Dynamics of cerebral glucose analysed in vivo with a four-state conformational model
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Introduction: Glucose is the primary fuel required for brain function and its supply to the brain occurs through facilitative
transporter proteins located in the blood-brain-barrier (BBB). Although steady-state transport models have been widely and reliably
describe the glucose transport mechanism in vivo, such models assume a constant glucose consumption rate (CMRyc). We now
evaluated brain glucose dynamics by employing a four-state conformational model [1] that accounts for transport inhibition, and a
dynamic method that allows distinguishing the parameters defining transport from CMRg [2].

Methods: Male Sprague-Dawley rats (n=6, 270+£20 g) were prepared and maintained during the NMR experiment under a-
chloralose anaesthesia as previously described [3]. After stable baseline of plasma glucose (Gyjasma), glucose [20% (w/v) solution] was
given as a bolus and then infused at a rate adjustable to the concomitantly measured plasma glucose concentrations to maintain stable
glycaemia level. After at least 2 hours of hyperglycaemia, infusion was stopped. Continuous NMR measurements were performed
during these glycaemia periods: baseline, step-function and decay (fig.1B). All experiments were carried out on an actively-shielded
9.4 T, 31 cm scanner (Varian/Magnex) using a homebuilt 10 mm "H quadrature surface coil. After shimming with FASTMAP [4], 'H
NMR spectra were acquired using SPECIAL [5] with TE of 2.8 ms and TR of 4 Table 1. Estimated kinetic parameters of glucose
s. The volume of interest (120 pL) included cortical and hippocampal areas. transport and consumption in the brain (mean+SE).

Spectra were analysed with LCModel [6]. A temporal resolution of 5 minutes Transport model

was sufficient to achieve CRLB lower than 20% for glucose at euglycaemia. Conformational  Reversible
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transport was used [1]. Brain glucose (Gin) is thus described by the expression g, (mm) 0.93+0.43 0.72+0.39

in Fig.1A, where T, and K, are the apparent maximum transport rate and half . m) 66.5+25.6 .

saturation constant, and Kj; represents the iso-inhibition constant for glucose  cmR,, (umolig/min) 0.56+0.09 0.58+0.12
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lower for the reversible model by increasing
the degrees of freedom in the absence of Figure 1. Panel A shovys the expression defining .the four-state conformation model. Note ‘that with
K. In addition, we verified that K; largely Ki>>Gurin the expression represents the reversible model. Panel B shows the best fit of the
1 > S conformational (green) and reversible (red) models to Gyin in @ representative data set (one rat).
exceeds Gprin. These results reinforce that Gpiasma Was interpolated for the time scale of Gpin (Orange). The estimated parameters (table 1)
the iso-inhibition term may be neglected were used to simulate Gy for @ given Gpasma function (C). Simulation of G at steady-state
from the model, suggesting fast Gpusmais shown in panel E.
isomerisation of the unloaded glucose carrier [1]. Therefore, we conclude that the reversible model [7] accurately describes the
dynamics of glucose transport in the rat brain for Gpuma. below 40 mM (fig 1D) and with Michaelis-Menten kinetics of glucose
transport.
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