A.2.6.6]: since the SCM structure on M is combinatorial,
W is accessible.
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(4) W satisfies the ‘2 out of 3’ property.
This is true because W is the set of weak equivalences of the original SCM structure on M.

(5) C− inj ⊆W.
Let Cs be the cofibrations in the SCM structure on M. By definition Cs ⊆ C, so

C− inj ⊆ Cs − inj.

Since Cs − inj is the class of trivial fibrations in the original SCM structure on M, it follows
that C− inj ⊆W.

3.2. An ICM structure for dg modules

For any commutative ring R, let Ch�0
R denote the category of non-negatively graded chain

complexes of R-modules, endowed with its usual graded tensor product, which we denote
simply ⊗. If A is a monoid in Ch�0

R , that is, a differential graded (dg) algebra, then let MA

denote the category of right A-modules.
We begin by a few easy but useful observations concerning the categorical properties of MA.

Lemma 3.8. A morphism in MA is a monomorphism if and only if the underlying morphism
in Ch�0

R is a monomorphism.

Proof. Let U : MA → Ch�0
R denote the forgetful functor. Let f : M → N be a morphism

in MA. It is obvious that if Uf is a monomorphism, then f is as well.
If Uf is not a monomorphism, then there exist x, y : X → UM in Ch�0

R such that x �= y but
Uf ◦ x = Uf ◦ y : X → UN . Taking transposes, we obtain

f ◦ x� = (Uf ◦ x)� = (Uf ◦ y)� = f ◦ y�,

and thus f is not a monomorphism, since x� �= y�.

Lemma 3.9. The category MA has effective unions.

Proof. Since pullbacks and pushouts in MA are created in Ch�0
R and Ch�0

R clearly has
effective unions, this lemma is an immediate consequence of Lemma 3.8.

Lemma 3.10. The class of monomorphisms in MA is closed under transfinite composition,
and the class of monomorphisms in MA that are also quasi-isomorphisms is weakly saturated.

Proof. The transfinite composition of a sequence

M0 ↪→M1 ↪→ · · · ↪→Mn ↪→Mn+1 ↪→ · · ·
of monomorphisms of A-modules (seen, without loss of generality, as a sequence of inclusions)
is simply the inclusion M0 ↪→ ⋃

n�0 Mn. Transfinite compositions for larger ordinals are
constructed similarly. The class of monomorphisms in MA is therefore closed under transfinite
composition.

Since homology commutes with filtered colimits, it follows that the transfinite composition
of a sequence of monomorphisms that are quasi-isomorphisms is both a monomorphism and
a quasi-isomorphism. Furthermore, the class of monomorphisms is closed under retracts for
categorical reasons, and it is well known that the class of quasi-isomorphisms is as well.
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Finally, since the cokernel of a monomorphism j of chain complexes is acyclic if and only if j
is a quasi-isomorphism, a pushout of a monomorphism that is a quasi-isomorphism is again a
monomorphism and a quasi-isomorphism, as the cokernel of a pushout of j along any morphism
is isomorphic to coker j.

Proposition 3.11. For any dg R-algebra A, the category MA of right A-modules admits
a combinatorial model category structure in which the cofibrations are the monomorphisms,
and the weak equivalences are the quasi-isomorphisms.

Note that this proposition implies, obviously, that Ch�0
R itself admits an ICM structure.

Proof. There is a combinatorial model structure on MA obtained by right transfer of the
projective structure on Ch�0

R via the adjunction

Ch�0
R

−⊗A
�
U

MA,

as described in [22]. The fibrations in this model category structure are the chain maps that
are surjections in positive degrees, and the weak equivalences are the quasi-isomorphisms. Let I
denote the set of generating cofibrations of the projective model structure on Ch�0

R . Recall that
the class of cofibrations in this right-induced structure on MA can be constructed by taking
transfinite composition of pushouts of morphisms of the form i⊗A for i ∈ I and retractions of
such.

Recall moreover that I = {Sn ↪→ Dn+1 | n � 0}, where Sn = (R · xn, 0), the chain complex
freely generated by exactly one generator of degree n, while Dn+1 = (R · (xn, yn+1), d), the
chain complex freely generated by one generator of degree n and one of degree n + 1, with
dy = x. If i ∈ I, then i⊗A is a monomorphism of chain complexes, as the source and target
of i are degreewise R-free. Since monomorphisms of chain complexes are preserved under
pushout, transfinite composition and retraction, and colimits in MA are created in Ch�0

R , the
morphism of chain complexes underlying any cofibration in the induced model structure on MA

is a monomorphism. Lemma 3.8 therefore implies that every cofibration in the right-induced
structure on MA is a monomorphism of right A-modules.

The category Ch�0
R is locally presentable [23, 3.7]. It follows that MA is also locally

presentable, as −⊗A preserves filtered colimits [2, 7].
The existence of the desired model category structure on MA follows therefore from

Lemma 3.10 and Theorem 3.6.

4. Left-induced model category structures

A common way of creating model structures is by transfer across adjunctions, such as the
left-to-right adjunction applied in the proof of Proposition 3.11. To construct model category
structures on categories of coalgebras over a comonad, we need right-to-left transfer, as specified
in the following definition.

Definition 4.1. Let L : C→M be a functor, where M is a model category. A model
structure on C is left-induced from M, if WEC = L−1(WEM) and CofC = L−1(CofM).

Remark 4.2. The terminology above is motivated by the fact that it is most natural
to consider such model category structures when the functor L is a left adjoint, such as the
forgetful functor from the category of coalgebras over some comonad to the underlying category.
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Before giving conditions under which left-induced structures exist, we introduce a bit of
useful notation.

Notation 4.3. Let X be any class of morphisms in a category C. The closure of X under
formation of retracts is denoted X̂, that is,

f ∈ X̂⇐⇒ ∃ g ∈ X such that f is a retract of g.

Definition 4.4. Let X be a class of morphisms in a category C that is closed under
pullbacks. If λ is an ordinal, and Y : λop → C is a functor such that for all β < λ, the morphism
Yβ+1 → Yβ fits into a pullback

Yβ+1

��

�� X ′
β+1

xβ+1

��
Yβ

kβ �� Xβ+1

for some xβ+1 : X ′
β+1 → Xβ+1 in X and kβ : Yβ → Xβ+1 in C, while Yγ := limβ<γ Yβ for all

limit ordinals γ < λ, then the composition of the tower Y

lim
λop

Yβ −→ Y0,

if it exists, is an X-Postnikov tower.
A Postnikov presentation of a model category (M,Fib,Cof,WE) is a pair of classes of

morphisms X and Z satisfying

Fib = P̂ostX and Fib ∩WE = P̂ostZ

and such that for all f ∈ MorM, there exist

(a) i ∈ Cof and p ∈ PostZ such that f = pi;
(b) j ∈ Cof ∩WE and q ∈ PostX such that f = qj.

Remark 4.5. For any X, the class PostX is closed under pullbacks, since inverse limits
commute with pullbacks. Furthermore, PostX is clearly closed under composition of towers as
well.

Remark 4.6. Let X and Y be two classes of morphisms in a category C admitting pullbacks
and inverse limits. If X ⊂ Y-inj, then PostX ⊂ Y-inj as well, and therefore P̂ostX ⊂ Y-inj.
In particular, for any model category (M,Fib,Cof,WE), the pair (Fib,Fib ∩WE) is a Postnikov
presentation, which we call the generic Postnikov presentation of M.

The following right-to-left transfer theorem for Postnikov model structures was proved in [9].

Theorem 4.7. Let (M,Fib,Cof,WE) be a model category with Postnikov presentation
(X,Z). Let C be a bicomplete category (that is, C admits all limits and colimits), and let
L : C � M : R be an adjoint pair of functors. Let

W = L−1(WE) and C = L−1(Cof).

If

(a) PostR(Z) ⊂W,

and for all f ∈ MorC, then there exist
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(b) i ∈ C and p ∈ PostR(Z) such that f = pi, and
(c) j ∈ C ∩W and q ∈ PostR(X) such that f = qj,

then W, C and P̂ostR(X) are the weak equivalences, cofibrations and fibrations in a model
category structure on C, with respect to which L : C � M : R is a Quillen pair.

5. Postnikov presentations and coalgebras

Let K = (K,Δ, ε) be a comonad on a model category (M,Fib,Cof,WE). In this section, we
apply Theorem 4.7 to provide conditions on K and M that guarantee that the associated
category of coalgebras MK inherits a left-induced model category structure from M.

Our proofs are inductive and require the following sort of filtered structure on M. Note that,
to simplify notation, we henceforth often suppress explicit mention of the distinguished classes
of morphisms (Fib,Cof,WE) when we refer to the model category (M,Fib,Cof,WE).

Definition 5.1. The model category M has filtered weak equivalences if it is endowed
with a decreasing filtration

WE ⊆ · · · ⊆WEn+1 ⊆WEn ⊆ · · · ⊆WE−1 = MorM

satisfying the following axiom.

(WE1) For all n, WEn is closed under composition. If f ∈WEn for all n, then f is in WE.
Moreover, if f : A→ B and g : B → C are composable morphisms, then
(i) f, gf ∈WEn ⇒ g ∈WEn,
(ii) g, gf ∈WEn ⇒ f ∈WEn−1 and
(iii) gf ∈WEn and g ∈WE⇒ f ∈WEn.

We refer to the morphisms in WEn as n-equivalences and denote an n-equivalence by ∼n.
An object X in M is called (n− 1)-connected if the unique morphism from X to a terminal
object is an n-equivalence.

The comonads we consider satisfy the following compatibility with the model category
structure on M.

Definition 5.2. Let M be a model category with Postnikov presentation (X,Z). A
comonad K on M is tractable if the following axioms hold.

(K0) The category MK is complete.
(K1) The map δ : D → KD ∈ Cof for all K-coalgebras (D, δ).
(K2) The comonad K preserves cofibrations.
(K3) For all i : (C, γ)→ FKX in U−1

K
(Cof) and all g : (C, γ)→ (D, δ) in MK, the induced

morphism of K-coalgebras

(i, g) : (C, γ) −→ FKX × (D, δ)

is also in U−1
K

(Cof), if the product exists.
(K4) For all q : E → B in Z and for all morphisms f : (D, δ)→ FKB in MK, the induced

morphism in M

UK((D, δ)×FKB FKE) −→ UK(D, δ)

is in WE, if the pullback exists in MK.
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When M is endowed with an injective model structure, there is a simple condition under
which axioms (K0)–(K3) hold.

Lemma 5.3. Let K be a comonad on a well-powered model category M with injective
model category structure. Axioms (K0)–(K3) hold for K if and only if the underlying functor
K preserves monomorphisms.

Remark 5.4. Many interesting comonads preserve monomorphisms. We consider such an
example, when M is a category of differential graded modules over a differential graded algebra,
in the last two sections of this paper. In the future we plan to treat examples of such comonads,
when the underlying category is that of either pointed simplicial sets or Bousfield–Friedlander
spectra.

Proof. Since the model category structure on M is injective, axiom (K1) holds for all
comonads K, as every coalgebra structure map δ : D → KD admits a retraction εD : KD → D
and is therefore a monomorphism. Injectivity of the model category structure also implies that
the functor K preserves monomorphisms if and only if axiom (K2) is satisfied.

If K preserves monomorphisms, then it follows from Proposition 2.10 that (K0) holds, while
axiom (K3) is a special case of the following result. Let L : C � D : R be an adjoint pair of
functors, and let b : A→ B and c : A→ C be morphisms in C, inducing (b, c) : A→ B × C.
We claim that if L(b) is a monomorphism, then L(b, c) is as well.

If d, e : D → L(A) are morphisms in D such that L(b, c) ◦ d = L(b, c) ◦ e, then

L(b) ◦ d = L(prB) ◦ L(b, c) ◦ d = L(prB) ◦ L(b, c) ◦ e = L(b) ◦ e,

whence d = e, since L(b) is a monomorphism. We conclude that L(b, c) is also a monomorphism.

Remark 5.5. Let L : C � D : R be an adjoint pair of functors. If L is faithful, then

L−1(MonoD) ⊂ MonoC.

Indeed, if f : A→ B is a morphism in C such that L(f) is a monomorphism, and g, h : C → A
are morphisms in C such that fg = fh, then L(f)L(g) = L(f)L(h), whence L(g) = L(h), as
L(f) is a monomorphism. Since L is faithful, we can conclude that g = h and therefore that f
is a monomorphism.

It follows that if M is an injective model category, and K = (K,Δ, ε) is a comonad on M
such that K preserves monomorphisms, then every element of U−1

K
(Cof) is a monomorphism

of K-coalgebras, since UK : MK →M is faithful for all comonads K.

To construct one type of Postnikov factorization in the category of coalgebras over a comonad
K, we make inductive arguments based on the following sort of compatibility between K and
extra structure on the model category on which it acts. Moreover, in order for condition (a)
of Theorem 4.7 to hold for the cofree K-coalgebra adjunction, certain towers should satisfy a
Mittag–Leffler-type condition.

Definition 5.6. A comonad K on a model category M that has a Postnikov presentation
(X,Z) and filtered weak equivalences allows inductive arguments if (K0) and the axioms below
hold, where Wn = U−1

K
(WEn) and C = U−1

K
(Cof).
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(K5) There is some k such that the composition of any tower of countable length in PostFKX ∩
Wn is in Wn−k, for all n � k − 1.
(K6) For all n � −1 and for all i : (C, γ)→ (D, δ) ∈ C ∩Wn, the induced morphism

((i′′u)�, i) : (C, γ) −→ FKQ×FKP (D, δ)

is in Wn+1, where

C

i

��

u �� e

i′

��
D �� P

is a pushout in M, and

e
i′ ��

i′′

∼
���

��
��

��
� P

Q

q
		�������

is a factorization with i′′ ∈ Cof ∩WE and q ∈ PostX.

Remark 5.7. Axiom (K5) can sometimes be replaced by an axiom that should be easier
to check. Let K be a comonad on M such that inverse limits and pullbacks in MK are created
in M and such that the following axiom holds.

(K5′) There is some k such that the composition of any tower of morphisms in PostK(X) ∩WEn

is in WEn−k for all n � k − 1.

Then K satisfies axiom (K5), since the fact that pullbacks and inverse limits of K-coalgebras
are created in M implies that UK(PostFK(X) ∩Wn) ⊆ PostK(X) ∩WEn.

In last two sections of this paper we consider examples of tractable comonads that allow
inductive arguments; we plan to treat further examples in future work.

Our goal in this section is to apply Theorem 4.7 to proving the following existence result.

Theorem 5.8. Let M be a model category with filtered weak equivalences and Postnikov
presentation (X,Z) such that Z ⊆ PostX.

If K is a tractable comonad on M that allows inductive arguments, then the category of
K-coalgebras, MK, admits a model category structure such that

CofMK
= U−1

K
(Cof), WEMK

= U−1
K

(WE) and FibMK
= P̂ostFKX.

Remark 5.9. If (X,Z) = (Fib,Fib ∩WE), the generic Postnikov presentation, then it is
trivially true that Z ⊆ PostX.

We begin the proof of Theorem 5.8 with the relatively simple observation that condition (a)
of Theorem 4.7 is satisfied under the hypotheses above.

Proposition 5.10. Let M be a model category with filtered equivalences and a Postnikov
presentation (X,Z) such that Z ⊆ PostX. If K is a comonad on M such that axioms (K0), (K4)
and (K5) hold, then UK(PostFKZ) ⊆WE.
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Proof. Since Z ⊆ PostX,
FKZ ⊆ FKPostX ⊆ PostFKX

because FK commutes with limits. As PostFKX is closed under pullbacks and composition of
towers (Remark 4.5), it follows that PostFKZ ⊆ PostFKX. On the other hand, axiom (K4) implies
that any morphism in PostFKZ is the composition of a tower of weak equivalences. By axiom
(K5), the composition of any tower in PostFKX ∩W is in W, and therefore UK(PostFKZ) ⊆WE.

In the next two subsections, we prove that conditions (b) and (c) of Theorem 4.7 also hold
under the hypotheses of Theorem 5.8, thus completing its proof.

5.1. The first Postnikov factorization

In the following proposition, which generalizes [9, Lemma 1.15], we provide conditions under
which the adjunction UK : MK � M : FK satisfies condition (b) of Theorem 4.7.

Throughout this section, C = U−1
K

(Cof) and W = U−1
K

(WE).

Proposition 5.11. Let M be a model category, and let Z be a subset of Fib ∩WE such
that every morphism f in M admits a factorization f = qj, where q ∈ PostZ and j ∈ Cof.

If K is a comonad on M satisfying axioms (K0)–(K3), then every morphism f in MK admits
a factorization f = qj, where q ∈ PostFKZ and j ∈ C.

Proof. Let e denote a terminal object in M. Observe that since FK is a right adjoint, FKe is
a terminal object in MK.

Let f : (C, γ)→ (D, δ) be a morphism of K-coalgebras. Let

UK(C, γ) = C

j′


�����������
! �� e

Q

q′

����������

be a factorization of the unique map in M from C to e with j′ ∈ Cof and q′ ∈ PostZ, the
existence of which is guaranteed by the hypothesis on Z.

Taking transposes, we obtain a commuting diagram:

(C, γ)

(j′)# ���
��

��
��

��
! �� FKe

FKQ

FKq′



								

Since FK is a right adjoint and therefore preserves pullbacks and inverse limits,

FK(PostZ) ⊆ PostFKZ,

whence FKq′ ∈ PostFKZ. Moreover, the morphism (j′)# admits a factorization

(C, γ)

γ
���

��
��

��
��

(j′)# �� FKQ

FKC

FKj′

��










where γ ∈ C by (K1) and FKj′ ∈ C by (K2), whence (j′)# ∈ C.
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Axiom (K3) now implies that

j := ((j′)#, f) : (C, γ) −→ FKQ× (D, δ)

is in C, where the existence of the product FKQ× (D, δ) is guaranteed by (K0). Furthermore,
the projection map

q : FKQ× (D, δ) −→ (D, δ)

is in PostFKZ, as it is the pullback over the unique morphism (D, δ)→ FKe of FKq′, and PostFKZ

is closed under pullbacks. Since f = qj, the proof is complete.

Corollary 5.12. Under the hypotheses of Theorem 5.8, condition (b) of Theorem 4.7 is
satisfied.

5.2. The second Postnikov factorization

We give an inductive proof of condition (c) in Theorem 4.7 for the category of coalgebras
over a comonad. Our proof, which generalizes that of [9, Lemmas 2.13 and 2.14], can be
viewed as dualizing the usual construction of semi-free models of dg-modules over a dg-algebra
by recursive attachment of generators, killing all the extra homology in degree n at the nth
stage of the process. In essence, to construct a factorization of a morphism of K-coalgebras
as a trivial cofibration followed by a fibration, we recursively ‘twist in cogenerators’ to kill
homotopy of increasingly higher degree, where ‘degree’ should be interpreted with respect to
a given filtration of weak equivalences.

Throughout this section, C = U−1
K

(Cof) and W = U−1
K

(WE).

Proposition 5.13. Under the hypotheses of Theorem 5.8, every morphism of K-coalgebras
f : (C, γ)→ (D, δ) admits a factorization f = pi, where i ∈ C ∩W and p ∈ PostFKX.

Proof. We first establish the base of the induction: f admits a factorization p−1i−1,
where i−1 ∈ U−1

K
(Cof ∩WE−1) and p−1 ∈ PostFKX. Recall that WE−1 = MorM, whence Cof ∩

WE−1 = Cof.
Let

UK(C, γ) = C

j′


�����������
! �� e

Q

q′

����������

be a factorization of the unique map in M from C to e with j′ ∈ Cof ∩WE and q′ ∈ PostX, the
existence of which follows from the hypothesis that (X,Z) is a Postnikov presentation of M.

Taking transposes, we obtain a commuting diagram:

(C, γ)

(j′)# ���
��

��
��

��
! �� FKe

FKQ

FKq′



								

Since FK is a right adjoint and therefore preserves pullbacks and inverse limits,

FK(PostX) ⊆ PostFKX,
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whence FKq′ ∈ PostFKX. Moreover, just as in the proof of Proposition 5.11, axioms (K1) and
(K2) imply that (j′)# ∈ C, whence, by axiom (K3),

i−1 := ((j′)#, f) : (C, γ) −→ FKQ× (D, δ)

is in C as well; the product in the target exists by (K0). Also as in the proof of Proposition 5.11,
the projection map

p−1 : FKQ× (D, δ) −→ (D, δ)

is in PostFKX.
We now establish the inductive step of our proof: if

in : (C, γ) −→ (Cn, γn) ∈ U−1
K

(Cof ∩WEn),

for some n � −1, then there exist

in+1 ∈ (C, γ) −→ (Cn+1, γn+1) and pn+1 : (Cn+1, γn+1) −→ (Cn, γn)

such that in+1 ∈ U−1
K

(Cof ∩WEn+1), pn+1 ∈ PostFKX and in = pn+1in+1. Applying axioms
(K0) and (K6) to in, we obtain an (n + 1)-equivalence

jn+1 : (C, γ) −→ FKQn ×FKPn
(Cn, γn),

where Pn is the cofiber of UKin (which represents what we want to ‘kill’, at least in filtration
n, by ‘twisting in cogenerators’), and Qn is an acyclic ‘based path object’ over Pn. Axiom (K6)
tells us essentially that twisting the cofree coalgebra on the ‘cogenerator object’ Qn together
with (Cn, γn) over the cofree coalgebra on Pn ‘kills the homotopy of the cofiber in filtration n’.

Since PostFKX is closed under pullbacks, the projection

rn+1 : FKQn ×FKPn
(Cn, γn) −→ (Cn, γn)

is in PostFKX. We then apply Proposition 5.11 to write jn+1 = qn+1in+1 with in+1 : (C, γ)→
(Cn+1, γn+1) such that in+1 ∈ C, and qn+1 ∈ PostFKZ. Here, U−1

K
(qn+1) is a weak equivalence

by Proposition 5.10 and U−1
K

(jn+1) is in WEn+1, so U−1
K

(in+1) is in WEn+1 by (WE1). Thus,
as required, in+1 ∈ U−1

K
(Cof ∩WEn+1). Since PostFKZ ⊆ PostFKX, the composition rn+1qn+1 =

pn+1 is in PostFKX as required.
We know thus that there exists a commuting diagram in MK

(C, γ)

f

��

i−1

���
��

��
��

��
��

��
��

i0

��������������������������

in

��












































(D, δ) (C−1, γ−1)p−1
���� (C0, γ0)p0

���� · · ·
p1
���� (Cn, γn)

pn

���� · · ·
pn+1
����

where UKin ∈WEn for all n � −1. By axiom (WE1) it follows that UKpn ∈WEn−1 for all
n � 0. Axiom (K5) then implies that there is some k such that the partial composition of the
tower

p∞,n : lim
m

(Cm, γm) −→ Cn

satisfies UKp∞,n ∈WEn−k−1 for all n � k.
Let

i∞ = lim
m

im : (C, γ) −→ lim
m

(Cm, γm).

Since p∞,n ◦ i∞ = in for all n, axiom (WE1) implies that UKi∞ = WEn−k−2 for all n � k, from
which it follows that

UKi∞ ∈WE.



Page 18 of 33 KATHRYN HESS AND BROOKE SHIPLEY

Moreover, the composition

p∞ : lim
m

(Cm, γm) −→ (D, δ)

of the entire tower is in PostFKX , since pn ∈ PostFKX for all n, and PostFKX is closed under
inverse limits. Finally,

f = p∞i∞,

as f = pnin for all n.
If the model category structure on M is injective, then the factorization f = p∞i∞ is of the

desired form. Indeed, to conclude that UKi∞ is a monomorphism in M, it suffices to know
that at least one of the morphisms in : C → Cn is a monomorphism. The proof is therefore
complete in this case.

More generally, we can apply Proposition 5.11 to i∞, obtaining a factorization

(C, γ) �� i �� (C ′, γ′)
q �� �� limn(Cn, γn)

of i∞, where i ∈ C and q ∈ PostFKZ. Since, Z ⊆ PostX by hypothesis, q ∈ PostFKX, while
Proposition 5.10 implies that UKq ∈WE. It follows then from ‘two-out-of-three’ for WE that
UKi ∈WE as well. The desired factorization of f is therefore

(C, γ) �� i
∼ �� (C ′, γ′)

p∞◦q �� �� (D, δ) .

5.3. Proving axiom (K6)

Experience with explicit examples has shown that to prove that axiom (K6) holds for a certain
comonad K on M, it is often easier to break the problem into two parts: proving two extra
axioms about n-equivalences and a certain ‘stability’ (or ‘Blakers–Massey’) axiom hold in M,
then showing that a stronger version of (K4) holds, which implies (K6).

Proposition 5.14. Let M be a model category with Postnikov presentation (X,Z) such
that Z ⊆ PostX and with filtered weak equivalences such that the following axioms hold:

(WE2) If

X

��

�� i �� Y

��
Z �� j �� P

is a pushout diagram in M, where i ∈ Cof ∩WEn, then j ∈ Cof ∩WEn as well.
(WE3) For each n, there is a class of special n-equivalences, W̃En, such that

WEn+1 ⊆ W̃En ⊆WEn

and if f, g are composable, gf ∈WEn, and g ∈ W̃En, then f ∈WEn.
(S) Given a commuting diagram in M

A

i ∼n

��

��

k

��

B��

∼
j

����
��

��
��

��

• ��

������
��

��
�

•
p �� ���

��
��

��
�

C �� P
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in which the outer square is a pushout, the lower inscribed square is a pullback, i ∈
Cof ∩WEn, j ∈ Cof ∩WE and p ∈ PostX, the induced map k from A into the pullback
is an (n + 1)-equivalence.

A comonad K on M satisfies axioms (K4) and (K6) if it satisfies the following condition.

(K4′) For every n � −1 and every pullback diagram in M

E ×B D

����

�� E

∼np

����
D = UK(D, δ)

f �� B

where p ∈ PostX ∩WEn, the induced morphism

UK(FKE ×FKB (D, δ)) −→ E ×B D

is a special (n + 1)-equivalence (that is, in W̃En+1).

Remark 5.15. The induced morphism in axiom (K4′) is the one obtained by applying the
universal property of pullbacks to the commuting diagram:

UK(FKE ×FKB (D, δ))
(εE ,IdD)

��

��

�� UKFKE

��

εE

���
��������

E ×B D

��

�� E

q

��

D
=

��������������������
UKf�

�� UKFKB
εB

���
��

��
��

��

D
f �� B

where f � : (D, δ)→ FKB is the transpose of f .

Proof. First, we show that (K4′) implies (K4). If p ∈ Z, then p is a trivial fibration and
hence so is the pullback map E ×B D → D. Since p ∈ PostX ∩WEn for all n, (K4′) implies that
UK(FKE ×FKB (D, δ))→ E ×B D is in WEn+1 for all n and hence is a weak equivalence. The
composition of these two maps is the weak equivalence required in (K4).

To see that (K4′) implies (K6), consider

i : (C, γ) −→ (D, δ) ∈ U−1
K

(Cof ∩WEn)

for some n � −1. Consider the pushout

C

i ∼n

��

�� e

��
D

u �� P

in M, where e is a terminal object. Axiom (WE2) implies that the map e→ P is an n-
equivalence.
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Since (X,Z) is a Postnikov presentation, there is a factorization

e
∼n ����

j

∼
���

��
��

��
� P

Q

q
		�������

with j ∈ Cof ∩WE and q ∈ PostX. By axiom (WE1), q ∈WEn.
We can therefore apply axiom (S) to the diagram

C

i ∼n

��

��

k

��

e��

∼
j

����
��

��
��

∼n

��

Q×P D ��

�������������
Q

q �� ���
��

��
��

D �� P

and conclude that the induced morphism k : C → Q×P D is an (n + 1)-equivalence. Applying
axiom (K4′) to the pullback diagram:

Q×P D

����

�� Q

q∼n

����
D = UK(D, δ) u �� P

we conclude that the natural morphism

UK(FKQ×FKP (D, δ)) −→ Q×P D

is in W̃En+1. On the other hand, k : C → Q×P D factors as

C = UK(C, γ) −→ UK(FKQ×FKP (D, δ)) −→ Q×P D,

whence axiom (WE3) implies that UK(C, γ)→ UK(FKQ×FKP (D, δ)) is an (n + 1)-equivalence
as required.

6. Homotopy theory of comodules over corings

As in Section 3.2, let R be a commutative ring, and let Ch�0
R denote the category of non-

negatively graded chain complexes of R-modules, endowed with its usual graded tensor product.
Let A be a differential graded (dg) algebra, and V an A-coring, that is, a comonoid in the
category of A-bimodules. We then let MA and MV

A denote the categories of right A-modules
and of right V -comodules in the category of right A-modules, respectively.

In this section, we apply Theorem 5.8 to establishing the existence of a model category
structure on MV

A that is left-induced from the ICM structure on MA (Proposition 3.11), under
reasonable conditions on V . We then construct in the next section explicit fibrant replacement
functors in MV

A , under further conditions on R, A and V . We end this section with concrete
examples of dg R-algebras and corings to which our results apply.

Remark 6.1. The model category structure on MV
A studied here plays an important role

in establishing an interesting relationship among the notions of Grothendieck descent, Hopf–
Galois extensions and Koszul duality (see the forthcoming paper of A. Berglund and K. Hess,
‘Grothendieck descent, Hopf–Galois extensions and Koszul duality’, 2012).



HOMOTOPY THEORY OF COALGEBRAS OVER A COMONAD Page 21 of 33

6.1. Existence of the model category structure

The goal of this section is to prove the following theorem, which generalizes [9, Theorem 2.10].

Theorem 6.2. Let R be a semihereditary commutative ring and A an augmented dg
R-algebra such that H1A = 0. If V is an A-coring that is semifree as a left A-module on a
generating graded R-module X such that

(1) H0(R⊗A V ) = R, H1(R⊗A V ) = 0, and
(2) Xn is R-free and finitely generated for all n � 0,

then the category MV
A admits a model category structure left-induced from the ICM structure

on MA by the adjunction

MV
A

U

�
−⊗AV

MA,

where U denotes the forgetful functor.

Remark 6.3. For any dg R-algebra A and A-coring V with comultiplication Δ and counit
ε, it is clear that MV

A = (MA)KV
, where KV denotes the comonad (−⊗A V,−⊗A Δ,−⊗A ε)

on MA.

Remark 6.4. Recall that a commutative ring R is semihereditary if every finitely generated
ideal of R is projective [21, Chapter 4]. Examples of semihereditary rings include semisimple
rings, principal ideal domains, rings of integers of algebraic number fields and valuation rings.
The requirement that R be semihereditary arises from a connectivity argument in the proof of
Theorem 6.2 for which it is important that every submodule of a flat R-module be flat, which
holds for semihereditary rings [21, Theorem 9.25].

In order to apply Theorem 5.8 to proving Theorem 6.2, we need an appropriate notion of
filtered weak equivalences in MA.

Definition 6.5. For all n � −1, let WEn be the set of morphisms f : M → N of right A-
modules such that Hkf is an isomorphism for all k < n and a surjection for k = n. The elements
of WEn are called n-equivalences. The special n-equivalences, W̃En, required in (WE3) are the
n-equivalences such that Hkf is an isomorphism for k = n.

The connectivity arguments we give below require the following elementary property of
n-equivalences.

Lemma 6.6. Let n � 0. If a chain map f : Y → Z is an n-equivalence and f1 : Y1 → Z1 is
surjective, then f0 : Y0 → Z0 is surjective as well.

Proof. For any chain map f : Y → Z, there is a commuting diagram of short exact
sequences:

0 �� d(Y1)

f0

��

�� Y0

f0

��

�� H0(Y )

H0f

��

�� 0

0 �� d(Z1) �� Z0
�� H0(Z) �� 0
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where d denotes the differentials on both Y and Z. If f : Y → Z is an n-equivalence of chain
complexes for some n � 0, then H0f is at least a surjection. On the other hand, if f1 is
surjective, then the restriction of f0 to d(Y1) is surjective. Thus, under the hypothesis of the
lemma, both the right-hand and the left-hand vertical morphisms in the diagram above are
surjections, which implies that the middle morphism is also a surjection.

Theorem 6.2 is a consequence of the sequence of lemmas below.

Lemma 6.7. If A is any dg R-algebra, then axioms (WE1), (WE2), (WE3) and (S) hold in
MA, endowed with its ICM structure, the generic Postnikov presentation (Fib,Fib ∩WE) and
the filtered weak equivalences defined above.

Proof. Axioms (WE1) and (WE3) follow easily from the definitions of WEn and W̃En. To
prove (WE2), observe that a monomorphism of A-modules is an n-equivalence if and only if
its cokernel is (n + 1)-connected. Since cokernels are preserved under pushout, (WE2) holds.

We now prove that a particularly strong version of axiom (S) holds in MA. Consider a
commuting diagram in MA:

M

i

��

f ��

k

��

N

∼
j

����
��

��
��

i′

��

P
f ′′

��

����
��

��
��

Q

p
���

��
��

��
�

M ′ f ′
�� N ′

in which the outer square is a pushout, the lower inscribed square is a pullback, i is a
monomorphism, j is a monomorphism and a quasi-isomorphism, and p is a surjection. We
show that the induced map k from M into the pullback P is always a quasi-isomorphism.

We remark first that k : M → P is a monomorphism, since i is a monomorphism (cf. proof
of Lemma 5.3). Showing that k is a quasi-isomorphism is therefore equivalent to proving that
P/M is acyclic.

Let q : Q→ Q/N denote the quotient map. Since j is a quasi-isomorphism, Q/N is acyclic.
We prove that qf ′′ : P → Q/N induces an isomorphism P/M ∼= Q/N , implying that P/M is
acyclic, as desired.

It is immediate that Im k ⊆ ker qf ′′. Writing

P = {(x′, y) ∈M ′ ×Q | f ′(x′) = p(y)},
we see that if (x′, y) ∈ ker qf ′′, then there exists z ∈ N such that j(z) = y. Since f ′(x′) =
pj(z) = i′(z), and N ′ is the pushout of f and i, we conclude that there exists x ∈M such that
x′ = i(x) and z = f(x), whence k(x) = (x′, y), that is, ker qf ′′ ⊆ Im k. Thus, ker qf ′′ = Im k,
and so qf ′′ induces an isomorphism P/M ∼= Q/N .

Lemma 6.8. Under the hypotheses of Theorem 6.2, all limits in MV
A are created in MA.

Proof. Since V is A-semifree, the endofunctor −⊗A V on MA preserves kernels and
therefore pullbacks as well, as any pullback in MA can be calculated as a kernel. It follows
that pullbacks in MV

A are created in MA.
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To conclude, we prove that arbitrary products in MV
A are also created in MA. For every

n � 0, let Bn = {xn1, . . . , xnmn
} be an R-basis of Xn. Let {Mα | α ∈ J} be any set of right

A-modules. The natural map(∏
α∈J

Mα

)
⊗X ∼=

(∏
α∈J

Mα

)
⊗A V −→

∏
α∈J

(Mα ⊗A V )

∼=
∏
α∈J

(Mα ⊗X) : (yα)α ⊗ x �−→ (yα ⊗ x)α

admits a non-canonical inverse∏
α∈J

(Mα ⊗A V ) −→
(∏

α∈J

Mα

)
⊗A V

given in degree n by∏
α∈J

n⊕
k=0

mn−k⊕
j=1

(Mα)k · xn−k,j −→
n⊕

k=0

mn−k⊕
j=1

(∏
α∈J

Mα

)
k

· xn−k,j ,⎛⎝ n∑
k=0

mn−k∑
j=1

yα,k,j · xn−k,j

⎞⎠
α

�−→
n∑

k=0

mn−k∑
j=1

(yα,k,j)α · xn−k,j .

The functor −⊗A V therefore commutes with products, whence products in MV
A are created

in MA.

Lemma 6.9. Under the hypotheses of Theorem 6.2, axiom (K4′) holds for the comonad
KV , with respect to its ICM structure, the generic Postnikov presentation (Fib,Fib ∩WE) and
the filtered weak equivalences defined above.

Remark 6.10. It is easy to prove (K4) directly, but we obtain it here as a consequence of
(K4′), which we prefer to prove, as it also implies (K6).

Proof. Let (D, δ) be an object in MV
A , and let f : D → B be a morphism in MA, inducing

a morphism f � : (D, δ)→ (B ⊗A V,B ⊗A Δ) in MV
A . Let p : E → B be a fibration in the ICM

structure and an n-equivalence. We treat separately the cases n = −1 and n � 0.
Consider first the case n = −1, that is, p is any fibration in the ICM structure on MA.

Note that condition (1) of Theorem 6.2 implies that for all right A-modules M , the counit ε
induces isomorphisms (M ⊗A V )k

∼= Mk for k = 0, 1. The map (E ⊗A V )×B⊗AV D → E ×B D
is therefore an isomorphism in degrees 0 and 1, which implies that it induces an isomorphism
in homology in degree 0 and therefore is a special 0-equivalence (In fact, this is a 1-equivalence,
since the isomorphism in degree 1 implies a surjection in homology in degree 1.)

If n � 0, we argue as follows. The fibrations in the original right-induced model structure on
MA (cf. proof of Proposition 3.11) are exactly the chain maps that are surjective in positive
degrees, which implies that the fibrations in the ICM structure are also surjective in positive
degrees. On the other hand, by Lemma 6.6, if n � 0, then an n-equivalence is surjective in degree
0 if it is surjective in degree 1. It follows that if p : E → B is a fibration in the ICM structure
and an n-equivalence for some n � 0, then it is surjective in every degree. We can then apply
a simple exact sequence argument to show that the fiber F = ker p of p is (n− 1)-connected,
that is, its homology is 0 through degree n− 1.
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Since, as seen in the proof of Lemma 6.8, −⊗A V commutes with limits, there is a commuting
diagram of short exact sequences of A-modules:

0 �� F ⊗A V

��

�� (E ⊗A V )×B⊗AV D

��

�� D �� 0

0 �� F �� E ×B D �� D �� 0

(6.1)

where the leftmost and middle vertical maps are induced by ε. To conclude, we show that the
hypotheses on X imply that the leftmost map in the diagram is a special (n + 1)-equivalence,
whence the middle map is also a special (n + 1)-equivalence, as desired.

Filtering F ⊗A V by degree in X, we obtain a first-quadrant spectral sequence converging
to H∗(F ⊗A V ), with E0

p,q = Fq ⊗ (R⊗A V )p and

E1
p,q = Hq(F )⊗ (R⊗A V )p,

since X is degreewise R-free. Note that since R is semihereditary, and R⊗A V is degreewise
R-free and therefore R-flat, the Künneth Theorem (in the guise of [21, Theorem 11.31]) can
be applied to prove the existence of short exact sequences

0 −→ HqF ⊗Hp(R⊗A V ) −→ E2
p,q −→ TorR(HqF,Hp−1(R⊗A V )) −→ 0

for all q � 0, p � 1, while E2
0,q
∼= HqF ⊗H0(R⊗A V ) ∼= HqF for all q � 0, since H0(R⊗A V ) =

R. The connectivity condition on F therefore implies that the second page of the spectral
sequence satisfies E2

p,q = 0 for all q < n. Consequently, Hm(F ⊗A V ) = 0 for all m < n, while
Hn(F ⊗A V ) ∼= Hn(F ).

It remains only to establish the isomorphism Hn+1(F ⊗A V )→ Hn+1F . It follows from
the connectivity condition on F that E2

p,n−p+1 �= 0 only if p = 0, as H1(R⊗A V ) = 0. Since
E2

0,n+1
∼= Hn+1F , the desired isomorphism holds if no non-zero differential hits E2

0,n+1.
The source of the only possible non-zero differential with target E2

0,n+1 is

E2
2,n = HnF ⊗H2(R⊗A V ).

Note since H1(R⊗A V ) = 0, there is no Tor-term in E2
2,n. The differential

d2
2,n : HnF ⊗H2(R⊗A V ) −→ Hn+1F

is given by d2
2,n([y]⊗ [x]) = [y] · [dx], where · denotes the induced action of H∗A on H∗F . Note

that for an arbitrary element x in X, dx can have a summand in A, and it is the class in H1A of
this summand that acts on [y] for [x] ∈ H2(R⊗A V ). Since H1A = 0 by hypothesis, we conclude
that d2

2,n = 0 and therefore that the map Hn+1(F ⊗A V )→ Hn+1F is an isomorphism. The
leftmost vertical map in diagram (6.1) is therefore a special (n + 1)-equivalence.

Lemma 6.11. Under the hypotheses of Theorem 6.2, axiom (K5′) holds for the comonad KV

on MA, with respect to its ICM structure, the generic Postnikov presentation (Fib,Fib ∩WE)
and the filtered weak equivalences defined above.

Proof. Note first that axiom (K5′) holds trivially for n = −1. Consider a tower

· · · pk+2−−−→ Xk+1
pk+1−−−→ Xk

pk−→ · · · p2−→ X1
p1−→ X0

with each pk in PostFib⊗AV ∩WEn, where Fib denotes the class of fibrations in the ICM structure
on MA, and n � 0. Each pk : Xk → Xk−1 is the composition of a tower of length λ for some
ordinal λ

· · · pk,β+2−−−−→ Xk,β+1
pk,β+1−−−−→ Xk,λ

pk,β−−−→ · · · pk,2−−→ Xk,1
pk,1−−→ Xk,0 = Xk−1,
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where there is a fibration qβ : Eβ → Bβ in the ICM structure on MA and a pullback in MA,

Xk,β

pk,β

��

�� Eβ ⊗A V

qβ⊗AV

��
Xk,β−1 �� Bβ ⊗A V

for every ordinal β < λ.
Since qβ is surjective in positive degrees, so are qβ ⊗A V and thus pk,β as well, for all k and

β. Lemma 3.5.3 in [27], which generalizes easily to higher ordinals, therefore implies that each
pk is surjective in positive degrees. By Lemma 6.6, since pk is also an n-equivalence for some
n � 0, it is surjective in degree 0 as well.

It follows now from Theorem 3.5.8 in [27] that there are isomorphisms

Hm(lim
k

Xk)
∼=−→ lim

k
Hm(Xk)

∼=−→ Hm(X0)

for all m < n, since Hmpk is an isomorphism for all k, and surjections

Hn(lim
k

Xk) −→ lim
k

Hn(Xk) −→ Hn(X0),

since Hnpk is a surjection for all k. In other words, the composition

lim
k

Xk −→ X0

is an n-equivalence.
Note that we have proved a strong version of (K5′), as the degree of equivalence of the

composition is the same as the degree of equivalence of each morphism in the tower.

Proof of Theorem 6.2. Since V is A-semifree, the functor −⊗A V preserves monomor-
phisms. Lemma 5.3 implies therefore that axioms (K0)–(K3) hold for the comonad KV .
Lemmas 6.7 and 6.9 together imply that axioms (K4) and (K6) hold for KV , by Proposi-
tion 5.14. Finally, axiom (K5) for KV follows from Lemma 6.11, as explained in Remark 5.7.
The comonad KV is therefore tractable and allows inductive arguments, so we can apply
Theorem 5.8 to conclude.

Examples 6.12. Two corings of great interest in the context of Hopf–Galois extensions [9]
and Grothendieck descent [10] both satisfy the hypotheses of Theorem 6.2, under reasonable
conditions.

(1) If A is an augmented, dg R-algebra such that H1A = 0, and K is a dg Hopf algebra such
that H0K0 = R, H1K1 = 0, and Kn is R-free and finitely generated for all n, then the coring
A⊗K (see [9]) satisfies the hypotheses of Theorem 6.2. For example, if X is a 2-reduced
simplicial set with finitely many non-degenerate simplices in each degree, and Ω and C∗ denote
the cobar construction functor and the reduced normalized chain functor, respectively, then
ΩC∗X is one such dg Hopf algebra [11].

(2) Let B and A be augmented dg R-algebras such that A is semifree as a left B-module on
a generating graded R-module Y such that H0(R⊗B A) = R, H1(R⊗B A) = 0, and Yn is R-
free and finitely generated for all n. If H1A = 0, then the canonical coring A⊗B A associated to
the inclusion B ↪→ A (see [10]) satisfies the hypotheses of Theorem 6.2, as it is left A-semifree
on Y .
For example, if B is an augmented Hirsch algebra [13] such that B0 = R and Bn is R-free
and finitely generated for all n, then the inclusion of B into the acyclic bar construction
B ⊗tB

BB is a multiplicative extension of this type. More generally, if t : K → B is any Hopf–
Hirsch twisting cochain (see the forthcoming paper of A. Berglund and K. Hess, ‘Grothendieck
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descent, Hopf–Galois extensions and Koszul duality’, 2012), where H0K = R, H1K = 0, and
Kn is R-free and finitely generated for all n, then the multiplicative extension B → B ⊗t K is
also of this type.

7. Fibrations of comodules over corings

In this section, we provide examples of fibrations in the ICM structure on MA and in the induced
structure on MV

A , where we require that R be a commutative ring that is semihereditary and
either Artinian or a Frobenius ring over a field. In the case of MV

A , we assume furthermore
that the non-differential algebra �A underlying A is a connected (that is, A0 = R), nearly
Frobenius algebra [17, Definition 2.4]. In particular, by [17, Theorem 2.7] (see also the remark
immediately following the proof), if R is Artinian or a Frobenius ring over a field, then a graded
module over a connected, nearly Frobenius R-algebra is injective if and only if it is projective
if and only it is flat.

Examples of nearly Frobenius algebras include any algebra underlying a finite dimensional,
cocommutative Hopf algebra over R, if R is a field [16, Section 3]. More generally, the colimit
of a filtered, strongly coherent diagram of nearly Frobenius algebras is nearly Frobenius [17,
Definition 2.5, Theorem 2.6]. In particular, the mod p Steenrod algebra is nearly Frobenius.

We need to introduce some helpful notation before stating the main theorem of this section.

Notation 7.1. For any dg R-algebra A, let TA denote the free monoid functor on the
category of A-bimodules. In other words, if M is an A-bimodule, then

TAM = A⊕
⊕
n�1

M⊗n
A ,

which is naturally a monoid in the category of A-bimodules, via concatenation. Let y1| · · · |yn

denote an arbitrary element of tensor length n.

Notation 7.2. For any X ∈ ObCh�0
R with X0 = 0, we let s−1X denote the desuspension

of X, that is, s−1Xn = Xn+1 for all n � 0. Let path(X) = (X ⊕ s−1X,D), with Dx = dx +
s−1x and Ds−1x = −s−1(dx), where d is the differential on X. Let eX : Path(X)→ X denote
the natural quotient map.

Note that if M is an A-module (respectively, a V -comodule in right A-modules) such
that M0 = 0, then s−1M and Path(M) both naturally inherit an A-action (respectively, a
V -coaction and A-action) from M such that the projection map eM is a morphism in MA

(respectively, MV
A), justifying our use of the same notation for this functor on Ch�0

R , MA and
MV

A . Observe moreover that

Path(FKV
M) ∼= FKV

Path(M)

for all right A-modules M .

Notation 7.3. If (M, δ) ∈ ObMV
A , we write δ(x) = xi ⊗ vi (using the Einstein summation

convention) for all x ∈M . Similarly, for all v ∈ V , we write Δ(v) = vi ⊗ vi, where Δ is a
comultiplication on V .

Notation 7.4. We apply in this section the Koszul sign convention for commuting elements
of a graded module past each other or for commuting a morphism of graded modules past an
element of the source module. For example, if V and W are graded algebras and v ⊗ w, v′ ⊗ w′ ∈
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V ⊗W , then

(v ⊗ w) · (v′ ⊗ w′) = (−1)mnvv′ ⊗ ww′,

if v′ ∈ Vm and w ∈Wn. Furthermore, if f : V → V ′ and g : W →W ′ are morphisms of graded
modules, homogeneous of degrees p and q, respectively, then for all v ⊗ w ∈ Vm ⊗Wn,

(f ⊗ g)(v ⊗ w) = (−1)mqf(v)⊗ g(w).

Notation 7.5. When we need to be especially precise and careful, we use �X to denote
the graded R-module underlying a chain complex X. If it is clear from context, and there is
no risk of confusion, then both are denoted by X, to simplify notation.

The generalized cobar construction defined below is the tool we need to construct fibrant
replacements in MV

A . This is no great surprise as, for example, both the first author in [9]
and Positselski [18] showed that the usual one-sided cobar construction provided fibrant
replacements in the category of comodules over a dg coalgebra, at least over a field and under
certain finiteness conditions. It is nice to see, however, that this useful result generalizes to
comodules over corings, even if the proof is more delicate in the more general case.

Definition 7.6. Let A be a dg R-algebra and (V,Δ, ε, η) a coaugmented A-coring,
with coaugmentation coideal V̄ = coker(η : A→ V ). For all (M, δ) ∈ Ob MV

A , let ΩA(M ;V ;V )
denote the object in MV

A

(M ⊗A TA(s−1V̄ )⊗A V, dΩ),

where

dΩ(x⊗ s−1v1| · · · |s−1vn ⊗ w) = dx⊗ s−1v1| · · · |s−1vn ⊗ w

+ x⊗
n∑

j=1

±s−1v1| · · · |s−1dvj | · · · s−1vn ⊗ w

± x⊗ s−1v1| · · · |s−1vn ⊗ dw

± xi ⊗ s−1vi|s−1v1| · · · |s−1vn ⊗ w

+ x⊗
n∑

j=1

±s−1v1| · · · |s−1vj,i|s−1vi
j | · · · s−1vn ⊗ w

± x⊗ s−1v1| · · · |s−1vn|s−1wi ⊗ wi,

where all signs are determined by the Koszul rule, the differentials of M and V are both denoted
d, and both the right A-module structure and the V -comodule structure are induced from the
rightmost copy of V .

Remark 7.7. Any A-coring V that is left A-semifree on a generating graded module X
satisfying the hypotheses of Theorem 6.2 is naturally coaugmented. Its coaugmentation coideal
V̄ is semifree on the generating graded module X̄ such that X̄0 = 0 and X̄n = Xn for all n � 1.

We can now state precisely how fibrant replacements can be constructed in MV
A , under strong

enough conditions on R, A and V .

Theorem 7.8. Let R be a semihereditary commutative ring. Let A be a dg R-algebra and
V an A-coring satisfying the hypotheses of Theorem 6.2.
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If R is also Artinian or a Frobenius ring over a field, �A is nearly Frobenius, and the right
A-action on V satisfies

(a⊗ x) · b− (−1)mnab⊗ x ∈ A⊗X<m

for all a ∈ A, x ∈ Xm, b ∈ An and m,n � 0, then for all (M, δ) ∈ Ob MV
A such that �M is

�A-free, the coaction map δ : M →M ⊗A V factors in MV
A as

M

δ̃ 

�����������
δ �� M ⊗A V

ΩA(M ;V ;V )

p

�������������

where δ̃ is a trivial cofibration and p a fibration, specified by δ̃(x) = xi ⊗ 1⊗ vi and p(x⊗ 1⊗
w) = x⊗ w, while p(x⊗ s−1v1| · · · |s−1vn ⊗ w) = 0 for all n � 1. Moreover, both the source
and the target of p are fibrant in MV

A , whence ΩA(M ;V ;V ) is a fibrant replacement of M in
MV

A .

As Lemma 7.11 shows, we can set M = V in the statement above and obtain, in particular,
a factorization

V

Δ̃ 

����������
Δ �� V ⊗A V

ΩA(V ;V ;V )

p

�������������

in MV
A with Δ̃ a trivial cofibration and p a fibration between fibrant objects.

Example 7.9. Suppose that R is semihereditary and either Artinian or a Frobenius algebra
over a field, for example, R is a field. Both the Hopf–Galois coring A⊗K and the descent coring
A⊗B A of Examples 6.12 then satisfy the hypotheses of Theorem 7.8 if �A is nearly Frobenius.
For example, if R is a field, and �A underlies a cocommutative graded Hopf algebra over R that
is equal to the union of its finite-dimensional sub-Hopf algebras, then Theorem 7.8 applies.

Before proving Theorem 7.8, we establish a number of preparatory lemmas and propositions.
In particular, in order to construct fibrant replacements in MV

A , we need to know something
about fibrations and fibrant objects in MA.

Proposition 7.10. Let R be any commutative ring, and let A be a dg R-algebra. If E is
a right A-module such that �E is �A-injective, then

(1) E is fibrant in the ICM structure on MA, and
(2) if E0 = 0, then the projection eE : Path(E)→ E is a fibration in the ICM structure on

MA.

Proof. (1) To show that E is fibrant in MA, we consider an acyclic cofibration i : M
∼−→ N

and a morphism f : M → E in MA, and prove that f extends over N . Since i is an injection
and a quasi-isomorphism, there is a short exact sequence of A-module morphisms

0 −→M
i−→ N

q−→ N/M −→ 0,
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with N/M acyclic. Let HomA(−,−) denote the natural enrichment of MA over Ch�0
R . The

injectivity of �E implies that there is an induced short exact sequence of chain complexes

0 −→ HomA(N/M,E)
q∗
−→ HomA(N,E) i∗−→ HomA(M,E) −→ 0. (7.1)

Since i∗ is surjective, there is a morphism of �A-modules f ′ : N → E such that f ′ ◦ i = f .
Note that

i∗(df ′ − f ′d) = df − fd = 0,

that is, df ′ − f ′d ∈ ker i∗ = Im q∗. There exists therefore a unique A-linear morphism θ :
N/M → E, homogeneous of degree −1, such that q∗(θ) = df ′ − f ′d, whence q∗(dθ + θd) = 0.
Since q∗ is injective, dθ + θd = 0, that is, θ is a cycle in HomA(N/M,E), which is acyclic, as
N/M is acyclic and �E is injective. It follows that there is an A-linear morphism g : N/M → E,
homogeneous of degree 0, such that dg − gd = θ. Setting f̂ = f ′ − gq, we obtain a chain map
of A-modules such that f̂ ◦ i = f .

(2) The proof of this claim is very similar to that of (1). Recalling that Path(E) = (E ⊕
s−1E,D), we see that if

M
f ��

i ∼
��

Path(E)

eE

��
N

g �� E

(7.2)

is a commuting diagram in MA, then there is some A-linear morphism Υ : M → E of degree
+1 such that f = (gi, s−1Υ), which implies that dΥ−Υd = gi, that is, Υ is a contracting
homotopy for gi. Solving the lifting problem for the diagram (7.2) is therefore equivalent to
establishing the existence of an A-linear morphism Υ̂ : N → E of degree +1 such that Υ̂ ◦ i = Υ
and dΥ̂− Υ̂d = g.

To prove that Υ̂ exists, we proceed as in part (1), applying the short exact sequence (7.1)
to prove that some extension of Υ to N exists, then using the acyclicity of HomA(N/M,E) to
correct the differential of the extension.

The next lemma, which follows easily from old work on filtered rings and modules, lies
behind the conditions we have imposed on R and A, as it implies that, under the hypotheses
of Theorem 7.8, the right A-module underlying V is fibrant in the ICM structure on MA.

Lemma 7.11. Let A be graded R-algebra. If M is an A-bimodule such that

(i) as a left A-module, M is free on a generating graded module X, and
(ii) the right A-action on M satisfies

(a⊗ x) · b− (−1)mnab⊗ x ∈ A⊗X<m

for all a ∈ A, x ∈ Xm, b ∈ An and m,n � 0,

then M is filtered-free and therefore free as a right A-module.

Proof. Endow A with an increasing, multiplicative filtration, given by F pA = A for all p � 0
and F pA = 0 for all p < 0. Filter M as well, by F pM = A⊗X�p for all p � 0 and F pM = 0
for all p < 0. Note that the right A-action on M induces an R-linear map

F pM ⊗ F qA −→ F pM

for all p, q.
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Let E0
∗(A) and E0

∗(M) denote the graded R-modules associated to the filtrations above. It is
clear that E0

∗(A) is a graded R-algebra concentrated in degree 0, while E0
∗(M) is naturally a

free graded, right E0
∗(A)-module, on the generating graded module X. It follows then from [25,

Appendix: Proposition 2] that M is free as a right A-module, on a generating graded module
isomorphic to X.

The following consequence of Lemma 7.11 is crucial in the proof of Theorem 7.8.

Corollary 7.12. Under the hypotheses of Theorem 7.8, the right �A-module

�(M ⊗A V̄ ⊗An)

is injective for all n � 0.

Proof. By Lemma 7.11, �V̄ is a free right �A-module, which implies that each �(M ⊗A

V̄ ⊗An) is also �A-free on the right, since M is a free right �A-module. As we have assumed
that �A is nearly Frobenius, we can conclude that each �(M ⊗A V̄ ⊗An) is �A-injective.

We prove Theorem 7.8 inductively, repeatedly applying the following simple observation, the
easy proof of which we leave to the reader. Recall that pullbacks in MV

A are computed in MA

(Lemma 6.8).

Lemma 7.13. For any morphism f : M → N in MV
A such that N0 = 0, the pullback of f and

eN : Path(N)→ N is (M ⊕ s−1N,Df ), where Dfx = dx + s−1f(x) and Dfs−1y = −s−1(dy)
for all x ∈M and y ∈ N, where d denotes the differentials of both M and N .

Proof of Theorem 7.8. Note that any signs not given explicitly in this proof are always
consequences of the Koszul rule. We use s−k to denote the endofunctor on Ch�0

R given by k
iterations of s−1.

For all n � 0, consider the right A-module

Bn = (s−n(M ⊗A V̄ ⊗An+1), βn),

where

βns−n = (−1)−ns−n

⎛⎝d⊗A V̄ ⊗An+1 +
n∑

j=0

M ⊗A V̄ ⊗Aj ⊗A d⊗A V̄ ⊗An−j

⎞⎠ .

Corollary 7.12 implies that �Bn in �A-injective and therefore, by Proposition 7.10, Bn is fibrant
and eBn is a fibration in the ICM structure on MA for all n.

To begin the recursive construction of ΩA(M ;V ;V ), let

E0 = FKV
M = (M ⊗A V, d

(0)
Ω ),

where
d
(0)
Ω = d⊗A V + M ⊗A d.

Let
f1 = δ ⊗A V + M ⊗A Δ : E0 −→ FKV

B0,

where we are implicitly composing with the projection V → V̄ in the middle factor. A simple
calculation shows that f1 is a chain map. Moreover, it is a morphism of V -comodules, as it is
a sum of two such.
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According to Lemma 7.13, the pullback of f1 and of FKV
eB0 is

E1 = ((M ⊗A V )⊕ s−1(M ⊗A V̄ ⊗A V ), d(1)
Ω ),

where

d
(1)
Ω (x⊗ w) = dx⊗ w ± x⊗ dw + s−1(xi ⊗ vi ⊗ w + x⊗ wj ⊗ wj)

and

d
(1)
Ω s−1(x⊗ v ⊗ w) = −s−1(dx⊗ v ⊗ w ± x⊗ dv ⊗ w ± x⊗ v ⊗ dw),

that is, on M ⊗A V ,

d
(1)
Ω = d⊗A V + M ⊗A d + s−1(δ ⊗A V + M ⊗A Δ),

while on M ⊗A V̄ ⊗A V ,

d
(1)
Ω s−1 = −s−1(d⊗A V̄ ⊗A V + M ⊗A d⊗A V + M ⊗A V̄ ⊗A d).

The obvious projection map p1 : E1 → E0 is a morphism in MV
A , since it is the map given by

pulling FKV
eB0 back along f1.

The inductive step of the construction goes as follows. Suppose that for some N > 1, we
have constructed

En =

(
(M ⊗A V )⊕

n⊕
k=1

s−k(M ⊗A V̄ ⊗Ak ⊗A V ), d(n)
Ω

)
,

for all 1 � n < N , where d
(n)
Ω is defined so that on M ⊗A V̄ ⊗Ak ⊗A V ,

d
(n)
Ω s−k = (−1)−ks−k

⎛⎝d⊗A V̄ ⊗Ak ⊗A V +
k−1∑
j=0

M ⊗A V̄ ⊗Aj ⊗A d⊗A V̄ ⊗Ak−j−1 ⊗A V

+ M ⊗A V̄ ⊗Ak ⊗A d

⎞⎠
+ s−(k+1)

⎛⎝δ ⊗A V̄ ⊗Ak ⊗A V +
k−1∑
j=0

M ⊗A V̄ ⊗Aj ⊗A Δ⊗A V̄ ⊗Ak−j−1 ⊗A V

+ M ⊗A V̄ ⊗Ak ⊗A Δ

⎞⎠
for all 0 � k < n, while on M ⊗A V̄ ⊗An ⊗A V ,

d
(n)
Ω s−n = (−1)−ns−n

⎛⎝d⊗A V̄ ⊗An ⊗A V +
n−1∑
j=0

M ⊗A V̄ ⊗Aj ⊗A d⊗A V̄ ⊗An−j−1 ⊗A V

+ M ⊗A V̄ ⊗An ⊗A d

⎞⎠ ,

where we are implicity composing with the projection V → V̄ in the middle factors. The obvious
projection maps pn : En → En−1 are clearly morphisms in MV

A , for all n < N .
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Define fN : EN−1 → FKV
BN−1 so that fNs−k = 0 on M ⊗A V̄ ⊗Ak ⊗A V for all k < N − 1,

while on M ⊗A V̄ ⊗AN−1 ⊗A V

fNs−N+1 =s−N+1

⎛⎝δ ⊗A V̄ ⊗Ak ⊗A V +
N−1∑
j=0

M ⊗A V̄ ⊗Aj ⊗A Δ⊗A V̄ ⊗AN−j−2 ⊗A V

+ M ⊗A V̄ ⊗AN−1 ⊗A Δ

⎞⎠ ,

where we are implicitly composing with the projection V → V̄ in the middle factors, as usual.
As in the case of f1, it is easy to see that fN is a morphism of V -comodules. It is also a chain
map, since Δ is coassociative and (δ ⊗A V )δ = (M ⊗A Δ)δ.

Let EN denote the pullback of fN and FKV
eBN−1 . By Lemma 7.13,

EN =

(
(M ⊗A V )⊕

N⊕
k=1

s−k(M ⊗A V̄ ⊗Ak ⊗A V ), d(N)
Ω

)
,

where the differential d
(N)
Ω satisfies equations analogous to those satisfied by d

(n)
Ω for all n < N .

Moreover, the obvious projection map pN : EN → EN−1, which comes from the pullback, is a
morphism in MV

A .
Let Fib denote the class of fibrations in the ICM structure on MA. Since every �Bn is �A-

injective, eBn ∈ Fib for all n � 0, by Proposition 7.10. We have therefore constructed a tower
in MV

A

· · · −→ En pn

−→ En−1 −→ · · · −→ E1 p0

−→ E0,

where each pn is obtained by pulling back a morphism in FKV
(Fib), whence the composition

of the tower

lim
n

En −→ E0

is in PostFKV
(Fib) and is therefore a fibration in the induced model structure on MV

A .
To conclude we show that limn En = ΩA(M ;V ;V ). Observe that

�En ∼= (M ⊗A V )⊕
n⊕

k=1

M ⊗A (s−1V̄ )⊗Ak ⊗A V.

Let qn : ΩA(M ;V ;V )→ En denote the obvious quotient map, which is easily seen to be a chain
map that respects both the right A-action and the right V -coaction. Moreover, pnqn = qn−1

for all n. It remains therefore only to show that ΩA(M ;V ;V ), endowed with the maps qn,
satisfies the desired universal property.

Let N ∈ ObMV
A , and let {gn : N → En | n � 0} be a set of morphisms in MV

A such that
pngn = gn−1 for all n � 1. Note that (M ⊗A (s−1V̄ )⊗Ak ⊗A V )j = 0 for all j < k and for all k,
since (s−1V̄ )0 = 0 by hypothesis. It follows that if y ∈ Nn, then gn+k(y) = gn(y) for all k � 0.
We can therefore define g : N → ΩA(M ;V ;V ) by

y ∈ Nn =⇒ g(y) = gn(y),

obtaining thus a morphism in MV
A such that qng = gn, which is clearly unique.
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1. J. Adámek, ‘Colimits of algebras revisited’, Bull. Austral. Math. Soc. 17 (1977) 433–450.
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