
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. A. Schiper, président du jury
Prof. R. Guerraoui, directeur de thèse

Prof. P. Felber, rapporteur
Dr T. Harris, rapporteur

Prof. V. Kuncak, rapporteur

On the Performance of Software Transactional Memory

THÈSE NO 5386 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 1ER jUIN 2012

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE PROGRAMMATION DISTRIBUÉE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2012

PAR

Aleksandar Dragojević

To Marija for all her love and support.

Acknowledgements
I would first like to thank my thesis supervisor Rachid Guerraoui without whose advice and

guidance this thesis would not have been written. I also thank the president of the jury André

Schiper and the members of the jury Tim Harris, Pascal Felber, and Viktor Kuncak for reading

the preliminary version of the thesis and making sure that it is up to the high standards

required by EPFL. I would also like to thank people from Intel, Oracle Labs, and Microsoft

Research for giving me the opportunity to work with them during my summer internships,

and improve the way I think about research problems and solve them. I thank all the people I

worked with, talked with, and had lunches with, most of all: Yang Ni and Gilles Pokam from

Intel, Mark Moir, Virendra Marathe, Victor Luchangco, and Yossi Lev from Oracle, and Tim

Harris from Microsoft Research.

A big thank you goes to all former and current members of LPD lab at EPFL: my office mates

Michał Kapałka and Radu Banabic, lab’s secretary Kristine Verhamme, for helping with many

non-technical issues which made my life much easier, lab’s system administrator Fabien

Salvi, for keeping the computers running smoothly allowing me to focus on my work, Vincent

Gramoli, for the French version of thesis’ abstract, Dan Alistarh, Nikola Knežević, Seth Gilbert,

Marko Vukolić, Jesper Honig Spring, Maxime Monod, Florian Huc, Ron Levy, Victor Bushkov,

Mihai Letia, Giuliano Losa, Vasileios Trigonakis, Waheed Ghumman, and Maysam Yabandeh.

I would like to thank all the friends in Lausanne, most of all: Nedeljko Vasić, Nikola Knežević,

Mihailo Kolundžija, Matthieu Guerquin-Kern, Miloš Stanisavljević, Dejan Novaković, Sergey

Korovnikov, Alexander Sennhauser for providing many hours of insightful discussions and fun.

The support from my friends back home: Boris Jockov, Djukić Nenad, Miroslav Boljanović,

Vladimir Kukić, and the others, was also invaluable. The beers we had together played an

instrumental role in my completing this work.

Of course, I could have not become Dr. Aleksandar without all the support from my parents,

Štefanija and Milenko, and my sister Tanja. All the insightful discussions we had (and will keep

having) on Saturdays at 6pm helped immensely. Last but certainly not least, I would like to

thank my wife Marija for all the selfless support, understanding, and love I have received from

her. I feel truly blessed to have such a warm, supporting, and caring person to share my life

with.

Lausanne, 14th May 2012 A. D.

v

Preface
The research leading to this thesis was conducted at the Distributed Programming Laboratory,

School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne

(EPFL), under the supervision of Prof. Rachid Guerraoui in the period from 2007 to 2012.

The core of the thesis was published in the following papers:

Aleksandar Dragojević, Rachid Guerraoui, and Michał Kapałka. “Dividing Transactional

Memories by Zero.” 3rd ACM SIGPLAN Workshop on Transactional Computing (Transact

2008), 2008.

Aleksandar Dragojević, Rachid Guerraoui, and Michał Kapałka. “Stretching Transactional

Memory.” ACM SIGPLAN 2009 Conference on Programming Languages Design and Imple-

mentation (PLDI 2009), 2009.

Aleksandar Dragojević, Pascal Felber, Rachid Guerraoui, and Vincent Gramoli. “Why STM

can be more than a Research Toy.” Communications of the ACM (CACM), vol. 54, April

2011.

Besides work presented in the thesis, I carried out research resulting in several other publica-

tions, which I describe briefly in the chapter on related work:

Aleksandar Dragojević, Yang Ni, and Ali-Reza Adl-Tabatabai. “Optimizing Transactions for

Captured Memory.” 21st Annual Symposium on Parallelism in Algorithms and Architectures

(SPAA 2009), 2009.

Aleksandar Dragojević and Rachid Guerraoui. “Predicting the Scalability of an STM: A

Pragmatic Approach.” 5th ACM SIGPLAN Workshop on Transactional Computing (Transact

2010), 2010.

Aleksandar Dragojević, Maurice Herlihy, Yossi Lev, and Mark Moir. “On The Power of

Hardware Transactional Memory to Simplify Memory Management.” 30th Annual ACM

SIGACT–SIGOPS Symposium on Principles of Distributed Computing (PODC 2011), 2011.

Aleksandar Dragojević and Tim Harris. “STM in the Small: Trading Generality for Per-

formance in Software Transactional Memory.” EuroSys ’12 the European Conference on

Computer Systems (EuroSys 2012), 2012.

Aleksandar Dragojević and Rachid Guerraoui. “A Pragmatic Approach for Predicting the

Scalability of Parallel Applications.” Under submission (available as technical report EPFL-

REPORT-174869).

vii

Preface

I also helped with the research resulting in the following papers, but I was not the principal

author:

Aleksandar Dragojević, Anmol Singh, Rachid Guerraoui, and Vasu Singh. “Preventing versus

Curing: Avoiding Conflicts in Transactional Memories.” 28th Annual ACM SIGACT–SIGOPS

Symposium on Principles of Distributed Computing (PODC 2009), 2009.

João Baretto, Aleksandar Dragojević, Paulo Ferreira, Rachid Guerraoui, and Michał Kapałka.

“Leveraging Parallel Nesting in Transactional Memory.” 15th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP 2010), 2010.

viii

Abstract
The recent proliferation of multi-core processors has moved concurrent programming into

mainstream by forcing increasingly more programmers to write parallel code. Using traditional

concurrency techniques, such as locking, is notoriously difficult and has been considered the

domain of a few experts for a long time. This discrepancy between the established techniques

and typical programmer’s skills raises a pressing need for new programming paradigms.

A particularly appealing concurrent programming paradigm is transactional memory: it en-

ables programmers to write correct concurrent code in a simple manner, while promising

scalable performance. Software implementations of transactional memory (STM) have at-

tracted a lot of attention for their ability to support dynamic transactions of any size and

execute on existing hardware. This is in contrast to hardware implementations that typically

support only transactions of limited size and are not yet commercially available. Surprisingly,

prior work has largely neglected software support for transactions of arbitrary size, despite

them being an important target for STM. Consequently, existing STMs have not been opti-

mized for large transactions, which results in poor performance of those STMs, and sometimes

even program crashes, when dealing with large transactions.

In this thesis, I contribute to changing the current state of affairs by improving performance

and scalability of STM, in particular with dynamic transactions of arbitrary size. I propose Swis-

sTM, a novel STM design that efficiently supports large transactions, while not compromising

on performance with smaller ones. SwissTM features: (1) mixed conflict detection, that detects

write-write conflicts eagerly and read-write conflicts lazily, and (2) a two-phase contention

manager, that imposes little overhead on small transactions and effectively manages conflicts

between larger ones. SwissTM indeed achieves good performance across a range of workloads:

it outperforms several state-of-the-art STMs on a representative large-scale benchmark by at

least 55% with eight threads, while matching their performance or outperforming them across

a wide range of smaller-scale benchmarks. I also present a detailed empirical analysis of the

SwissTM design, individually evaluating each of the chosen design points and their impact

on performance. This “dissection” of SwissTM is particularly valuable for STM designers as it

helps them understand which parts of the design are well-suited to their own STMs, enabling

them to reuse just those parts.

Furthermore, I address the question of whether STM can perform well enough to be practical

by performing the most extensive comparison of performance of STM-based and sequential,

non-thread-safe code to date. This comparison demonstrates the very fact that SwissTM

indeed outperforms sequential code, often with just a handful of threads: with four threads

ix

Preface

it outperforms sequential code in 80% of cases, by up to 4x. Furthermore, the performance

scales well when increasing thread counts: with 64 threads it outperforms sequential code by

up to 29x. These results suggest that STM is indeed a viable alternative for writing concurrent

code today.

Keywords: Concurrent Programming, Software Transactional Memory, Performance, Scala-

bility, Benchmarks, Conflict Detection, Contention Management

x

Résumé
La prolifération récente des processeurs multi-cœurs a rendu la programmation concurrente

incontournable en forçant davantage de programmeurs à écrire du code parallèle. L’utilisation

de techniques concurrentes traditionnelles, comme les verrous, est difficile et fut longtemps

le domaine de peu d’experts. Ce décalage entre les techniques existantes et les compétences

typiques des programmeurs illustre la nécessité de nouveaux paradigmes de programmation.

Un paradigme de programmation particulièrement attractif est la mémoire transactionnelle :

elle permet à des programmeurs d’écrire simplement du code concurrent correct et offre

des performances passant à l’échelle. Les implémentations logicielles de mémoire transac-

tionnelle (MTLs) ont été au cœurs des attentions du fait de leur capacité à supporter des

transactions dynamiques de toute taille sur le matériel existant. A l’inverse, les mémoires

transactionnelles matérielles supportent typiquement des transactions de taille limitée et ne

sont pas commercialisées. Il est surprenant d’observer que les travaux antérieurs ont négligé

le support logiciel pour les transactions de taille arbitraire alors même qu’elles constituent

une cible de choix pour les MTLs. Par conséquent, les MTLs ne furent pas optimisées pour de

longues transactions, l’exécution de ces dernières induisant de mauvaises performances et

provocant parfois même des erreurs non récupérables.

Dans cette thèse je contribue à modifier cet état de fait en améliorant les performances et

le passage à l’échelle des MTLs, en particulier avec des transactions dynamiques de taille

arbitraire. Je propose SwissTM, une nouvelle approche de MTL qui supporte efficacement les

longues transactions sans entacher les performances des plus petites. SwissTM comprend :

(1) une détection de conflit mixte qui résoud immédiatement les conflits écriture-écriture et

plus tard les conflits lecture-écriture, et (2) un gestionnaire de contention en deux phases qui

impose un faible surcoût sur les petites transactions et résoud efficacement les conflits entre

les plus grandes. SwissTM fournit en effet de bonnes performances lors d’exécutions variées :

il améliore les performances de quelques MTLs de référence sur une batterie représentative

de tests à grande échelle par au moins 55% avec 8 fils d’exécution tandis qu’il présente des

performances soit similaires soit meilleures sur des tests à plus petite échelle. Je présente

également une analyse empirique détaillée du SwissTM, en évaluant individuellement chaque

choix de conception et leur impact sur les performance. Cette “dissection” de SwissTM est

particulièrement intéressante pour les programmeurs de MTLs pour mieux comprendre

quelles sont les parties pouvant apporter des gains de performance significatifs dans à leur

propres MTLs, les autorisant à réutiliser simplement ces parties.

xi

Preface

Par ailleurs, je réponds à la question de la praticabilité des MTLs en exécutant la comparaison

la plus détaillée à ce jour des performances des MTLs avec celles du code séquentiel. Cette

comparaison montre précisément que SwissTM présente de meilleures performances que

le code séquentiel, souvent avec seulement quelques fils d’exécution : avec 4 fils, les perfor-

mances sont meilleures dans 80% des cas et jusqu’à 4x. De plus, les performances passent à

l’échelle du nombre de fils : avec 64 fils, elles sont 29x meilleures que celles du code séquentiel.

Ces résultats suggèrent que les STMs sont en effet une alternative viable pour écrire du code

concurrent de nos jours.

Mots-clés: Programmation concurrente, Logiciel de Mémoire Transactionnelle, Performance,

Evolutivité, Tests de performance, Détection de conflit, Gestionnaire de contention

xii

Contents
Acknowledgements v

Preface vii

Abstract (English/Français) ix

List of figures xv

List of tables xviii

1 Introduction 1

1.1 Traditional concurrent programming . 1

1.2 Transactional memory . 4

1.3 Software transactional memory . 6

1.4 Contributions . 7

1.5 Outline . 9

2 Background 11

2.1 Transactional execution . 11

2.2 Opacity . 13

2.3 STM interface . 15

2.4 STM semantics . 18

3 Large Software Transactions 21

3.1 Overview . 21

3.2 STM design space . 24

3.2.1 Conflict detection . 25

3.2.2 Contention management . 27

3.2.3 Access granularity . 28

3.2.4 Update policy . 28

3.2.5 Progress guarantees . 28

3.3 STMBench7 . 28

3.3.1 Alternatives to STMBench7 . 29

3.3.2 Data and operations . 29

3.3.3 STMBench7 with word-based STMs . 32

xiii

Contents

3.4 Performance results . 34

3.4.1 Experimental settings . 35

3.4.2 Locking versus obstruction freedom. 35

3.4.3 Towards the ideal conflict detection approach 36

3.4.4 Visible reads . 36

3.4.5 Towards the ideal contention manager . 37

3.4.6 Conflict detection and contention management 39

3.4.7 High concurrency levels . 39

3.5 STM robustness . 41

3.5.1 Memory restrictions . 41

3.5.2 Transaction size . 44

3.5.3 Other examples . 45

3.6 Programming issues . 45

3.6.1 External libraries . 46

3.6.2 Object-oriented features . 46

3.6.3 Non-faulting loads . 47

3.7 Summary . 47

4 SwissTM 49

4.1 Overview . 49

4.2 Design and implementation . 52

4.2.1 Programming model . 52

4.2.2 Algorithm . 53

4.2.3 Correctness argument . 62

4.2.4 Implementation details . 64

4.3 Evaluation . 70

4.3.1 Benchmarks . 70

4.3.2 Experimental settings . 73

4.3.3 STMBench7 . 75

4.3.4 STAMP . 76

4.3.5 Lee-TM . 77

4.3.6 Red-black tree . 78

4.4 Dissecting SwissTM . 79

4.4.1 Conflict detection . 79

4.4.2 Contention management . 82

4.4.3 Locking granularity . 84

4.5 Extending SwissTM . 86

4.5.1 Compiler support . 86

4.5.2 Privatization safety . 88

4.6 Summary . 90

xiv

Contents

5 Practical STM Performance 91

5.1 Overview . 91

5.2 Experimental settings . 95

5.3 SwissTM-ME performance . 96

5.4 Contradicting earlier results . 99

5.5 SwissTM-CE performance . 102

5.6 SwissTM-MT performance . 104

5.7 SwissTM-CT performance . 108

5.8 Programming model . 109

5.9 Summary . 110

6 Related Work 111

6.1 My work . 111

6.2 Others . 113

6.2.1 STM design . 113

6.2.2 Benchmarks . 118

6.2.3 Compiler optimizations . 119

6.2.4 Privatization . 120

6.2.5 Relaxed transactions . 121

6.2.6 Other techniques . 122

7 Conclusions 125

Bibliography 129

Curriculum Vitae 141

xv

List of Figures
1.1 Bank accounts example. 2

1.2 A fine-grained implementation of transfer operation, prone to deadlocks. . . . 2

1.3 A deadlock in the bank accounts example due to incorrect use of locking. 3

1.4 A correct fine-grained implementation of the transfer operation. 4

1.5 A TM-based implementations of the transfer operations. 5

2.1 An example execution of transactional transfer operations between bank accounts. 12

2.2 Code that can cause division by zero exceptions if transactions do not observe

consistent object states. 14

2.3 Example execution of pseudo-code from Figure 2.2 in which a divide by zero

exception occurs if consistency of reads is not guaranteed. 14

2.4 Typical word-based STM interface. 15

2.5 Transfer operation implemented using the word-based STM interface. 16

2.6 Typical object-based STM interface. 17

2.7 Transfer operation implemented using the object-based STM interface. 17

2.8 Transaction execution that is permitted by snapshot isolation, but not by opacity. 18

2.9 Code that can loop indefinitely if transactions’ reads are not consistent. 19

3.1 The difference between the global commit counter and the time-based schemes. 26

3.2 STMBench7 data structure. 30

3.3 Implementing an object-based interface using a word-based STM. 33

3.4 Comparison of different conflict detection approaches. 35

3.5 Incremental validation cost with RSTM. 37

3.6 Performance of different contention managers. 38

3.7 Performance of RSTM with different combinations of conflict detection and

contention management policies. 39

3.8 Performance of preemptive and non-preemptive STMs at high concurrency levels. 40

3.9 TL2 x86 version 0.9.0 read-set overflow example. 44

4.1 Different states of an ownership record. 54

4.2 SwissTM pseudo-code (types and shared data). 55

4.3 SwissTM pseudo-code (base algorithm). 56

4.4 A non-serializable execution permitted if there is no validation on write. 59

4.5 SwissTM pseudo-code (contention manager). 60

xvii

List of Figures

4.6 Example validity timestamp extension. 63

4.7 SwissTM ownership record table mapping. 64

4.8 Log data structure. 65

4.9 Example of a problem that can occur if deallocations are performed at the

commit-time. 68

4.10 Throughput of STMBench7 with SwissTM, RSTM, TL2, and TinySTM. 74

4.11 SwissTM compared to TL2 and TinySTM on STAMP. 76

4.12 Execution time of Lee-TM benchmark with SwissTM, RSTM, and TinySTM. . . 78

4.13 Throughput of SwissTM, TL2, TinySTM, and RSTM on red-black tree. 79

4.14 Limitations of pure lazy and eager conflict detection strategies. 80

4.15 Execution time of SwissTM and TinySTM in “irregular” Lee-TM benchmark with

memory circuit board input data set. 81

4.16 Best STMBench7 read-dominated throughputs achieved by RSTM with Polka

and Greedy contention managers. 82

4.17 Throughput of SwissTM with the Two-phase contention manager and with

Greedy on the red-black tree. 82

4.18 Comparison of SwissTM performance with the Two-phase contention manager

and with Timid on STMBench7. 84

4.19 Execution time of intruder with SwissTM with and without back-off on transac-

tion restart. 84

4.20 Average speedup across all benchmarks used, with one subtracted, of locking

granularities from 22 to 28 compared to all other granularities, when using eight

threads. 85

4.21 Performance of genome with and without STM compiler. 87

4.22 Example problem caused by use of privatization in SwissTM. 88

4.23 Performance of genome with and without privatization support. 89

5.1 SwissTM-ME on SPARC. 97

5.2 SwissTM-ME on x86. 97

5.3 SwissTM-ME single thread overheads. 98

5.4 Impact of experimental settings used by Cascaval et al. [19] on STM performance.100

5.5 SwissTM-CE on x86. 102

5.6 Compiler over-instrumentation overheads on x86. 102

5.7 SwissTM-MT on SPARC. 105

5.8 Overheads of ensuring privatization safety on SPARC. 105

5.9 SwissTM-MT on x86. 106

5.10 Overheads of ensuring privatization safety on x86. 107

5.11 SwissTM-CT on x86. 108

5.12 Combined overheads of compiler over-instrumentation and transparent priva-

tization on x86. 109

xviii

List of Tables
3.1 Comparison of STMBench7 and average micro-benchmark sizes. 29

3.2 Default ratios of executed operations in percents. 31

3.3 Summary of observed bugs. 41

4.1 A comparison of selected STM designs for mixed workloads. 51

4.2 STAMP workloads. 72

4.3 Comparing several different locking granularities. The values represent relative

speedups, with one subtracted, when using eight threads. 86

5.1 Considered programming models. 93

5.2 Summary of SwissTM speedup over sequential code. 94

5.3 Summary of the compiler over-instrumentation overheads on x86. 103

5.4 Summary of transparent privatization safety overheads. 106

5.5 Summary of combined over-instrumentation and transparent privatization over-

heads on x86. 109

xix

1 Introduction

The improvements in sequential performance of processors have significantly slowed down

in recent years due to increasing technical difficulties encountered by hardware manufactur-

ers [112]. In response to the changed circumstances, the manufacturers have started building

multi-core CPUs able to execute several threads in parallel, instead of sequential CPUs as

before. The number of hardware threads supported by modern multi-core CPUs has kept

increasing ever since, as well as the breadth of devices using them. As a consequence, today’s

CPUs support tens of simultaneous threads in hardware, and all mainstream devices, includ-

ing desktops, laptops, tablets, and phones, have become multi-core [113]. This hardware

revolution has had a profound effect on the way we think of and design mainstream soft-

ware: to fully exploit the new multi-core CPUs, developers have to write concurrent programs.

Whereas concurrent programming is not a novel discipline, it has long been reserved for

computationally intensive problems, for which the investment in large, and expensive, parallel

machines was justified. The multi-core revolution has made the parallel machines ubiquitous,

thus moving concurrent programming from an obscure discipline practiced by only a handful

of experts into the mainstream, where everyone has to do it.

1.1 Traditional concurrent programming

Traditional paradigms for concurrent programming, such as locking and non-blocking tech-

niques, are notoriously difficult. This makes them unsuitable for use by average programmers

who write the mainstream applications. The following example illustrates some of the draw-

backs of using locking, which is the best known and most widely used concurrent program-

ming paradigm. The example considers several bank accounts, as illustrated in Figure 1.1.

Each of the accounts has an associated identifier (acc1–acc5) and balance (20 on acc1, 50 on

acc2, etc.). Let us consider a problem of implementing a transfer of a specified amount from

one bank account to another. The following is a typical requirement for such an operation:

during the execution of the transfer operation, the total amount on all bank accounts observed

by other threads has to remain constant. In particular, the other threads are not allowed to

observe the new balance on one of the accounts and the old one on the other. This correctness

1

Chapter 1. Introduction

acc1:20 acc2:50 acc3:10 acc4:15 acc5:0

Figure 1.1: Bank accounts example.

1 void transfer(account_t from, account_t to, int amount) {
2 from.acquire();
3 to.acquire();
4

5 from.withdraw(amount);
6 to.deposit(amount);
7

8 to.release();
9 from.release();

10 }

Figure 1.2: A fine-grained implementation of transfer operation, prone to deadlocks.

criterion is called linearizability [65] and is typically ensured by concurrent data structures

and algorithms.

To eliminate inconsistencies in the executions and ensure linearizability, programmers may

use locks. Locks are synchronization objects that threads acquire before accessing shared data.

At any given point in time, a lock can be acquired, or owned, by a single thread. If a thread

attempts to acquire a lock while it is being held by another thread, it will be blocked until the

owner of the lock releases it. The simplest approach to correctly implementing the transfer

operation with locks is to use a single lock, that is acquired by threads before they perform

any operation involving the bank accounts. This is the simplest possible locking protocol: it

serializes all accesses to the shared data and is, thus, obviously correct. The major drawback

of this approach, however, is that it does not allow multiple independent operations to be

performed concurrently. For example, a transfer from acc1 to acc2 is completely independent

from a transfer from acc3 to acc4, yet the solution based on a single lock does not permit their

parallel execution.

To allow more parallelism and, thus, improve performance of the transfer operation, a finer-

grained locking scheme has to be used. Associating a different lock to each of the accounts

enables threads to independently lock them, allowing execution of independent transfer

operations in parallel. The pseudo-code of a transfer operation that uses a lock per account is

given in Figure 1.2. It enables execution of the two transfer operations from above in parallel,

as they do not access any accounts in common. However, the code in Figure 1.2 suffers from

a serious problem, as illustrated in Figure 1.3. Figure 1.3 represents the bank accounts as

squares and the threads as ovals, with solid arrows representing locks that have been acquired

by threads and dashed arrows representing threads waiting for locks. In the figure, two transfer

operations are executed in parallel. Thread A performs a transfer from acc2 to acc4 and thread

B performs a transfer from acc4 to acc2. Each of the threads has successfully acquired the lock

of its origin account, and is waiting for the lock of the destination account to be released. In

2

1.1. Traditional concurrent programming

acc1 acc2 acc3 acc4 acc5

B

A

acquiredwaiting for

waiting foracquired

Figure 1.3: A deadlock in the bank accounts example due to incorrect use of locking.

this execution, neither of the threads is able to make progress, as each is waiting for the other

to release a lock. This is an example of a well known locking bug, called deadlock. A simple

approach to avoiding deadlocks is to always acquire the locks in the same order, independently

of the order in which the objects are accessed. This solution can be applied to our example as

well, as illustrated in Figure 1.4.

As the pseudo-code shows, the solution to the deadlock problem is rather straightforward in

this simple example. However, it is often very difficult to detect that the threads can indeed

deadlock, even for experienced programmers. The main reason is that the deadlocks, as well

as other concurrency bugs, are not necessarily manifested in every execution of the program.

This means that they might remain hidden even after extensive testing. For example, the

incorrect transfer operation in Figure 1.2 does not cause a deadlock if, during testing, the

identifier of the origin account is always lower than that of the destination account, or vice

versa. Even if this is not the case, the bug may be masked by a “lucky” scheduling of critical

operations. For example, it is possible that one of the threads is always quicker to acquire

both required locks, in which case the deadlock does not manifest itself during testing. This

non-determinism in executions of parallel programs makes it extremely difficult to reason

about them and ensure that they are correct.

Another significant drawback of locking is the lack of composability. As an example, consider

a new operation that transfers some amount of money from two accounts to a destination

account. As in the previous example, the operation has to be linearizable, meaning that

the intermediate results of the operation must not be visible to other threads. In particular,

this means that it is not allowed to have other threads observe the effects of only one of the

transfers. It is clear that the correct implementation of a single account transfer does not help

with implementation of this new two-account transfer, as simply invoking two single account

transfers one after the other allows other threads to observe partial transfers, thus violating

linearizability. Instead, the new operation has to be implemented from scratch, and it has

to respect the locking protocols used by existing operations, such as to acquire the locks in a

3

Chapter 1. Introduction

1 void transfer(account_t from, account_t to, int amount) {
2 if(from.id < to.id) {
3 from.acquire();
4 to.acquire();
5 } else {
6 to.acquire();
7 from.acquire();
8 }
9

10 from.withdraw(amount);
11 to.deposit(amount);
12

13 to.release();
14 from.release();
15 }

Figure 1.4: A correct fine-grained implementation of the transfer operation.

particular order, or otherwise risk introducing hard-to-detect bugs. The lack of composability

of locking makes it hard to extend and maintain existing lock-based programs, especially if

they are written and maintained by different programmers.

There exist several other well known problems with locking, such as priority inversion and

convoying, but discussing them in detail is outside of the scope of this thesis. For more details

on these issues, see [103].

Non-blocking1 programming solves most of the issues with locking, but is even more difficult

to write correctly. Non-blocking algorithms for relatively simple data structures, such as

rendezvous object [6], task pool [13], and bag collection class [111], are still publishable results

in top conferences on parallel computing. This means that even the concurrency experts

cannot be expected to write complex non-blocking algorithms on a daily basis.

To make concurrent programming truly widespread, as required by the changing hardware

landscape, it has to be made simple. It is clear that the traditional programming paradigms

are not simple enough to be used by average programmers, and, therefore, new paradigms

are needed. Ideally, concurrent programming should be as simple as when using a single

lock, to make it accessible to average programmers, but the performance and scalability of

resulting code need to be better, if possible as good as when using fine-grained locking. A new

concurrent programming paradigm, transactional memory (TM) [64], promises precisely that.

1.2 Transactional memory

With transactional memory, programmers simply mark sections of sequential code that need

to be executed atomically with respect to other threads. The underlying TM system ensures

that these atomic blocks of code, also called transactions, are (1) executed indivisibly, meaning

1In this thesis all algorithms that do not rely on locks are referred to as non-blocking. This includes wait-free,
lock-free, and obstruction-free algorithms.

4

1.2. Transactional memory

1 void transfer(account_t from, account_t to, int amount) {
2 atomic {
3 from.withdraw(amount);
4 to.deposit(amount);
5 }
6 }
7

8 void transfer_2(account_t from_1, account_t from_2, account_t to, int amount) {
9 atomic {

10 transfer(from_1, to, amount);
11 transfer(from_2, to, amount);
12 }
13 }

Figure 1.5: A TM-based implementations of the transfer operations.

that either all or none of the statements from transactions get executed, and (2) in isolation one

from another, meaning that transactions do not observe partial results of other transactions.

The TM paradigm is particularly appealing as it greatly simplifies concurrent programming

compared to the traditional techniques, while still promising good performance: programmers

only need to reason about which code has to be executed atomically and the TM ensures its

atomic execution and good performance.

To illustrate the use of TM, the same transfer operations as above are implemented using

transactions in Figure 1.5. The code of the transfer operation is as simple as the code that

uses a single lock, and it fully relieves the programmer of worrying about low-level synchro-

nization details. Due to the simplicity of the TM paradigm, the code is also obviously correct.

Furthermore, it composes well: as the figure shows, the two-account transfer can be simply

implemented by composing two single-account transfers.

Transactional memory has attracted much attention lately because of its great potential.

Many hardware (HTM) [4, 20, 21, 27, 53, 64, 83, 89, 91, 116], software (STM) [3, 16, 24, 28–

30, 41, 43, 56, 57, 63, 69, 76, 77, 85, 99, 101, 105, 109, 115], and hybrid hardware-software

(HyTM) [22, 25, 70, 81, 95] implementations have been proposed. I do not discuss these

proposals in detail here. Instead, some of them are discussed in Chapter 6, and for a more

comprehensive TM survey, see [55].

Hardware implementations have several appealing characteristics including high perfor-

mance, clean semantics, and seamless integration with legacy code. However, their deploy-

ment costs are significant: implementing HTM requires making changes to the CPUs, which

hardware manufacturers are reluctant to do. As a result, actual HTM proposals from the

industry have started to appear only relatively recently [4, 27, 91], and none of them are com-

mercially available yet. These HTMs typically support only best-effort execution of limited-size

transactions: transactions can access only a limited number of memory locations, for example

RockTM [27] transactions can update at most 32 locations inside a single transaction, and they

may fail spuriously for implementation-specific reasons, for example when cache misses or

interrupts occur during transaction execution. The bounded nature of HTMs is their biggest

5

Chapter 1. Introduction

limitation, apart from the lack of actual implementations, as it prevents HTMs from being

used in a wide range of programs. In contrast, STM proposals support dynamic, unbounded

transactions and can be implemented as user-level libraries, which makes their deployment

simple and easy. STM does have its disadvantages too: it has lower performance than HTM

and its semantics are not always as clean. HyTMs try to take the best of both worlds: they

execute transactions supported by the HTM in hardware, which are typically short and simple

transactions, and the remaining transactions in software. In this way the short and simple

transactions benefit from the existing HTM, whereas the TM still supports all transactions

required by programs.

In this thesis, I focus on STM, precisely because it supports dynamic, unbounded transactions

and because it does not require any modifications to the underlying hardware.

1.3 Software transactional memory

An important target for TMs are large applications such as business software or video games:

the size of these applications makes them ideal candidates to benefit from parallelization

and emerging multi-core architectures. Such applications typically involve dynamic and

non-uniform data structures consisting of many objects of various complexity. For example, a

video gameplay simulation can use up to 10,000 active interacting game objects. Each of the

objects has mutable state and is being updated 30–60 times per second, where every update

causes changes to 5–10 other objects [114]. Unless a TM is used, making such code thread-safe

and scalable on multi-cores is a daunting task [114]. The big size and complexity of such

applications can, in turn, easily lead to use of large transactions, for these can naturally be

composed [56]. Some TM interfaces, in fact, promote the encapsulation of entire applications

within very few transactions [1].

Executing such large transactions in hardware is not possible with current HTM proposals. This

means that STM will keep being of practical relevance even after the hardware TM support

becomes widely available in the future, as it is likely that only smaller-scale transactional

workloads will be fully executed in hardware, while software support will still be needed for

larger-scale transactions. For example, HyTM proposed in [70] switches from full hardware

TM to full software TM when it encounters large transactions, and other HyTMs use similar

techniques. Consequently, the ability of STM systems to effectively deal with large transactions

will be crucial in these settings.

The main reason for writing concurrent code is to exploit the parallelism exposed by the

hardware and, thus, improve the performance of the code. If performance of programs

written using STM is poor, it is highly unlikely that the developers will decide to use STM.

Instead, they will wait for the upcoming hardware support, and keep using complex, but fast

locking techniques until HTM becomes available. Furthermore, it is likely that programs with

naturally large operations that cannot be executed by HTM will keep being written using

6

1.4. Contributions

locking techniques, even after HTM is widely spread. This makes the performance of STM a

crucial concern, especially for workloads that consist of large and complex transactions.

In this thesis, I address two important questions regarding the performance of STM:

1. How to design and implement an STM that performs particularly well with workloads

consisting of large and complex transactions, while still having good performance with

other kinds of workloads?

2. Can STM performance be appealing for practical deployment scenarios? More precisely,

can STM outperform sequential, single-threaded code, and if so, with how many threads?

1.4 Contributions

Since the seminal paper on STM that supported dynamic data structures and unbounded

transactions [63], all modern STMs are supposed to handle complex workloads [3, 24, 28,

29, 43, 57, 63, 77, 85, 92, 99]. A wide variety of STM techniques, mainly inspired by database

algorithms, have been explored. The big challenge facing STM researchers is to determine the

right combination of strategies that suit the requirements of concurrent applications, which

are significantly different than those of database applications. So far, however, most STMs have

been evaluated using benchmarks characterized by small transactions, simple and uniform

data structures, or regular data access patterns. While such experiments reveal some of the

performance differences between STM implementations, they are not fully representative

of complex workloads that STMs are likely to get exposed to when used in real applications.

Worse, they can mislead STM designers by promoting certain strategies that may perform well

in small-scale applications but are counter-productive with complex workloads.

To change this state of affairs, I have implemented STMBench7 [52], a large-scale benchmark

for STMs, with several state-of-the-art STMs. The implementation and experimentation with

STMBench7 lead to several surprising conclusions. First, performance results I gathered differ

from previously published results. I found, for instance, that conflict detection and contention

management have the biggest performance impact with large transactions, significantly more

than other aspects, like the choice of lock-based or obstruction-free implementation, as was

typically highlighted. Next, most STMs I used crashed, at some point or another, when running

STMBench7, mainly due to memory management limitations. This means that, in practice,

none of the used STMs were truly unbounded and dynamic, which are the main motives for

moving away from HTM. Whereas the discovered bugs were usually easy to fix, the fact that

these STMs crashed illustrates that they were not thoroughly tested with large-scale workloads,

meaning that they were not optimized for them either. Finally, implementing STMBench7 with

various STMs also revealed several programming related issues such as the lack of support for

external libraries and partial support for object oriented language features. These issues are

likely to be a major limitation when adapting STMs for production use.

7

Chapter 1. Introduction

Using the results and experiences from the experiments with STMBench7, I revisit the main

STM design choices from the perspective of complex workloads and propose a new STM,

called SwissTM. In short, SwissTM is lock- and word-based STM that uses (1) pessimistic,

or encounter-time, conflict detection for write-write conflicts and optimistic, or commit-

time, conflict detection for read-write conflicts and (2) a new Two-phase contention manager

that efficiently deals with conflicts among long transactions while inducing no overhead on

short ones. SwissTM outperforms state-of-the-art STM implementations, namely RSTM [77],

TL2 [28], and TinySTM [43], in the experiments on STMBench7 [52], STAMP [17], Lee-TM [8],

and the red-black tree benchmark, demonstrating good performance on a wide range of

workloads, not just the large-scale ones. Beyond SwissTM, I present the most complete

evaluation to date of the individual impact of various STM design choices on the ability to

support the mixed workloads of large applications.

Next, I use SwissTM to answer an important question of whether the STM performs well

enough to actually be used in practice, which was, surprisingly, largely neglected in the previ-

ous work. The most notable previous study that addressed this question [19], concluded that

the overheads of using STM are too high for it to be of practical relevance. In the experiments

from [19], based on several micro benchmarks and a subset of STAMP benchmark suite, even

with eight threads STM did not perform as well as sequential, single-threaded code, and for

that it was called a “research toy”. I revisit these conclusions through the most extensive com-

parison of STM performance to sequential code to date, using a wide range of benchmarks

and two different multi-core systems. The goal of the evaluation is to understand whether

the STM-based code can outperform the sequential code, and if it can, how many hardware

threads it requires to do so. This question is important as, after all, writing parallel code using

STM requires only slightly more effort than writing the equivalent sequential code, and if its

performance is better, the programmers might decide to use STM even though it does not

match the performance of the more complex synchronization techniques.

This study shows the performance of STM to be much better than previously claimed, as

SwissTM outperforms the sequential code in most cases. In the evaluation presented in [19],

STM outperforms sequential code by at most 2.5x on systems with eight hardware threads,

and, in most cases, it fails to outperform it at all. In contrast, my evaluation shows that

SwissTM outperforms sequential code by more than 9x in the best case on an x86 system with

16 hardware threads, and breaks even or outperforms sequential code using 4 threads in 13

out of 17 cases. Similar results were obtained on a SPARC system with 64 hardware threads

where SwissTM outperforms equivalent sequential code by more than 29x in the best case

and breaks even or outperforms it using 4 threads in 14 out of 17 cases. The evaluation also

shows that, while the overheads of compiler instrumentation and transparent privatization

are substantial, they do not prevent STM from generally outperforming sequential code.

These performance results demonstrate that STM can do well across a wide range of workloads

and multi-core architectures. Whereas I do not claim that STM is a silver bullet for general pur-

pose concurrent programming, the presented results contradict the previous experiments [19]

8

1.5. Outline

and suggest that STM is already now a viable option for various types of applications. The

results support the initial hopes about STM performance and motivate further research in the

field.

To summarize, the contributions of this thesis are:

1. An evaluation of the ability of several state-of-the-art STMs to correctly and efficiently

handle workloads with large transactions, which reveals several surprising conclusions

about performance of STMs. It also shows that none of the used STMs have been

thoroughly tested with large-scale, complex workloads.

2. The design and implementation of SwissTM, an STM that performs particularly well

with large-scale complex transactional workloads while having good performance with

smaller-scale ones.

3. An extensive experimental evaluation of STM design and implementation techniques

from the perspective of complex applications with mixed workloads.

4. The most extensive comparison of STM performance to sequential code to date, using a

wide range of benchmarks and two different multi-core systems, which demonstrates

that STM could already now be used in practice for certain types of applications.

5. An experimental evaluation of the inherent costs of STM synchronization, as well as

the overheads of compiler instrumentation and transparent privatization. This evalua-

tion shows that STM can achieve good performance and expose a clean programming

model when using an STM compiler, and requiring programmers to explicitly annotate

transactions that privatize data.

At the time of this writing, the code of SwissTM and benchmarks resulting from work on this

thesis is available for download from Transactions@EPFL [71].

1.5 Outline

The rest of the thesis is organized as follows.

Background on software transactional memory is given in Chapter 2. This includes a brief

description of transactions and general phases in their execution (Section 2.1); a discussion of

correctness criterion called opacity [51] typically guaranteed by TM implementations (Sec-

tion 2.2); a brief description of STM programming interface and its usage (Section 2.3); and a

summary of several semantic limitations of STM (Section 2.4).

The results and conclusions from experiments with STMBench7 [52], a large-scale STM bench-

mark, and several state-of-the-art STMs are discussed in Chapter 3. This includes an overview

of the STM design space (Section 3.2); a description of STMBench7 and its implementation

9

Chapter 1. Introduction

with word-based STMs in C++ (Section 3.3); the main conclusions regarding performance of

STMs with large transactions (Section 3.4); a summary of several surprising bugs in state-of-

the-art STMs that were uncovered by the use of STMBench7’s large transactions (Section 3.5);

and some findings on programmability limitations of the used STMs (Section 3.6).

The design, implementation, and experimental evaluation of SwissTM, a new STM inspired

by the conclusions from the previous chapter is presented in Chapter 4. I describe SwissTM’s

design and implementation (Section 4.2); compare its performance to other state-of-the-art

STMs on a number of benchmarks with varying characteristics (Section 4.3); evaluate in detail

the impact of the design and implementation choices on the performance (Section 4.4); and

describe how to integrate SwissTM with standard STM compilers and extend it with support

for the privatization idiom (Section 4.5).

An extensive comparison of SwissTM’s performance to performance of sequential code is pre-

sented in Chapter 5. This includes a summary of overheads incurred by an STM (Section 5.1);

a performance evaluation of four different SwissTM configurations each with different pro-

gramming model and performance characteristics (Sections 5.3–5.7); and the conclusions

about the most appealing STM configuration, which exposes reasonably simple programming

model and has good performance (Section 5.8).

In Chapter 6, I present the related work, which also covers the work I did in parallel with this

thesis. I summarize the thesis and outline several exciting opportunities for future work in

Chapter 7.

10

2 Background

In this chapter, I provide general background on TM, focusing in particular on STM. I first give

an overview of transactional execution, discussing the notion of conflicts between transactions

and transaction commit and abort. Then, I briefly describe opacity [51], a correctness criterion

most often used by TM implementations, followed by introduction of the typical word-based

and object-based STM interfaces used throughout the thesis. I also discusses some alterna-

tives to opacity and several semantical limitations of STMs, such as weak atomicity [79] and

publication and privatization safety [106].

2.1 Transactional execution

The previous chapter introduces TM as a paradigm that promises programming as simple

as with a single lock, with performance of resulting programs that is as good as with the fine-

grained locking. It also briefly illustrates why the programming is indeed simple: programmers

only need to mark the atomic sections, similarly to acquiring the single lock, and the underlying

TM takes care of the rest. Recent user studies largely confirm that programming with TM is

indeed simpler than with the alternative synchronization techniques, even when TM lacks

certain functionality and adequate tools [87, 97] Next, I discuss techniques typically used

by TMs for achieving performance of fine-grained locking and outline the common steps of

transactional execution.

To achieve good performance, most TM implementations, both in hardware and in software,

adopt a similar approach to the fine-grained locking examples from the previous chapter.

More precisely, they track transactional accesses at a fine granularity, typically using gran-

ularity of a memory word, a cache line, or an object, and detect when accesses performed

by concurrent transactions could lead to incorrect executions, such as executions in which a

transaction is allowed to observe intermediate results of another transaction. To prevent such

incorrect executions, TM aborts one of the transactions, for example the one about to observe

partial results of another transaction. At that point, all actions performed by the aborted

transaction are reverted, effectively voiding the whole transaction. This is commonly referred

11

Chapter 2. Background

T1(acc1, acc2) commit

T2(acc2, acc3) commit

T4(acc1, acc2) commit

T5(acc2, acc1) abort T5'(acc2, acc1) commit

T3(acc5, acc4) commit T6(acc3, acc4) commit

A

B

C

Figure 2.1: An example execution of transactional transfer operations between bank accounts.

to as transaction rollback. Typically, the aborted transaction is restarted in hope that it will

successfully complete when it is next attempted. When a transaction successfully completes,

it commits all of it changes to memory. At that point, all of the changes it performed become

visible to other threads atomically.

Figure 2.1 depicts an execution of several transactional transfer operations from the previous

chapter. Three threads, A, B, and C, execute transactions, with time flowing from left to right.

Each transaction performs a transfer between two accounts, as indicated in the brackets.

Transaction T1 executes alone, with no transaction concurrent to it and, therefore, successfully

commits. Transactions T2 and T3 are concurrent, but they access different accounts, so they

also commit. Transactions T4 and T5, however, concurrently access the same accounts acc1

and acc2. To prevent inconsistencies in the execution, TM aborts transaction T5, allowing

transaction T4 to commit. Transaction T5 is restarted and re-executed as transaction T ′
5. T ′

5

successfully commits as there are no concurrent transactions that access the same bank

accounts: transaction T6 is concurrent with T ′
5, but it accesses accounts acc3 and acc4.

It is important to note that, to facilitate aborts, transactions log their updates. They either

log the old values of updated objects, using so called in-place updates and undo logging, or

the new values to be written, using deferred updates and redo logging. With in-place updates,

transactions directly update the accessed objects, logging their old values before the update.

The logged values are used during the rollback to restore the objects to their old values if the

transaction aborts. With deferred updates, transactions do not update objects during their

execution, instead storing the new values into the log. The logged values are used to update

the objects when the transaction commits.

One simple approach to implementing a TM is to associate a lock to each shared object

and have every transaction acquire the lock corresponding to the object before accessing

it. Transactions release the locks of all accessed object when they commit or abort. With

such an implementation, the locks serve to track transactional accesses to shared objects.

If two transactions try to access the same object concurrently, we say that these accesses

conflict with each other. In the case when two accesses conflict, one of the transactions

performing them will get aborted to prevent inconsistencies in the execution. The main

difference between such an implementation of TM and fine-grained locking is that the TM

12

2.2. Opacity

logs the updates, which allows it to abort transactions and avoid the deadlocks that naive

fine-grained locking implementations suffer from. In practice, TM usually aborts transactions

even before a deadlock occurs, typically as soon as it detects a conflict among concurrent

transactions, to simplify the way conflicts are detected.

To enable more parallelism, TM implementations usually distinguish between read and write

accesses to objects and allow several transactions to read the same object concurrently, as long

as no transaction is updating the object at the same time. This is safe because inconsistencies

cannot arise when transactions are only reading the object. When a TM distinguishes between

read and write accesses, the notion of conflicting accesses changes: two transactions conflict

when they access the same object and when at least one of the accesses is a write.

Whereas I introduced the transactional execution and terminology using the analogy with

fine-grained locking, TM implementations do not necessarily have to rely on locking. For

example, most HTM implementations detect the conflicting accesses using the existing cache

coherence mechanisms [27, 53, 64, 83, 89]. Similarly, many STMs either do not use traditional

locks at all [46, 63, 77, 109, 115], or use locks only when performing writes, relying on optimistic

techniques, such as read validations, to ensure consistency of their reads [24, 28, 43, 77, 92, 99].

These techniques and the design space of STM is discussed in more detail in Section 3.2.

2.2 Opacity

While reasoning about conflicting transactional accesses can be useful for intuitively under-

standing TM correctness, it is not always precise enough. Therefore, a formal correctness

criterion for TM is needed. Next, I describe opacity [51], the most widely used formal correct-

ness criterion for TM. Opacity precisely specifies when a TM is correct and enables reasoning

about correctness in a formal way.

Opacity builds on a well known database correctness criterion, called serializability [88]: an

execution of several transactions is serializable if there exists an equivalent execution of all

committed transactions by a single thread, which is also called a sequential execution. For

a TM to be serializable, it has to allow only serializable executions. To serializability, opacity

adds a requirement that transactions have to observe consistent states of shared objects at all

times. Alternatively stated, opacity requires that the equivalent sequential execution includes

the aborted transactions in addition to the committed ones, where the aborted transactions

have no effect on the shared objects.

The main reason for including the additional requirement to serializability is to eliminate

execution exceptions, such as divisions by zero or accesses to deallocated memory, that

can occur in parallel executions if transactions that observe an inconsistent state of shared

objects, and are thus doomed to abort, are allowed to keep executing. Such exceptions break

the illusion that the execution is equivalent to a sequential execution: they cannot occur

13

Chapter 2. Background

1 // Invariant: x < y
2 int x = 0, y = 1, z;
3

4 void OpA() {
5 atomic { // T1
6 int xloc = x;
7 int yloc = y;
8 x = yloc;
9 y = yloc * 2;

10 }
11 }

12 void OpB() {
13 atomic { // T2
14 int xloc = x;
15 int yloc = y;
16 // no need to check ylock != xlock
17 // due to the invariant
18 int zloc = 1 / (yloc - xloc);
19 z = zloc;
20 }
21 }

Figure 2.2: Code that can cause division by zero exceptions if transactions do not observe
consistent object states.

Read(x) ← 0

Read(x) ← 1

commitT1

T2

Read(y) ← 1 Write(x, 1) Write(y, 2)

Read(y) ← 1 abort

divide by zero

Figure 2.3: Example execution of pseudo-code from Figure 2.2 in which a divide by zero
exception occurs if consistency of reads is not guaranteed.

in any sequential execution as transactions always observe consistent state when executed

sequentially.

Figure 2.2 presents the pseudo-code of simple operations that suffer from the described

problem. The pseudo-code defines two operations, OpA and OpB, that use shared integer

variables x, y, and z. Both operations leave the system in a state where x<y, so the division

at line 18 is safe if the operations are executed by a single thread. However, if the operations

are executed by two concurrent threads which are allowed to observe inconsistent states of

the variables, a divide by zero exception can occur, as illustrated in Figure 2.3. In the figure,

transaction T1 is executed to line 8, setting x to the value of y and temporarily violating the

invariant. With serializability, transaction T2 is allowed to observe the inconsistent state of

the variables, where x and y are equal, and execute up to the point of commit, as long as it is

aborted at commit time. However, the division at line 18 will cause an exception, resulting in

behavior that is not possible in any sequential execution.

Division by zero is not the only problem that can occur if transactions are allowed to execute

on inconsistent memory states. Other examples of possible problems include accesses to

deallocated memory and infinite loops [51, 77]. Opacity prevents such problems as it requires

transactions to abort as soon as they encounter the inconsistent state, without returning the

inconsistent value to the user code. In our example, transaction T2 would have to abort at

line 15 if it observed the new value of x and the old value of y, avoiding the described problem.

I omit the formal definition of opacity, as it is out of the scope of this thesis. Interested readers

can find more details in [51]. I briefly discuss alternatives to opacity in Section 2.4.

14

2.3. STM interface

1 // architecture-specific word type
2 typedef word_t;
3 // system-defined long jump buffer
4 typedef jmpbuf_t;
5 // transaction-local descriptor
6 struct TxDescriptor;
7

8 // starts a new transaction
9 void TxStart(TxDescriptor *desc);

10 // commits the current transaction
11 void TxCommit(TxDescriptor *desc);
12 // from transaction, read a word at the specified address
13 word_t TxReadWord(TxDescriptor *desc, word_t *address);
14 // from transaction, write a new value to the word at the specified address
15 void TxReadWord(TxDescriptor *desc, word_t *address, word_t value);

Figure 2.4: Typical word-based STM interface.

To summarize, opacity intuitively requires that:

1. The effects of committed transactions become visible to other transactions at a single,

indivisible moment during the transaction execution.

2. The effects of aborted transactions are never visible to other transactions.

3. All transactions, including the aborted ones, observe a consistent state of the system.

2.3 STM interface

So far, the pseudo-code examples used the atomic keyword to denote transactions, which

is the simplest and the cleanest interface that a TM can expose to the programmers. Next,

I discuss two alternative lower-level interfaces, which are used in the rest of the thesis: a

word-based and an object-based interface. The interface calls can be directly inserted into

code by programmers when writing transactional programs, or, alternatively, can be inserted

by an STM compiler during compilation of atomic code blocks.

Word-based. A typical word-based STM interface is given in Figure 2.4. The figure uses

a C/C++-like syntax to make a clear distinction between values and addresses of memory

locations. It supports read and write accesses at the architecture-specific word granularity.

Each thread initializes and uses a thread-local transactional descriptor object, where it stores

all the information required for transactional book-keeping. The descriptor is passed as a

parameter to all interface calls, to enable them to maintain the transaction state during the

execution. The basic interface consists of four calls: for starting and committing transactions

and for reading and writing memory words from inside transactions. If a transaction gets

aborted, it is restarted using a system-provided long jump mechanism, which is used to

transfer the control to the start of the transaction.

15

Chapter 2. Background

1 void transfer(account_t *from, account_t *to, int amount) {
2 // get the correctly initialized descriptor for this thread
3 TxDescriptor *desc = GetDescriptor();
4 TxStart(desc);
5 int from_amount = TxReadWord(desc, &from->amount);
6 int to_amount = TxReadWord(desc, &to->amount);
7 TxWriteWord(desc, &from->amount, from_amount - amount);
8 TxWriteWord(desc, &to->amount, to_amount + amount);
9 TxCommit(desc);

10 }

Figure 2.5: Transfer operation implemented using the word-based STM interface.

The familiar bank account transfer operation implemented using the word-based STM in-

terface is given in Figure 2.5. The example conveys that the direct use of the word-based

interface can be tedious and error prone, as it requires the programmer to correctly insert

STM calls for each transactional access to shared data. If any of the accesses is, mistakenly,

performed using an ordinary CPU instruction instead, the program will not work correctly and

will exhibit hard-to-detect bugs, typical for parallel programs. This defeats the main purpose

of TM, as such bugs are exactly what TM was devised to eliminate. To avoid such problems

and truly deliver on the promise of easy programming, an STM compiler that enables the use

of source-level atomic blocks is needed [23]. To translates the atomic blocks, the compiler

inserts calls to the word-based interface, generating similar code to the one in the figure.

Starting from the presented basic word-based interface, it is straightforward to implement a

more complete one that supports accesses to data types of different size, such as bytes, floats

and doubles, which are necessary for general-purpose programming. I describe how to do so

in more detail in Section 4.5.1.

In the remainder of the thesis, I use the STM interface directly, unless stated otherwise. Doing

so enables me to evaluate the impacts of the STM design and implementation on the perfor-

mance without the overheads that the compiler might introduce [38, 121]. These overheads

are discussed in more detail in Sections 4.5.1 and 5.5.

Object-based. An example of an object-based STM interface is given in Figure 2.6. The

interface supports read and update accesses at the granularity of transactional objects. This

means that each user class that needs to be accessed from transactions has to be inherited

from an STM-defined base transactional class, named TxObject in the figure. Similarly to

the word-based STM, each thread initializes and uses a thread-local transactional descriptor

object, where it stores all the information required for transactional book-keeping and which

is passed as a parameter to all interface calls. The example interface consists of four calls:

for starting and committing a transaction and for opening transactional objects for read and

update accesses. An object has to be opened for reading before it is read and for updating

before it is updated. Language constructs can sometimes be used to enforce these rules and

help prevent bugs resulting from missing or inadequate open calls. In C/C++, for example, if

16

2.3. STM interface

1 // base transactional type
2 class TxObject;
3 // transaction-local descriptor
4 class TxDescriptor;
5

6 // starts a new transaction
7 void TxStart(TxDescriptor desc);
8 // commits the current transaction
9 void TxCommit(TxDescriptor desc);

10 // from transaction, prepare the object for reading
11 void TxOpenForReading(TxDescriptor desc, TxObject object);
12 // from transaction, prepare the object for updating
13 void TxOpenForWriting(TxDescriptor desc, TxObject object);

Figure 2.6: Typical object-based STM interface.

1 void transfer(account_t from, account_t to, int amount) {
2 // get the correctly initialized descriptor for this thread
3 TxDescriptor desc = GetDescriptor();
4 TxStart(desc);
5 TxOpenForWriting(desc, from);
6 TxOpenForWriting(desc, to);
7 int from_amount = from.GetAmount();
8 int to_amount = to.GetAmount();
9 from.SetAmount(from_amount - amount);

10 to.SetAmount(to_amount + amount);
11 TxCommit(desc);
12 }

Figure 2.7: Transfer operation implemented using the object-based STM interface.

the client gets a pointer to a constant object when opening the object for reading, it cannot

update the object afterwards. Aborted transactions can be restarted using the long jump

mechanism, similarly to the word-based STMs, or, alternatively, they can be restarted by

throwing an STM-specific exception type that is caught outside of transactions.

An implementation of the familiar bank account transfer operation using the object-based

STM interface is given in Figure 2.7. Programming is slightly less tedious and error prone than

with the word-based interface as the objects need to be opened in the correct mode of access

only once, and can then be accessed several times. Therefore, there are fewer opportunities

for programmers to omit the necessary STM calls. For example, the pseudo-code that uses an

object-based STM contains only two calls for opening objects inside the transaction,1 whereas

the pseudo-code that uses a word-based STM contains four STM calls. Still the mistakes

can occur easily, and forgetting to open an object in the correct mode of access results in

hard-to-detect bugs, as discussed above.

Word-based STMs have become predominant for lower-level languages such as C/C++ mainly

because they are more general and easier to integrate with STM compilers. In this thesis, I focus

on C/C++ as it enables me to understand the performance of STM without reasoning about the

1In the example I assume that it is allowed to read the object opened for update, which is typically supported by
TMs.

17

Chapter 2. Background

Read(V1) ← 0 commitT1

T2

Write(V2, 1)

Read(V2) ← 0 commitWrite(V1, 1)

Figure 2.8: Transaction execution that is permitted by snapshot isolation, but not by opacity.

artifacts of higher-level languages, such as Java or C#, and their runtime systems. Because of

that I mostly focus on the word-based STMs. Object-based STMs do have certain advantages

when implementing complex, inherently object-based systems. Chapter 3 describes how an

object-based interface can be built on top of a word-based one when necessary.

2.4 STM semantics

Next, I describe two alternatives to opacity, which have been adopted by several STM systems.

Also, I discuss the difference between strong atomicity, typically ensured by HTM systems, and

weak atomicity, which is typically ensured by STMs.

Alternatives to opacity. Whereas opacity is a widely used correctness criterion for TMs,

there are several alternatives that have also been adopted, mostly by STMs. Here I mention

two: snapshot isolation [14], adopted by, for example, LSA-STM [92], and serializability with

sandboxing, adopted by, for example, JudoSTM [86].

With snapshot isolation, similarly to opacity, transactions observe a consistent snapshot of

memory and they commit all their values atomically. However, transactions are allowed to

commit the values at a later point than the point of the snapshot, as long as the objects

they are updating have not changed since the snapshot was taken. Alternatively stated, each

transaction corresponds to two indivisible points in the equivalent sequential execution: all

reads happen at one point and all writes happen at the other, later point in time. In contrast,

with opacity and serializability, all the reads and writes occur at the same point. Snapshot

isolation eliminates the problems caused by transactions operating on inconsistent states

of memory, such as the division by zero example in Section 2.2. However, it provides a less

intuitive model for reasoning about transactions. With snapshot isolation transactions do not

behave as if they acquired a single global lock when starting and released it when committing,

as is the case with opacity. Instead, transactions roughly behave as if they acquired and

released the lock twice: once for reading and once, later, for writing.

Figure 2.8 depicts an execution that is allowed by snapshot isolation but is not allowed by

opacity and serializability. In the figure, transaction T1 reads value 0 from variable V1 and

writes value 1 to V2. Concurrently to T1, transaction T2 reads value 0 from V2 and writes 1

to V1. With snapshot isolation, both transactions are allowed to commit, as they operate on

18

2.4. STM semantics

1 // Invariant: x < y
2 int x = 0, y = 1, z;
3

4 void OpA() {
5 atomic { // T1
6 int xloc = x;
7 int yloc = y;
8 x = yloc;
9 y = yloc * 2;

10 }
11 }

12 void OpB() {
13 atomic { // T2
14 int xloc = x + 1;
15 int yloc = y;
16 while(xloc != yloc) {
17 do_something(xloc);
18 xloc++;
19 }
20 }
21 }

Figure 2.9: Code that can loop indefinitely if transactions’ reads are not consistent.

consistent snapshots and the data they are updating has not changed since the snapshot was

taken. With opacity, however, one of the transactions would have to abort, as no equivalent

sequential execution of transactions T1 and T2 exists. Snapshot isolation is not often used by

TM systems because it allows these and similar, not always intuitive, executions.

Another appealing alternative to opacity is serializability with sandboxing. With this approach,

the runtime intercepts the exceptions resulting from the execution of inconsistent transactions,

such as the division by zero exception in Section 2.2, and does not propagate them to the user

code. Instead, the transaction that throws the exception gets aborted and restarted. While

intercepting the exception in the runtime solves problems with inconsistent transactions

accessing deallocated memory or causing divisions by zero, it is not sufficient to eliminate all

the problems their execution can cause.

Figure 2.9 shows pseudo-code of two transactions similar to the transactions in Figure 2.2.

In this example, operation OpB loops based on the values of x and y instead of performing

a division. If allowed to observe equal values of the two variables, which can only happen

if the reads are not consistent, the operation loops indefinitely at line 16. To fully solve the

problem of inconsistent reads, the runtime needs to periodically ensure that reads of executing

transactions are consistent, in addition to intercepting the exceptions. The consistency of

reads can be checked, for example, on every loop iteration or during garbage collection cycles.

Guaranteeing just serializability and using sandboxing to mask the problems caused by in-

consistent transactions works well when STM is deeply integrated with the compiler and the

runtime system. This makes it well suited to STMs for higher-level languages, such as Java

and C#, but less so for STMs for lower-level languages, such as C/C++, on which I focus in this

thesis.

Strong versus weak atomicity. The discussion so far implicitly assumed that all accesses

to shared data are performed transactionally. For example, the discussion of opacity only

considers transactions, assuming that all accesses to shared objects are transactional. The

possibility of the same data being accessed by both transactional and non-transactional code

is completely ignored. The simplest way to deal with non-transactional accesses to shared

19

Chapter 2. Background

data is to consider them as implicit, one-access transactions. Such a model is called strong

atomicity and is typically ensured by HTM systems. With strong atomicity, the semantics of

the TM are clear and well defined by opacity.

However, strong atomicity is rather cumbersome to fully implement in software, as it requires

rewriting of non-transactional code to use one-access transactions for each memory access.

Even with a compiler to aid with this task the overheads of executing all non-transactional

memory accesses as short STM transactions can be prohibitive, despite possible compiler and

runtime optimizations [102]. For this reason, STMs typically only ensure weak atomicity [79].

With weak atomicity, accesses to shared data are only permitted from transactions. If shared

data are accessed from non-transactional code the results are not defined. With weak atom-

icity, opacity, as introduced, still defines correct STMs, as long as no objects are accessed by

transactional and non-transactional code at the same time.

A special case of mixed accesses to an object occurs when the object transitions from being

thread-local to being shared, which is known as the publication idiom, and when it transitions

back, from being shared to being thread-local, which is known as the privatization idiom [106].

In these cases, the object is accessed non-transactionally only when it is private to a thread,

and it is accessed from transactions otherwise. A typical example of object publication is

when it is inserted into the shared data structure, and of privatization is when it is removed

from the shared data structure. Privatization is sometimes used to optimize code: when an

object is accessible only by a single thread, the thread can freely access it non-transactionally,

thus reducing TM-related overheads and improving the performance. To fully provide the

illusion that transactions execute as if they acquire a single lock, an STM needs to ensure both

privatization and publication safety. Some STM implementation strategies, however, do not

guarantee privatization and publication safety by default. The base algorithms of such STMs

need to be altered to support these idioms, which sometimes results in significant overheads.

In the remainder of the thesis, I focus on STMs that provide weak atomicity and do not guar-

antee privatization and publication safety, unless stated otherwise. I focus on such STMs to

evaluate the performance of the base STM algorithms, without having the evaluation impacted

by, sometimes significant, overheads of supporting privatization and publication [106, 121].

Privatization idiom and the overheads of making an STM privatization-safe are discussed in

more details in Sections 4.5.2 and 5.6.

20

3 Large Software Transactions

In this chapter, I present an experimental evaluation of several state-of-the-art STMs with

STMBench7 [52], a large-scale STM benchmark, and discuss a number of rather surprising

conclusions regarding the performance of STMs with large transactions based on these experi-

ments. For example, it turns out that there is not as much difference in performance between

obstruction-free and lock-based STMs with STMBench7 as with popular micro-benchmarks

typically used for evaluation of STMs. Based on the results of the experiments, I draw conclu-

sions about the best policies for supporting large transactions in STM. The design of SwissTM,

presented in the next chapter, is largely based on these conclusions. Furthermore, I discuss

several surprising findings regarding the robustness of the used STMs. In the experiments, all

STMs crashed when executing with large transactions, revealing that they were not properly

tested with large-scale workloads. This means that they are not likely to be well optimized for

such workloads either. The evaluation also uncovered several programmability limitations

of the library-based STMs, in particular related to the support for object-oriented language

features and standard libraries.

3.1 Overview

Many of the recent STM proposals have been evaluated using well-known data structures,

such as linked lists, red-black trees, hash-tables, and similar [28, 30, 43, 57, 62, 63, 69, 75–77,

92, 99, 105, 109, 115]. Whereas these micro-benchmarks can reveal performance differences

between various STMs to a certain extent, they have an important limitation of being too small

in scale. Thus, they do not provide sufficient insight into the behavior of STMs in programs

with large transactions that access many, potentially complex, objects. One of the distinctive

advantages of STM is the ability to execute transactions of arbitrary size, which makes such

programs a particularly important target for STM.

STMBench7 [52], a more realistic benchmark for evaluating STM implementations, has been

proposed recently. The main characteristic of STMBench7 is that it stresses the underlying TM

in ways various micro-benchmarks do not: the large size of its data structure increases total

21

Chapter 3. Large Software Transactions

memory requirements, length of transactions, and the number of objects transactions access.

Also, transactions exhibit non-uniform access patterns, further stressing the underlying TM.

STMBench7 was first implemented in Java with ASTM [76] and two levels of locking. In this

chapter I describe the experiments based on the C++ version of STMBench7 implemented with

three STMs: RSTM [77], TL2 [28], and TinySTM [43]. I also discuss the issues encountered when

implementing STMBench7 in Java with DSTM2 [62], which prevented me from experimenting

with STMBench7 and DSTM2.

I base the experimental evaluation on these particular STMs for two reasons:

1. They are freely available and open-source, which allowed me to modify them when

needed and inspect closely the reason for the observed behavior.

2. They cover a large part of STM design space, which allowed me to compare, for example:

lock-based to obstruction-free design, eager acquire to lazy acquire, and invisible to

visible readers, in the context of support for large transactions.

Next, I present an overview of the main conclusions resulting from stressing the used STM

implementations with STMBench7.

Performance. STMBench7 provides a performance test that stresses STMs differently than

common micro-benchmarks, which allows me to compare higher-level design choices instead

of focusing on the lower-level ones. The micro-benchmarks typically execute small trans-

actions on data structures of small sizes, which causes even very small overheads to have a

significant relative impact. The small size of the transactions makes them a good choice for

evaluating the lower-level aspects of the design, like the overheads of each STM read and write

call or the amount of cache invalidation caused. In contrast, the impact of these lower-level

overheads is not as high on larger transactions used in STMBench7, which enables a more

meaningful comparison of the higher-level design. For example, STMs that are able to reduce

the abort rate and the amount of work performed by the, subsequently, aborted transactions,

at the cost of having more expensive read and write calls, might actually perform better than

the simpler STMs that have faster reads and writes, but abort transactions too often, or too

late. Another important consequence of using large transactions is their ability to fully expose

all super-linear performance overheads in the STM, as the impact of such overheads is much

higher with large transactions than with smaller ones.

The main conclusion of my experiments with STMBench7 is that the choice of conflict de-

tection and contention management schemes has the highest impact on STM performance

with larger-scale workloads. This contrasts previous conclusions, based on micro-benchmark

experiments, that identified the low-level overheads, such as the cost of accessing a single

object, as the main performance factor [29]. Based on the results, I identified that the conflict

detection techniques that detect write-write conflicts early and read-write conflicts late have

22

3.1. Overview

the highest performance with large transactions over a range of contention levels. This is

in contrast to work presented in [77], in which micro-benchmark experimental results did

not favor any of the conflict detection variants, thus leading the authors to propose adap-

tive conflict detection. The examples of conflict detection schemes that are well suited to

large transactions are the ones used by the RSTM variant that uses invisible reads with global

commit counter heuristic and eager conflict detection, and TinySTM. I also identified an

interesting relation between contention management and conflict detection, showing that

with different conflict detection approaches different contention managers achieve the best

performance. For example, Polka [100] contention manager performs better than Greedy [50]

with lazy conflict detection, but Greedy is faster with eager conflict detection. These results

are in contradiction with the previous study [100], based on typical micro-benchmarks, that

favored Polka overall.

Robustness. With all used STMs, I encountered problems that lead to benchmark crashes,

showing that the STMs could not cope with the STMBench7’s large data structure and trans-

actions. This means that, in practice, none of the used STMs were truly unbounded and

dynamic. Some STMs incurred too high space overheads and could not fit in the memory,

others overflowed internal data structures leading to either incorrect executions or crashes.

These issues might not be surprising given that memory management is particularly difficult

in STM environment: (1) STMs require more memory than regular programs for maintaining

various kinds of internal logs, and (2) deallocating memory in environments without garbage

collector is more difficult as the reachability of memory blocks must be computed before the

deallocation. The fact that these STMs crashed when executing transactions of large sizes

reveals that they were not extensively tested with large transactions, and, consequently, that

their performance was not optimized for such transactions. It should be noted that, although

the used STMs are not meant for production use, they were tested extensively and worked

without problems in a number of micro-benchmarks. Consequently, I did not expect to find

them crash, nor was that the goal of the experiments.

It is interesting to contrast STM with locking at this point. With locking, no extra memory is

required for book-keeping purposes, which results in smaller memory requirements compared

to STM. Also, all shared objects are protected with appropriate locks before being deleted,

removing the need to compute reachability of objects before the deletion. Consequently,

memory management with locking is much simpler and STMBench7 locking implementations

work with standard memory allocator without problems.

Application programming. The unique features of STMBench7, when compared to other

benchmarking approaches, are the use of: (1) external libraries that do not support STMs

and (2) a bigger subset of object-oriented language features, such as polymorphism. This

makes STMBench7 a good tool for testing programmability of STMs, as it highlights the

problems that programmers might encounter when using STM with general, complex code.

23

Chapter 3. Large Software Transactions

The use of these constructs also highlights the costs of using STMs in terms of either limited

programmability, in case when the STM does not support all the language constructs and

libraries cleanly, or additional programming effort, it the programmers decide to re-implement

parts of the required libraries themselves. For example, none of the used word-based STMs

fully supports interfacing with external libraries, including the standard libraries, which

considerably increases the cost of programming with these STMs. My experience from the

experiments confirms the previous conclusions [23] that STM compilers are needed to truly

deliver on promise of easy programming with STM, as the library-based STMs can be too

cumbersome to use. Furthermore, transactional versions of standard libraries should be

provided to allow programmers to use the same techniques and libraries as when writing

sequential code.

To summarize, the experiments with STMBench7 revealed the following:

1. The choice of appropriate policies, such as the conflict detection and contention man-

agement techniques, has bigger impact on performance of large transactions than the

cost of low-level mechanisms, such as the choice between lock-based and obstruction-

free implementation.

2. The best conflict detection techniques detect write-write conflicts eagerly and read-

write conflicts lazily.

3. With eager conflict detection, Greedy contention manager achieves the best perfor-

mance with large transactions.

4. All used STMs crashed, in one way or another, mostly due to problems related to

memory management, showing that they were neither tested nor optimized for large

transactions.

5. Most of the tested STMs have serious usability issues, mainly with object-oriented fea-

tures of the language and the external libraries. Support for these needs to be improved

if STMs are to be more widely used.

It is important to point out that mentioning various problems with particular STMs does not

have the purpose of bashing these STMs or their authors, but merely of highlighting challenges

underlying support for large transactions in STMs. In fact, I promptly received help or fixes for

most of the problems I reported to the authors, which enabled me to perform the presented

experimental evaluation.

3.2 STM design space

The main task of an STM is to detect conflicts among concurrent transactions and resolve them.

Deciding what to do when conflicts arise is performed by a conceptually separate component

24

3.2. STM design space

called a contention manager [50, 63, 100]. There exist several different conflict detection and

contention management policies. Besides the choice of these policies, STM design space

consists of several other axes. Next, I briefly describe the main design choices when building

an STM, focusing on the conflict detection and contention management.

3.2.1 Conflict detection

Most STMs employ the single-writer-multiple-readers strategy, where accesses to the same

location by concurrent transactions conflict when at least one of the accesses is a write. In

order to commit, each transaction must eventually acquire every object that it is updating.

The acquiring can occur at the time of the first update access to the object, in which case it

is called eager, or it can occur at commit time, in which case it is called lazy. These are also

called eager and lazy writes, or updates.

Furthermore, when reading objects, transactions can employ either visible or invisible readers.

With visible readers, transactions update the STM meta-data even when just reading the

application data, to make their reads visible to other transactions. The updates of the meta-

data are typically performed using expensive atomic CPU instructions and require additional

memory barriers, which increases the cost of the reads. The updates of shared meta-data

also increase cache contention, further degrading the performance of reads. In contrast,

with invisible reads, the readers do not update the shared meta-data, but they have the sole

responsibility of ensuring consistency of their reads, as required by opacity. To ensure the

consistency of the reads, transactions typically check that none of the objects they have read

so far was updated in the meantime by a different transaction. The set of the objects read by

the transaction is called its read-set and checking that it is consistent is known as the read-set

validation. Similarly, the set of the objects updated by the transaction is called the write-set.

The time complexity of a basic validation algorithm is proportional to the size of the read-

set, but can be improved with the global commit counter heuristic [108], or the time-based

validation scheme [28, 92].

With the global commit counter heuristic, each update transaction increments the shared

commit counter upon commit. The counter is used to avoid some of the read validations in the

following way. When a transaction starts, it reads the commit counter. When it reads an object,

it checks whether the commit counter has changed. If it has not changed, the transaction

can safely skip the read-set validation, as nothing in the system has changed since the last

validation of the read-set, thus guaranteeing that the read-set is still consistent. If the counter

has changed, this means that one or more transactions committed recently, possibly updating

some of the objects in the transaction’s read-set. Therefore, the read-set has to be validated

to ensure its consistency. The transaction can use the newly observed value of the commit

counter for the future reads after the successful validation.

With the time-based scheme, each object is assigned a version number that is generated using

a single shared counter: when a transaction commits, it increments the counter and sets the

25

Chapter 3. Large Software Transactions

Read(V1) ← 0

Write(V4)

commitT1 (C ← 100) Read(V2) ← 56 Read(V3) ← 2

commit (C ← 101)T2 (C ← 100)

Figure 3.1: The difference between the global commit counter and the time-based schemes.

version of each updated object to the new value of the counter. When a transaction starts, it

reads the shared counter, similarly as with the global commit counter heuristic. The value of

the counter is called transaction’s validity timestamp, and it represents the last known point at

which transaction’s read-set was valid. When the transaction reads an object, it compares the

object’s version to the transaction’s validity timestamp. If the object’s version is lower or equal

to the validity timestamp, the validation can be omitted, as the object has not been updated

since the last known point at which the read-set was valid. Otherwise, the transaction can

either abort immediately or validate its read-set. If the validation succeeds, the transaction

can adopt the new version of the shared counter as its validity timestamp and continue. The

validation of the read-set and the update of the transaction’s validity timestamp are known as

the read-set extension [43]. I discuss a similar conflict detection scheme in more detail in the

next chapter.

The time-based scheme is finer-grained than the commit counter heuristic as transactions

avoid read-set validations even if the shared counter changes, as long as the objects they are

actually reading have not been updated since the last validation. This difference is illustrated

in Figure 3.1. The figure shows versions read from and written to the global counter on

transactions’ starts and commits and the version of each object transactions read. With the

commit counter heuristic, transaction T1 has to validate its read-set when reading V3, as the

value of the commit counter has changed since T1’s start. With the time-based STM, however,

the validation is not necessary as versions of all objects accessed by T1 are lower than its

starting validity timestamp.

Other conflict detection approaches than the pure eager and lazy schemes exist. For instance,

mixed invalidation [108] represents a mix between the pure lazy and pure eager scheme

as it detects write-write conflicts eagerly and read-write conflicts lazily. A similar conflict

detection scheme is provided by the more general, but also more expensive, multi-versioning

techniques [16, 92].

Alternatively to the approaches discussed above, which typically assign versions to each

object or memory location, several STMs rely solely on centralized meta-data when detecting

conflicts among transactions [24, 86, 109]. The simplest such scheme uses a single lock to

serialize all transactions during their execution [24]. Other approaches, for instance, serialize

the commit phases of transactions using a single lock and rely on value-based validation of

read-sets [24, 86]. Whereas these STMs reduce the costs of read and write STM accesses, they

26

3.2. STM design space

are not well suited to large transactions as they serialize either whole transactions or their

commit phases.

Regarding the STMs used in the experiments, RSTM supports four basic algorithm variants:

it supports all combinations of lazy and eager acquisition, and visible and invisible readers.

Furthermore, it can be configured to approximate mixed invalidation using the commit

counter heuristic. TL2 and TinySTM use lazy and eager acquisition, respectively. Both TL2 and

TinySTM employ invisible readers and rely on the time-based scheme to speed-up read-set

validations.

3.2.2 Contention management

The contention manager decides what a given transaction, called the attacker, should do in

case of a conflict with another transaction, called the victim. Possible outcomes are: aborting

the attacker, aborting the victim, or forcing the attacker to wait and retry after some period.

Here, I describe several contention managers used in the experiments, which are discussed in

more detail in [50, 100]:

• Timid is the simplest contention management scheme which always aborts the attacker,

possibly with a short back-off between the abort and the restart. This is the default

contention management scheme in TL2 and TinySTM.

• Polka [100] assigns every transaction a priority equal to the number of objects the

transaction has accessed so far. Whenever the attacker waits, its priority is temporarily

increased by one. If the attacker has a lower priority than the victim, it will be forced to

wait, using exponential back-off to calculate the wait interval, otherwise the victim gets

aborted. Polka has been shown previously to provide best performance in smaller-scale

benchmarks [100].

• Greedy assigns each transaction a unique, monotonically increasing timestamp on its

start. The transaction with the lower timestamp always wins. An important property

of Greedy is that, unlike other mentioned contention managers, it avoids starvation of

transactions.1

• Serializer is very similar to Greedy except that it assigns a new timestamp to transactions

on every restart. Therefore it does not prevent starvation of transactions, but it still

prevents livelocks.2

Interestingly, several contention managers can also be combined at runtime [49]. As it is not

clear what the best policy for dynamically switching between contention managers at runtime

is, I did not use such a polymorphic contention manager in the experiments.

1Greedy avoids starvation only if visible readers are used.
2Serializer avoids livelocks only if visible readers are used.

27

Chapter 3. Large Software Transactions

3.2.3 Access granularity

The previous chapter makes a distinction between word-based and object-based STMs, based

on the granularity of accesses exposed in the STM interface. The difference in the access

granularity typically impacts the implementation of the STM as well. Word-based STMs

perform conflict detection and logging at the granularity of memory words or groups of

memory words, for example at the cache-line granularity, whereas object-based STMs perform

them at the granularity of objects. Regarding STMs used in the experiments, RSTM is object-

based while TL2 and TinySTM are word-based.

3.2.4 Update policy

Transactions can use direct or deferred updates, as described in the previous chapter. With the

direct-update STMs, transactions directly update the shared objects at the time of writing and

rollback the updates if they get aborted. With the deferred-update STMs, transactions buffer

the updates in the transaction-local logs and apply them to the shared objects only during

transaction commit. The choice of the update policy and the conflict detection approach

is not completely orthogonal: with the direct updates, transactions have to eagerly acquire

objects for writing, or, otherwise, concurrent transactions could not distinguish between

reading tentative and committed values of objects. Regarding STMs used in the experiments,

RSTM and TL2 use deferred updates, whereas TinySTM employs direct updates.

3.2.5 Progress guarantees

There are two general classes of STM implementations: lock-based and non-blocking. Lock-

based STMs implement some variant of the two-phase locking protocol [42]. Non-blocking

STMs [63] do not use any blocking mechanisms, such as locks, and can thus ensure progress

even when some of the transactions are delayed or even crashed. Most of the non-blocking

STMs are obstruction-free [63, 75–77, 115], although lock-free STMs have also been imple-

mented [46, 54, 101]. Regarding STMs used in the experiments, RSTM is obstruction-free,

whereas TL2 and TinySTM internally use locks. The lock-free STMs are not represented in

the experiments, as they are considered to have lower performance than the obstruction-free

ones.

For a more complete survey of STM techniques see [55].

3.3 STMBench7

Next, I present STMBench7 and its implementation. I start with an overview of several alterna-

tives to STMBench7 which are commonly used for STM benchmarking, and then dive into the

details of STMBench7 itself.

28

3.3. STMBench7

Benchmark Data size Name Tx Size Tx/s
Linked list 64 106

micro-benchmark 128 Hash table 2 106

RB tree 7 106

LT on 100,000 101

STMBench7 700,000
LT off

large 10,000
103

avg ∼ 100s

Table 3.1: Comparison of STMBench7 and average micro-benchmark sizes.

3.3.1 Alternatives to STMBench7

The prevailing way of measuring the performance of STMs is by using micro-benchmarks,

with the main goal of testing low-level details of STM implementations. Simple operations

on simple data structures of modest sizes serve this purpose well, as there is no application

work to mask TM implementation overheads. However, the simple structure of the micro-

benchmarks is also their major limitation, as some of the design choices that look justified

with micro-benchmarks might actually result in worse performance with more complex data

structures and operations.

Besides STMBench7, several more realistic benchmarks have been considered, includ-

ing SPLASH-2 [119], STAMP [17], Lee-TM [8], QuakeTM [47], Atomic Quake [123], Worm-

Bench [122], RMS-TM [68], and SynQuake [73]. I return to STAMP and Lee-TM in more detail

in the next chapter, where I use them for a comprehensive evaluation of SwissTM on a wide

range of workloads, and describe the remaining benchmarks in Chapter 6. I did not use

the other benchmarks in the experiments either because they are developed in a different

language, such as WormBench, which is developed in C#, or they require an STM compiler,

such as QuakeTM, Atomic Quake, and RMS-TM. An important characteristic of STMBench7 is

that its workloads use transactions that are larger than in any other STM benchmark I know of,

thus providing insight into STM performance in unique scenarios.

3.3.2 Data and operations

STMBench7 [52] is specifically targeted at benchmarking STMs. Its data structure and oper-

ations, in large part inherited from the OO7 [18] benchmark for object-oriented databases,

represent a workload typical for CAD/CAM/CASE software. This means that, although CAD/-

CAM/CASE applications are probably not a typical target for the future STM applications,

STMBench7 workloads correspond to realistic, complex, object-oriented programs and, as

such, represent very important target for STMs.

STMBench7 exhibits a large variety of operations, ranging from very short, read-only op-

erations to very long operations that modify large parts of the data structure. STMBench7

also defines different workloads, ranging from static, read-dominated workloads with low

contention between threads to dynamic write-dominated, high contention workloads. The

29

Chapter 3. Large Software Transactions

......

... ...

... ...

Module

Manual

Complex
Assemblies

Base
Assemblies

Composite
Parts

Atomic
Parts

Document

Connection

Figure 3.2: STMBench7 data structure.

data structure used by STMBench7 is many orders of magnitude larger than in typical micro-

benchmarks. Consequently, its transactions are also longer and access more objects. The

large size and variety of the STMBench7 transactions stress STMs in different ways than micro-

benchmarks do. Thus STMBench7 can be, as experience shows very effectively, used as a

performance, crash, and programmability test for STMs. The difference between sizes of data

structures and transactions in STMBench7 and typical micro-benchmarks is highlighted in

Table 3.1. The table reports data and transaction sizes in numbers of objects, giving sizes of

typical micro-benchmarks with the value range of 256 and sizes of STMBench7 transactions

with and without long traversals.

A run of STMBench7 consists of creating a randomized data structure and executing a random

mix of operations on it, with each operation executed as a separate transaction. STMBench7

uses a tree-like data structure depicted in Figure 3.2. The data structure consists of a single

module object which has an associated manual. The module is connected to a tree of complex

assembly objects. There are six levels of complex assemblies, which are, at the last level, linked

to the base assemblies. Each base assembly is connected to a number of composite part

objects, that form a shared design library. Composite parts have private graphs of atomic parts

that are, in turn, connected to each other via connection objects. Each atomic part also has an

associated documentation object. STMBench7 defines six indexes to index the various object

types, enabling the operations to start traversing the data structure at different starting points.

The operations traverse the data structure in different directions too, moving up or down the

30

3.3. STMBench7

Workload type
Category Read Read-write Write
Read-only ops 90 60 10
Update ops 10 40 90
Long Traversals 5
Short traversals 40
Short operations 45
Structure mods 10

Table 3.2: Default ratios of executed operations in percents.

tree, or accessing randomly selected objects. These varied access patterns preclude usage of

simple locking techniques and also stress the ability of the STM to deal with deadlocks and

livelocks.

There are four main categories of STMBench7 operations:

1. Long traversals are operations that access large parts of the data structure, typically all

assemblies and atomic parts.

2. Short traversals access a much smaller number of objects, traversing the data structure

along a random path, starting from a module, atomic part, or a document. Some of the

short traversals use the indexes.

3. Short operations perform simple operations on a randomly selected object or its neigh-

bors. Some of the operations use indexes to search for objects using various search

criteria.

4. Structural modifications change the data structure by creating or deleting objects or links

among them. Structural modifications are performed in a way that prevents significant

degeneration of the data structure, such as, for example, making parts of the structure

disconnected from the root. The maximum size of the data structure is also constrained.

Operations in the first three categories can be either read-only or update operations. A

distribution of executed operations is determined by the selected workload type, which can be

read-dominated, read-write, or write-dominated. In addition to selecting a desired workload

type, long traversals can be included or excluded from the workload. This, in essence, results

in six different workloads. The distributions of operations for different workloads are given in

Table 3.2.

STMBench7 defines two different locking schemes: the coarse-grained scheme, which uses a

single read-write lock to protect the whole data structure, and the medium-grained scheme,

which uses a handful of locks to increase the parallelism between concurrent operations. The

medium-grained scheme protects each of the levels in the data structure with a different

31

Chapter 3. Large Software Transactions

read-write lock, and uses a separate lock for structural modifications to isolate them from all

other operations.

One peculiar characteristic of STMBench7 is the data structure initialization, which is per-

formed in a single transaction. The initialization transaction is not included in the measure-

ments, but, it turns out that several STMs could not execute it correctly due to its large size.

Therefore, the initializing transaction makes an important component of STMBench7 as a

correctness test.

3.3.3 STMBench7 with word-based STMs

STMBench7 is inherently object-based, as it uses class inheritance and polymorphism exten-

sively. Furthermore, it relies on standard language libraries, such as C++ STL and standard

Java library. In order to implement STMBench7 with word-based STMs, like TL2 and TinySTM,

I implemented a thin object-based wrapper on top of their word-based interfaces, as depicted

in Figure 3.3. The wrapper is, in fact, an implementation of an object-based STM on top of a

word-based one.

The interface of this “composite" STM is very similar to the interface of RSTM, enabling the

reuse of the bulk of the code of benchmark’s initial C++ implementation, which was done with

RSTM. The interface relies on C++ smart pointers to eliminate some of the incorrect uses of

the object-based STM interface [23]. In short, it provides three smart pointer types: sh_ptr,

rd_ptr, and wr_ptr. The pointers to objects that have not been opened for reading or

writing are represented by sh_ptr objects. No function can be invoked on these pointer

types. To perform a read-only operation on an object, its corresponding sh_ptr needs to be

typecast into a rd_ptr. During the conversion the object is opened for reading. A rd_ptr

pointer only supports read-only accesses, effectively being equivalent to a const pointer

in C++. To perform update operations on an object, its sh_ptr needs to be typecast into

a wr_ptr, which supports both read and update accesses. A fourth pointer type, un_ptr

is also provided, to enable performing operations on the objects outside of transactions.

Whereas the smart pointer interface makes programming less error-prone by detecting some

erroneous uses of the STM’s interface at compile time, it still does not eliminate the need for

the compiler support [23]. My experience, presented in Section 3.6 confirms this.

The wrapper internally represents each object by its handle, which is a pointer to the current

version of the object. The handle of the object is accessed using the underlying word-based

STM, which detects and resolves conflicts among concurrent transactions, while the wrapper

manipulates object versions. Whenever a transaction opens an object for writing, a redo copy

of the object is created and its address is speculatively written to the object’s handle using

the word-based STM. If the transaction commits, the redo copy becomes the current object

version, as the address of the redo copy gets committed to the handle by the word-based STM.

On the other hand, if the transaction aborts, the word-based STM rollbacks the change of the

handle, which then keeps pointing to the object’s old version.

32

3.3. STMBench7

handle

object redo copy

copy

W

read

ret

T t1 t2 t3 t4

base STM domain

commit

OO wrapper domain

user domain

TxWrite

update

TxRead

Figure 3.3: Implementing an object-based interface using a word-based STM.

The wrapper maintains a log of all objects opened for writing by the transaction. When the

transaction commits, it uses the log to delete old versions of all updated objects. The old values

of objects are deleted using transactional deallocation, which is described below. If, on the

other hand, the transaction aborts, it uses the log to delete their redo copies. When opening an

object for reading, the transaction reads the object’s handle using the underlying word-based

STM, which returns the pointer to the correct object version, avoiding read-after-write hazards.

With the described approach, a handle always maps to the same object, hence its address

uniquely identifies the object during its lifetime. The actual contents of the object reside at

different memory locations as the new versions of the object replace the old ones.

The example depicted in Figure 3.3 illustrates what happens when transaction T accesses

some shared object. T opens the object for writing at time t1. To do so, it creates a redo

copy of the object and writes its address to the object’s handle using the word-based STM.

After this point, T can access the redo copy of the object by reading its handle, whereas other

transaction still get the address of the current version when they read the handle.3 T next

updates the contents of the object’s redo copy at time t2. When T subsequently opens the

object for reading at time t3, it reads the handle using the word-based STM. The read returns

the address of the redo copy, thus correctly handling read-after-write by T . T actually reads

from the redo copy at time t4. Once the transaction commits, the old value of the object is

discarded and the redo copy becomes the current object version.

3Assuming that the underlying word-based STM detects read-write conflict lazily and allows transactions to
read memory locations that are being concurrently updated by other transactions.

33

Chapter 3. Large Software Transactions

It is worth noting that the wrapper supports various designs of the underlying word-based

STM, as it only requires the word-based STM to guarantee opacity. Hence, it works with both

TL2 and TinySTM, as well as with SwissTM presented in the next chapter.

Besides object versioning, the wrapper also deals with memory management. It rolls back

allocations on transaction aborts and postpones object deletions until they can be performed

safely. I adopted a memory management approach similar to that of [46], McRT malloc [66],

and RSTM [77]. When a transaction allocates an object, the allocation is logged. If the transac-

tion aborts, all the objects it allocated are deleted, which effectively rolls back the allocations.

Similarly, when a transaction deletes an object, the deletion is logged and postponed until the

commit. However, the object cannot be deleted immediately on commit, as the concurrent

transactions might still hold references to the object and may try to access it in the future. To

prevent accesses to deallocated memory, the object deletion is postponed as long as the object

is reachable from any live transaction.

To determine when it is safe to delete objects, the wrapper maintains per-thread counters

which count the number of transactions executed by each thread. The counters are incre-

mented both at the start and at the end of each transaction. When a transaction commits,

it stores all the objects it deleted and the current values of the counters into a deallocation

log. The objects get actually deleted only when all the transactions that are concurrent to the

deallocating transaction complete. The per-thread counters are used to determine when this

happens: once the counters of all threads change, the in-progress transactions are completed

and it is safe to deallocate the object. Note that there is no need for a transaction to snap-

shot the counters. The counters are monotonically increasing so using inconsistent counter

values might postpone object deallocations, but does not compromise the correctness. I

optimize memory deallocation by performing these reachability tests infrequently and for

batches of objects at a time. More details about memory management with STM are given in

Section 4.2.4.

Although the wrapper introduces additional overheads to word-based STMs, it enables the

straightforward use of TL2 and TinySTM with C++ and non-transactional libraries. The wrap-

per’s overheads are comparable to version management overheads of RSTM, thus allowing for

a more accurate performance comparison of lock-based and obstruction-free STMs.

3.4 Performance results

In this section, I present the most interesting results of the experiments with STMBench7 and

the conclusions about the best STM design for large transactions.

34

3.4. Performance results

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

TinySTM
RSTM inv eager cnt

RSTM vis eager
RSTM vis lazy

TL2

Figure 3.4: Comparison of different conflict detection approaches.

3.4.1 Experimental settings

All experiments were performed on a system with four AMD Opteron 8216 processors. These

processors are dual-cores, providing eight cores for the experiments in total. Each CPU is

clocked at 2.4 GHz. The system has 8 GB of memory. I used the highest compiler optimization

settings of GNU g++. All presented results are averaged over multiple runs, where the length

and the number of runs were chosen to reduce variations in the collected data. Unless stated

otherwise, the results present read-dominated STMBench7 workloads without long traversals.

The results for the read-write and write-dominated STMBench7 workloads are omitted, as the

performance trends on these workloads and the read-dominated workload are similar. The

following versions of the STM libraries were used: RSTM v3, x86 port of TL2 version 0.9.2, and

TinySTM version 0.7.1. The STMs were configured to maximize their performance.

3.4.2 Locking versus obstruction freedom.

Previously published results suggest that lock-based STMs outperform the obstruction-free

ones [29, 41]. My experiments that compare the performance of lock-based TL2 and TinySTM

with the obstruction-free RSTM confirm this to a large extent. However, the choice between

the obstruction-freedom and locking turns out not to have the greatest impact on the perfor-

mance of STM. Figure 3.4 shows that, with comparable conflict detection approaches, locking

outperforms obstruction-freedom: TinySTM performs better than the RSTM configured to use

invisible reads with eager acquire and global commit counter heuristic, and TL2 outperforms

RSTM with lazy acquire. The figure, however, reveals that the obstruction-free STMs can

perform better than sub-optimal locking STMs, as the best RSTM configuration outperforms

TL2 by a significant margin. The reason for RSTM outperforming TL2 lies mostly in its early

detection of write-write conflicts, as discussed below.

35

Chapter 3. Large Software Transactions

3.4.3 Towards the ideal conflict detection approach

The best performance in the STMBench7 experiments was achieved when using conflict

detection policies that have similar characteristics: they avoid wasted work performed by

transactions that are likely to abort, but they also avoid aborting a transaction as long as there

is some chance that it might commit. In a sense, these conflict detection policies are rather

optimistic, but not too optimistic. The best performing RSTM variant uses invisible reads with

eager acquire and the global commit counter heuristic, as shown in Figure 3.4. It has the best

performance precisely because it detects write-write conflicts early, so transactions doomed

to abort due to a conflict do not perform any further work in vain as is often the case with lazy

conflict detection, but postpones the detection of read-write conflicts, thus allowing more

parallelism than, for example, RSTM with visible readers. A similar conclusion can be drawn

when comparing the two lock-based STMs in the figure: TinySTM detects write-write conflicts

earlier than TL2 and this is, in a big part, why it outperforms it by a large margin.

I conjecture that the next step towards the ideal conflict detection policy is to keep detecting

write-write conflicts eagerly, but to try to allow even more parallelism between concurrent

transactions. In terms of the used conflict detection policies, both TinySTM and the best RSTM

variant could be improved by allowing two conflicting transactions, where one reads and the

other writes the same object, to proceed even after the reader detects the conflict, until it is

certain that one of the transactions has to abort. With such a conflict detection scheme, both

transactions would be allowed to commit in cases when the reading transaction commits first,

thus avoiding the waste of work performed by the reader. Having multiple versions of the

same object, as suggested in [16] and [92], could also help as it allows more transactions to

commit, particularly the read-only ones.

3.4.4 Visible reads

The conflict detection schemes that use visible reads, which are commonly considered to have

low performance, perform quite well in STMBench7 experiments: RSTM configured to use

visible reads with eager acquire is the second best performing RSTM configuration and third

overall, as shown in Figure 3.4.

Previously published results, based on the experiments with micro-benchmarks, have shown

that STMs employing invisible reads outperform the ones that use visible reads in almost all

cases, even when read-set validations are not optimized using the commit counter heuristic

or the time-based scheme [77]. The low performance of visible reader schemes is attributed

to higher rates of cache invalidations, resulting from frequent updates of the meta-data, and

generally higher cost of reads. However, in my experiments with STMBench7, the quadratic

cost of incremental read-set validations, incurred by invisible readers, becomes overwhelming

with long transactions. Consequently, RSTM variants that use invisible reads without the

commit counter heuristic have considerably lower performance than RSTM variants with

visible reads. In the extreme case of STMBench7 workloads with long traversals, RSTM with

36

3.4. Performance results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

RSTM invis heur
RSTM vis

RSTM invis no valid
TL2

RSTM invis

Figure 3.5: Incremental validation cost with RSTM.

invisible readers does not complete a single long traversal in minutes when the commit

counter is not used. The results without the long traversals are presented in Figure 3.5. They

show that, even without the long traversals, the RSTM variant with visible readers outperforms

the variants with invisible readers by up to two orders of magnitude.

To confirm that the reason for the low performance of invisible reads is, in fact, the cost

of incremental validations, I modified RSTM’s code and turned the incremental validations

off. The results presented in Figure 3.5 confirm that the RSTM performance with invisible

reads without incremental validation approaches the performance with visible reads. This

experiment also confirms that STMs that do not ensure opacity, as is the case with the modified

invisible-read RSTM that does not perform incremental read-set validations, indeed encounter

the problems discussed in Section 2.2, as the benchmark crashed several times due to memory

corruption during the experiments.

Figure 3.5 shows that RSTM with invisible reads does not outperform RSTM with visible reads

even when incremental validations are turned off, which might come as a surprise. The main

reason for RSTM with visible reads still outperforming the RSTM with invisible reads is that

it actually implements a better conflict detection policy: it detects transactions doomed to

abort early, thus reducing the amount of wasted work, unlike RSTM with invisible reads that

postpones read-write conflict detection until the commit time of the reader. However, RSTM

with visible reads detects read-write conflicts too eagerly, which limits the parallelism and

results in a slightly lower performance than when using invisible reads and the commit counter

heuristic.

3.4.5 Towards the ideal contention manager

Similarly to the best conflict detection policies, the best performing contention managers

avoid aborting transactions as much as possible. Furthermore, if one of the transactions

37

Chapter 3. Large Software Transactions

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

TinySTM
RSTM Serializer

RSTM Greedy
RSTM Polka

TL2

Figure 3.6: Performance of different contention managers.

needs to be aborted, they choose the transaction that performed the least amount of work.

Figure 3.6 conveys the best performance achieved with several contention managers. Two

best performing RSTM contention managers are Serializer, as implemented in RSTM [77],

and Greedy [50]. These contention managers order the transactions by having them acquire

unique timestamps at the start. They prioritize transactions that have lower timestamps, and

have, thus, started earlier, which is a good approximation of the amount of performed work.

With their approach, the “younger" transactions never abort the “older" ones, and instead

wait for them to finish. On the other hand, the “older" transactions always abort the “younger"

ones and are, thus, able to progress.

Polka was previously shown to perform well across a range of micro-benchmarks [100], but

it does not achieve the best performance with STMBench7. Although Polka indeed aborts

transactions that performed less work, it sometimes aborts transactions before that is abso-

lutely necessary. This happens because the attacker waits for a limited time before aborting

the victim even if the victim performed more work. With sub-optimal setting for this time

limit, Polka sometimes aborts the transaction that performed more work, thus wasting more

work than necessary.

An interesting contention management policy is the one employed by TinySTM, called Timid.

In locking STMs, especially in the ones with eager acquire and direct updates like TinySTM,

it is not trivial to abort the victim, as the abort involves releasing all the locks the victim has

acquired and rolling back all its tentative changes to the memory. For this reason, lock-based

STMs often simply abort the attacker and make it back-off for a while before retrying the

transaction. Interestingly, the version of TinySTM I used does not force transactions to wait

at all: it simply aborts the attacker and retries it immediately whenever a conflict is detected.

Perhaps surprisingly, it turns out that this approach works quite well, as conveyed by Figure 3.6,

despite causing a huge number of aborts. The Timid contention manager approximates the

ideal contention management strategy in cases when transactions access the shared objects

38

3.4. Performance results

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

RSTM eager Greedy
RSTM lazy Greedy

RSTM lazy Polka
RSTM eager Polka

Figure 3.7: Performance of RSTM with different combinations of conflict detection and con-
tention management policies.

in roughly the same order, which occurs quite often. When objects are acquired in the same

order by many transactions, the transaction that acquires the first of these objects, is typically

also the transaction that started executing the earliest and has, thus, performed the most work.

3.4.6 Conflict detection and contention management

The experimental results reveal a strong relation between the conflict detection and contention

management policies. Figure 3.7 shows that RSTM with Polka performs better when using

the lazy than when using the eager conflict detection. On the other hand, RSTM with Greedy

performs better with the eager than with the lazy conflict detection. Similar observations can

be made for other contention managers. These results demonstrate that comparing several

contention managers while fixing a particular conflict detection approach, or vice-versa, does

not necessarily yield a meaningful comparison. Stated differently, the construction of a new

contention manager requires prior knowledge of the conflict detection policy it will be used

with.

3.4.7 High concurrency levels

Running the benchmark with more threads than there are CPU cores in the system results

in unexpectedly sharp performance degradation in several cases, as illustrated in Figure 3.8.

With more threads than cores, performance cannot keep improving as there are simply no

more processing resources available, but it should degrade gracefully. The graceful perfor-

mance degradation is especially important once STMs reach ordinary users, as they cannot be

expected to fine-tune configurations of their applications according to the number of available

cores in the system, even if such approach would be feasible in some scenarios.

39

Chapter 3. Large Software Transactions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

TinySTM backoff
TinySTM yield

TinySTM
RSTM yield

RSTM

Figure 3.8: Performance of preemptive and non-preemptive STMs at high concurrency levels.

The main reason for this significant performance impact is the busy waiting performed by

transactions. Busy waiting wastes processors cycles, but even worse, it makes logically blocked

threads seem busy to the operating system scheduler. Because of this, the scheduler keeps

assigning cores to these threads, possibly preempting the ones that can actually make progress.

Such scheduling decisions slow down the system even further. This sharp performance

degradation when the system is overloaded is not obvious with short transactions of micro-

benchmarks, for the following reason. The busy waiting ends as soon as the transaction can

make progress, which happens when the conflicting transaction commits or aborts. When

transactions are short, the waiting period is short as well and busy waiting does not waste as

much processor time as with longer transactions. The busy waiting can be even beneficial

with short transactions, as it reduces the “reaction" time of the waiting threads by eliminating

the overheads of thread switching.

I first noticed this problem when using RSTM with the Serializer contention manager. To test

whether the busy waiting was indeed the cause of the performance degradation, I replaced

the busy waiting with a call to yield function. The call to yield makes the scheduler assign

the thread’s CPU to a different thread, if there is one ready to execute, making it the simplest

form of real waiting. As Figure 3.8 demonstrates, this simple approach is enough to solve the

problem.

I also observed the similar sharp performance degradation on an overloaded system with

TinySTM. The reason was pretty much the same: by aborting and restarting transactions

immediately, the thread is effectively busy waiting and preventing the other threads from

using the CPU core it is executing on. I applied the same simple solution as with the RSTM, by

having each aborted transaction invoke yield before restarting. As the figure conveys, this

was again enough to solve the problem.

Interestingly enough, invoking yield in transaction restarts in TinySTM resulted in a slight

performance improvement even with thread counts lower than the number of the CPUs in the

40

3.5. STM robustness

Crash STM Cause

Memory management
RSTM v2 16 MB/thread limit
DSTM2 high overheads
TinySTM free on commit

Transaction size
RSTM v3 1 MB/object limit
TL2 x86 0.9.0 internal overflow

Table 3.3: Summary of observed bugs.

system. This performance improvement is the result of short back-offs induced by a call to

yield even when no thread switch happens. These back-offs reduce contention, also reduc-

ing the abort rate. I verified that this interpretation of the results is correct, by implementing a

simple busy waiting back-off mechanism in TinySTM. The results in Figure 3.8 confirm that

the short explicit back-offs on aborts indeed improve the performance of TinySTM. A similar,

beneficial effect of expensive actions performed on aborts was also reported in [96].

3.5 STM robustness

The experiments I performed demonstrate the effectiveness of STMBench7 as a correctness

testing tool for STM implementations: I discovered several bugs in the STMs I used, that

lead to incorrect program executions or crashes. The two main reasons for the crashes were:

(1) memory management related problems and (2) the inability of STMs to cope with large

transactions. Both of these are rooted in the large size of STMBench7 data structure, which

stresses memory manager, by requiring large amount of memory, and implies large transac-

tions. The encountered problems are summarized in Table 3.3.

3.5.1 Memory restrictions

As already pointed out, and somewhat surprisingly, I discovered that some of the STMs used in

the experiments could not cope with the large memory requirements of STMBench7, or could

not adequately handle memory deallocations. Inadequate handling of memory deallocations

resulted in subtle problems with support for non-transactional accesses to data. In these

cases, I had to fix the bugs in STM implementations before running the experiments to collect

the performance measurements presented in the previous section.

RSTM. As soon as I started porting STMBench7 to C++, I immediately encountered a prob-

lem of exhausting all available memory with RSTM v2 [77]. RSTM v2 comes with a custom

memory allocator, that has an arbitrary limit of 16 MB of memory that can be allocated per

thread. Given much higher memory requirements of STMBench7, this memory limit pre-

vented the data structure initialization from completing. RSTM v3 comes with a flexible

memory management module that enables programmers to use a wider range of memory

41

Chapter 3. Large Software Transactions

allocators, including the allocator from the standard library. Using the standard allocator

resolved the problem.

This bug, although quite easy to detect and fix, caused no problems with the micro-benchmark

tests, simply because none of them required allocating 16 MB of memory in a single thread.

Therefore, it remained hidden even after testing RSTM with several micro-benchmarks.

DSTM2. DSTM2 [62] is written in Java, and, therefore, it uses Java’s built-in garbage collector

which relieves the developers from most of the memory management concerns. DSTM2 is

an experimental library that makes it easy to implement various STM algorithms inside the

framework it provides. The programers can transparently choose between different STM

algorithms at run time. To support the transparent choice of the STM algorithm, DSTM2

generates various classes at run time: it generates a “transactional" version of every class

of shared objects and also wraps every getter and setter method of every shared object in a

separate object.

The first problem I encountered with DSTM2 was the exhaustion of memory that JVM uses

to store class definitions. This was due to DSTM2 creating one transactional class for each

instance of the original class, although a single transactional class would suffice. Due to the

large number of objects in STMBench7, DSTM2 generated more classes than supported by the

JVM, crashing it. After reporting this bug to the DSTM2 authors, I received a new version of

the library that reused the class definitions between instances of the same class, which solved

the problem.

However, I was still not able to allocate STMBench7’s data structure, this time due to the lack

of heap memory. The problem persisted even after increasing the JVM heap size to 8 GB. After

further inspection, I found out that DSTM2 creates two wrapper objects for every data member

of the object: one for the getter and another one for the setter function. Both of these wrappers

hold a reference to a different instance of the java.lang.reflect.Method object, the

size of which is an order of magnitude greater than the size of the rest of the object. With the

large number of objects used in STMBench7, these java.lang.reflect.Method objects

exhausted the heap. I further modified DSTM2 to have all wrapper objects reuse the same

java.lang.reflect.Method instance, thus reducing memory requirements.

Whereas the memory requirements were reduced, the problem was still not fully solved, and I

was still not able to run STMBench7 with DSTM2. The reason for the heap exhaustion even

after these modifications was that DSTM2 still introduced big per-object overheads in its

internal structures, which caused the STMBench7 initialization transaction to exhaust the

heap. Fixing this problem turned out to require a significant rework of the library, which is

out of the scope of this thesis. Therefore, I was not able to experiment with STMBench7 and

DSTM2.

42

3.5. STM robustness

In contrast, micro-benchmarks do not create nearly as many objects as STMBench7, so the

high bloat introduced by DSTM2 was overlooked. It is worth mentioning that the lock-based

version of STMBench7 implemented in Java can be executed without any problems, as it has

modest memory requirements of approximately 200 MB, which is far from the heap’s size.

TinySTM. TinySTM uses a simple and efficient approach to memory management that

works correctly when shared data is accessed only with STM read and write calls. The ap-

proach relies on a non-faulting load instruction, which is simulated using the appropriate

signal handlers on architectures that do not support the instruction natively. Memory deal-

locations are performed immediately when the deallocating transaction commits. Before

committing, the transaction acquires all locations in the deallocated block for writing, thus

preventing concurrent transactions from writing to the deallocated block. The concurrent

transactions could still read locations in the block, but the simulated non-faulting load in-

struction prevents crashes in these cases, and TinySTM ensures that the reading transaction is

aborted subsequently. This approach is different from the memory manager in the STMBench7

object-based wrapper and similar approaches [46, 66, 77] which postpone the deallocation

until all concurrent transactions have completed.

Unfortunately, when I tried to use TinySTM’s memory manager instead of the wrapper’s,

STMBench7 crashed. The reason for the crashing was wrapper’s caching of the pointers to the

opened objects for the duration of the transaction. This caching is done to eliminate repeated

calls to the underlying word-based STM and, thus, improve performance. The cached pointers

allow concurrent transactions to access the objects that have already beed deallocated. Illegal

memory accesses are handled by the simulated non-faulting loads in most cases, but they

cause memory corruption in rare situations when the deallocated memory gets reused by

a different thread. Long transactions of STMBench7 increase the probability of triggering

the bug, as with long transactions the pointer to the old version of the object gets used long

after the object deallocation, thus increasing the probability of a different thread reusing the

memory.

This problem most often manifested itself while copying large C-style strings. In cases when

zero-terminator of the string gets overwritten after the memory is reused, the string copying

based on the cached pointer proceeds past the end of the string, overwriting memory allocator

meta-data and corrupting the heap. Heap corruptions result in subsequent malloc and

free calls raising an exception and aborting the program. I detected the problem only in

these, relatively rare, cases when the heap became corrupted.

The problem is not obvious as it seems that the non-faulting load instruction should prevent

heap corruptions. Long transactions of STMBench7 were instrumental in detecting the prob-

lem, as they increase the probability of incorrect executions and enabled me to discover that

TinySTM’s memory manager was being used incorrectly. I solved the problem by using the

object-based wrapper’s memory allocator, described above.

43

Chapter 3. Large Software Transactions

t1

t2 t3

t4 t5

t6

t7

t8 t9

t10

R

R

R R R

R R R

W

W

T1

T2

O1 O2 O3 O4

commit

commit

Figure 3.9: TL2 x86 version 0.9.0 read-set overflow example.

3.5.2 Transaction size

While running the benchmark, I encountered several problems that were caused by the size

of executed transactions. In these cases, the problems were triggered by the high number of

transactional accesses, not by the size of the accessed objects, typically as performing many

accesses resulted in overflows of transaction’s internal data structures.

RSTM. As mentioned above, RSTM v3 comes with an updated memory manager that sup-

ports several different underlying memory allocators, including the standard malloc im-

plementations and the new version of RSTM’s custom allocator. Despite the RSTM’s custom

allocator removing the 16 MB allocation limit per thread, the initialization transaction still

crashed when using it. By investigating the problem, I discovered and fixed a pretty interesting

bug that caused the crashes. RSTM’s allocator allocates memory in chunks that are at most 1

MB in size, which limits the maximum size of objects. As there are no objects larger than 1

MB in STMBench7, this limit did not cause a problem when allocating STMBench7 objects.

However, RSTM internally uses arrays for storing transaction’s read- and write-sets, which

dynamically grow to accommodate for the increasing size of the read- and write-sets as the

transaction keeps accessing new objects. With large enough transactions, these arrays can

become larger than 1 MB, which is the maximum object size supported by the memory alloca-

tor. Crossing this threshold causes the program to crash, practically limiting the number of

objects that can be accessed inside a transaction.

Of course, the micro-benchmarks did not reveal this problem, as their transactions never

access enough objects to overflow a 1 MB array. The problem was also not triggered by the

allocation of STMBench7 objects, as none of them is larger than the 1 MB limit either. However,

the long initializing transaction of STMBench7 crashed, not allowing me to use the custom

memory allocator for running STMBench7, before fixing the bug. To discover the problem

was, again, harder than to fix it and a small patch to RSTM’s custom allocator was enough.

44

3.6. Programming issues

TL2. The problem with the number of accessed objects in a single transaction also occurred

with TL2 [28] x86 version 0.9.0 [81]. TL2 maintains its read-set as a linked-list. It pre-allocates

a number of the list nodes during STM initialization, for performance reasons. When a

transaction uses up all of the available pre-allocated list nodes, it is aborted and restarted.

Before restarting, additional list nodes are allocated to accommodate for the increase in the

number of accessed locations. However, due to a programming error, transactions did not get

aborted when overflowing the list. Instead, they were allowed to continue until the commit

time, and completely ignored the reads causing the overflow when validating their read-sets.

As a result, two conflicting transactions could be allowed to commit. The problem is illustrated

in Figure 3.9. In the figure, I assume that initially only three list nodes are pre-allocated. As the

list overflows, transactions T1 and T2 are both allowed to commit, despite them both reading

and updating object O4. This violates transactional semantics and can even crash the program

in specific cases, which is how I initially noticed the problem.

When two transactions delete the same object they conflict as they both unlink the object

from the shared data structure. However, if the conflict passes undetected, both transactions

will actually delete the same object, causing a double deallocation of the occupied memory

block. Most of the time, TL2’s signal handlers, that are used for emulating non-faulting load

instruction on the x86 architecture, catch the resulting segmentation fault and mask the

problem. In some rare cases, however, the second free of the object corrupted the heap and

subsequent calls to malloc or free raised the exception and aborted the program.

A newer version of TL2 for x86 fixed this problem by appropriately handling the read-set

overflows. This problem was also not very hard to fix, once it was detected and STMBench7

helped me with detecting it. In this particular case, the library authors discovered and fixed

the problem on their own, prior to my report.

3.5.3 Other examples

Since performing the experiments described in this chapter, STMBench7 was used in several

instances to test various STM implementations. In those instances, as well as in the cases

that are mentioned above, STMBench7 proved to be an invaluable tool for stress testing STMs.

For example, in the Velox Project [5] STMBench7 was used to highlight the deficiencies of the

proposed STM compilers and HTM solutions. As a result, a simplified version of STMBench7

was produced. This STMBench7 version uses a smaller data structure and simpler operations,

which makes it easier to support by TM implementations. Similarly, STMBench7 revealed

bugs in the Intel’s prototype STM C++ compiler, as discussed in Section 5.5.

3.6 Programming issues

STMBench7 effectively highlights the problems that might be encountered by programmers or

compiler vendors when they decide to start using STM in production. The identified problems

45

Chapter 3. Large Software Transactions

fall into three main categories: lack of support for external libraries, lack of complete support

for object-oriented language features, and difficulties with debugging and testing. For a

discussion of several other programming issues with library based STMs, see [23].

3.6.1 External libraries

STMBench7 uses standard library character strings and basic container classes. Even the use

of these relatively simple classes was enough to prevent the full utilization of some STMs.

For example, both TL2 and TinySTM operate directly at the level of memory words and thus

they do not integrate well with external libraries. For that reason, I decided not to implement

STMBench7 using the low-level word-based interface directly, as that would require rewriting

large parts of the standard library. Instead, I worked around this limitation of word-based

STMs by implementing the object-oriented wrapper on top of their interfaces, as described in

Section 3.3.3.

A different problem that made the use of standard classes with RSTM more difficult, was

RSTM’s implementation of the memory allocator interface intended for use in the standard

collection classes. The allocator exposed by RSTM replaces standard allocation and dealloca-

tion routines with their transactional equivalents, and is thus suitable for a fully transactional

implementation of the standard library, which does not exist yet. When a transaction creates

an object of a standard, non-transactional class using the allocator, and later aborts, the ob-

ject’s memory gets deallocated twice: once by the object’s destructor and once by the rollback

of the transaction. This results in heap corruptions and, effectively, prevents the program-

mer from using objects of standard library classes. To use the standard library, I replaced

transactional versions of memory allocation routines in RSTM’s version of STL allocator with

non-transactional ones. More generally, this leads to a conclusion that STMs which provide

support for non-transactional versions of external classes need to provide both transactional

and non-transactional memory allocation mechanisms.

3.6.2 Object-oriented features

I also encountered several less severe programming issues, which can make programming with

STM more difficult. Most of them were rather easy to fix, but required a deeper knowledge of

the STM’s internal implementation details. An example of these issues is the lack of support for

polymorphism in RSTM’s smart pointers. None of the micro-benchmarks revealed this issue,

as they use simple class hierarchies which do not take advantage of object polymorphism. For

example, the most common micro-benchmarks use classes only to represent the container

types, such as trees and lists, and their internal nodes. On the other hand STMBench7 uses

inheritance and polymorphism to represent assemblies and their two specializations: base and

complex assemblies. As each complex assembly references several child assemblies, which

can be either base or complex, it is natural to use polymorphic functions when processing

46

3.7. Summary

the children of a complex assembly. Therefore, it is important to use the STM that supports

polymorphic transactional objects.

Another issue was related to the fact that TinySTM’s memory manager does not invoke de-

structors when objects are deleted. Instead it simply deallocates the corresponding memory.

This results in problems with C++ code that relies on destructors. The simplest solution in

programs that only use objects, like STMBench7, is to replace the calls to free with calls to

delete, which invoke the appropriate destructors. However, a more complete solution is

needed for programs that need to allocate and deallocate both objects and opaque memory

blocks.

3.6.3 Non-faulting loads

My experience with TL2 and TinySTM showed that using signal handlers to emulate the

non-faulting load instruction, although correct if used appropriately, can cause significant

problems while programming. The main problem with these signal handlers is that they mask

actual errors in the program that are results of incorrectly written code, which makes it much

more difficult to debug the code during development. I often found it hard to distinguish

between a genuine programming error and the error which is the result of inconsistencies that

the signal handlers are supposed to mask. Therefore, I believe that simulating non-faulting

load instruction in such a way should be avoided. Instead, STMs should either mask the errors

in a different way, for example inside a virtual machine for managed languages where there is

more control over the execution, or completely eliminate the need for such instructions by, for

instance, providing a safe memory manager.

3.7 Summary

To summarize, this chapter presents the conclusions from implementation and experimen-

tation with STMBench7 and several state-of-the-art STMs. In short, STMBench7 can, very

effectively, be used to compare the performance of different policies as opposed to compar-

ing mechanisms. This is in contrast to most commonly used micro-benchmarks. By using

STMBench7, I concluded that the combination of the conflict detection technique and the

contention manager has the biggest influence on the performance of STM with large-scale

workloads. Although other issues, like the choice between a locking and a non-blocking

implementation, also influence the overall performance, their impact is not as significant. I

conclude that the best conflict detection techniques detect write-write conflicts early and read-

write conflicts late. Such a conflict detection scheme is best coupled with Greedy contention

manager which achieves the best performance with eager conflict detection approaches.

Furthermore, STMBench7 proved to be a great test of whether an STM is correct, and, more

importantly, whether it is truly dynamic and unbounded in practice. Strangely enough, all

47

Chapter 3. Large Software Transactions

STMs I used turned out to crash, for various reasons that were mostly related to memory

management.

Finally, STMBench7 can also be used to assess the costs of adopting STM solutions in terms of

usability and required changes to external libraries, which might be a very valuable informa-

tion when choosing an STM for production use. The presented experiments also demonstrated

that proper compiler and runtime support, in particular the support for standard libraries, are

needed for STM to be mode widely used.

48

4 SwissTM

In this chapter I propose SwissTM, a new STM I designed based on the conclusions regarding

performance of STMs with large-scale workloads from the previous chapter. However, I

do not focus solely on large transactions: whereas the performance with large transactions

is important, in many cases STM will be used in programs that also use short and simple

transactions. My motivation is, therefore, to explore the ability of software mechanisms to

effectively support mixed workloads consisting of small and large transactions, as well as

possibly complex data structures.

This chapter describes the design and the implementation of SwissTM in detail. It also presents

the evaluation of SwissTM using STMBench7, and several other benchmarks: STAMP [17],

Lee-TM [8], and standard red-black tree micro-benchmark, used for example in [28, 43, 63].

The evaluation compares the performance of SwissTM to the STMs from the previous chapter:

RSTM [77], TL2 [28], and TinySTM [43]. This chapter also “dissects” SwissTM by evaluating

the individual impact of several design and implementation choices on its performance,

providing valuable insight into when to use each of them in alternative STM designs. Finally, I

also describe two extensions to the base SwissTM algorithm: integration with standard STM

compilers and support for the privatization idiom.

4.1 Overview

I first briefly summarize the most important findings regarding STM performance from the

previous chapter:

1. The lazy acquire scheme, used in, for example, TL2 [28], can indeed be effective for short

transactions, but might waste significant work with longer transactions that eventually

abort due to write-write conflicts. This is because write-write conflicts, which usually1

lead to transaction aborts are detected too late.

1Pure write-write conflicts do not necessarily lead to transaction aborts in STMs that lazily acquire objects, but
are very rare, as most transactions read memory locations before updating them.

49

Chapter 4. SwissTM

2. The eager acquire scheme, used in, for example, TinySTM [43], McRT-STM [99], and

Bartok-STM [57], immediately aborts a transaction that tries to read a memory location

locked for writing by another transaction. Hence, read-write conflicts, which can often

be handled without aborts, are detected very early and are resolved by aborting readers.

Long transactions that update memory locations commonly read by other transactions

might thus end up blocking many other transactions, possibly for a long time, thus

slowing down the system overall.

3. The Timid contention management scheme, often used by lock-based STMs, such as

TL2 and TinySTM, which aborts transactions immediately upon a conflict, works well

with short transactions. Contention managers such as Greedy [50] or Serializer [77] are

more appropriate for large transactions, but are hardly ever used due to the overheads

they impose on short ones.

It is appealing but challenging to come up with strategies that account both for long transac-

tions and complex workloads, and for short transactions and simple data structures, which

are likely to coexist in real applications. Starting from the conclusions from the experiments

with large-scale workloads presented in the previous chapter, I build a lock- and word-based

SwissTM which uses the following policies:

• A conflict detection scheme that detects (1) write-write conflicts eagerly, in order to

prevent transactions that are doomed to abort from running and wasting resources, and

(2) read-write conflicts late, in order to optimistically allow more parallelism between

transactions. In short, transactions eagerly acquire objects for writing, which helps

detect write-write conflicts as soon as they appear. This also avoids wasting work of

transactions that are already doomed to abort due to a write-write conflict. By using

invisible reads and allowing transactions to read objects acquired for writing by other

transactions, SwissTM detects read-write conflicts late, thus increasing inter-transaction

parallelism. A time-based scheme [28, 43] is used to reduce the cost of transaction

validation with invisible reads.

• The Two-phase contention manager that incurs negligible overheads on read-only

and short read-write transactions while favoring the progress of transactions that have

performed a significant number of updates. Basically, transactions that are short or read-

only use the simple but inexpensive Timid contention management scheme, aborting

on first encountered conflict. Transactions that are more complex switch dynamically

to the Greedy policy that involves more overhead but favors complex transactions.

Additionally, transactions that abort due to write-write conflicts back-off for a period

proportional to the number of their successive aborts, thus reducing contention on

memory hot spots.

I compare performance of SwissTM to RSTM [77], TL2 [28], and TinySTM [43] for the reasons

that are largely the same as for using them in the previous chapter. These STMs constitute the

50

4.1. Overview

STM design choices
Acquire Reads CM Effectiveness
lazy invisible any +
eager visible any +
eager invisible Polka +
eager invisible Timid or Greedy ++
mixed invisible Timid or Greedy +++
mixed invisible Two-phase ++++

Table 4.1: A comparison of selected STM designs for mixed workloads.

state-of-the-art performance-wise, among the publicly available library-based STMs. Further-

more, just like SwissTM, they can be used to manually instrument concurrent applications

with STM read and write calls. My goal is to evaluate the performance of the core STM al-

gorithm, not the efficiency of the higher layers such as STM compilers. For this reason, I

did not use, for instance, McRT-STM [85, 99] as it does not expose such a low-level API to

programmers. Evaluating STM compilers, which naturally introduce additional overheads

above the low-level STM interface [19, 38, 121], is largely an orthogonal issue. Also, the selected

STMs represent a wide spectrum of known TM design choices including: obstruction-free and

lock-based progress, direct and deferred updates, visible and invisible reads, and word- and

object-level access granularities. They also allow for experiments with a variety of contention

management strategies, from simply aborting a transaction on a conflict, through exponential

back-off, to advanced contention managers like Greedy [50], Serializer [77], or Polka [100].

This makes them a good choice both for a comprehensive performance evaluation of SwissTM

as well as for drawing general conclusions about STM performance. Table 4.1 summarizes the

effectiveness of several STM designs to support mixed workloads, based on the performed

experiments.

The evaluation is based on benchmarks that cover a large part of the complexity space. STM-

Bench7 [52] is used to represent workloads with non-uniform data structures of significant

size, and a mix of operations of various lengths and data access patterns. The evaluation

also uses Lee-TM [8], a benchmark with large but regular transactions, and STAMP [17], a

collection of realistic medium-scale workloads. Finally, a red-black tree micro-benchmark is

used to evaluate low-level overheads of read and write calls on a benchmark that involves very

short and simple transactions.

SwissTM outperforms all other used STMs on most of the considered benchmarks and matches

their performance on the rest. For example, on the read-dominated workload of STMBench7,

with 90% of read-only operations, SwissTM outperforms the other STMs by more than 55%,

and on the read-write workload, with 60% of read-only operations, by more than 40%. Also,

SwissTM exhibits better scalability than the other STMs, especially for read-dominated and

read-write workloads of STMBench7. Similarly, SwissTM achieves good performance on other

used workloads.

51

Chapter 4. SwissTM

I also evaluated the impact of individual design choices on the performance of SwissTM. For

example, I demonstrate that using the mixed eager-lazy conflict detection instead of the pure

eager scheme helps significantly in face of long-lasting read-write conflicts, by comparing

SwissTM and TinySTM on a modified version of Lee-TM benchmark. Two-phase contention

manager is also evaluated in detail: I demonstrate that it is a better choice than Polka or Timid

on the large-scale STMBench7 benchmark, and that it outperforms pure Greedy scheme on the

small-scale red-black tree micro-benchmark. The effectiveness of the selected linear back-off

scheme is also illustrated, using the intruder benchmark from STAMP as an example. From an

implementation perspective, I present a detailed evaluation of impact of locking granularity

on SwissTM performance. Word-based STM implementations typically use either word-level

locking, like TL2 and TinySTM, or cache-line level locking, like McRT-STM. The sensitivity

analysis I performed shows that the locking granularity of four words outperforms both

word and cache-line granularities by 4% and 5% respectively averaged across all considered

benchmarks.

4.2 Design and implementation

SwissTM is a lock-based STM that uses invisible reads. It relies on the shared time-base

to optimize reads-set validations, as described in Section 3.2 and employed by TL2 and

TinySTM. It uses eager write-write and lazy read-write conflict detection, as well as the Two-

phase contention manager with random linear back-off. SwissTM is word-based, enabling

transactional access to arbitrary memory words. It uses deferred updates and, hence, a

redo-logging scheme, in part to support the lazy detection of read-write conflicts.

4.2.1 Programming model

When programming with SwissTM, programmers have to manually replace all memory refer-

ences to shared data from inside transactions with STM calls for reading and writing memory

words. As discussed, this programming model can be improved by using an STM compiler,

such as [45, 57, 85]. While the compiler instrumentation can degrade performance due to

over-instrumentation [19, 38, 121] and possibly even change the characteristics of the work-

load slightly by, for example, changing numbers and ratio of transactional reads and writes,

the compiler instrumentation remains a largely orthogonal issue to the performance of an

STM library. Discussion of how to integrate SwissTM with standard STM compilers is deferred

to Section 4.5.1. Section 5.5 evaluates the performance impact of using an STM compiler with

SwissTM across a range of workloads.

Similarly to most other STM libraries, SwissTM guarantees opacity [51]. SwissTM is a weakly

atomic STM, thus not providing any guarantees for code that accesses the same data from

both inside and outside of transactions. Base SwissTM variant is not privatization safe [106],

which might make programming with SwissTM slightly more difficult in certain cases, but

it did not affect the experiments, as none of the benchmarks requires a privatization-safe

52

4.2. Design and implementation

STM. Discussion of how to extend SwissTM to support the privatization idiom, using standard

techniques, is deferred to Section 4.5.2. Section 5.6 evaluates the performance impact of

guaranteeing privatization safety in SwissTM across a range of workloads.

Other three STMs used in the experiments provide the same semantical guarantees as SwissTM.

I believe that strengthening the guarantees would have a similar performance impact on them

as on SwissTM, thus making the performance comparison fair.

4.2.2 Algorithm

Pseudo-code. The pseudo-code of SwissTM uses a C/C++-like syntax, as this makes it eas-

ier to distinguish between pointer and value variables. It assumes that atomic fetch-and-

increment and compare-and-swap instructions are supported by the CPU, which is the case for

most modern CPUs. For simplicity, the code also assumes a sequentially consistent memory

model and ignores version overflows. The pseudo-code uses a data structure for maintaining

read- and write-sets, which supports operations typical of a collection class. I discuss these

assumptions and their implications on the implementation in more detail in Section 4.2.4.

For clarity, the pseudo-code of SwissTM is split into several figures: used types and global vari-

ables are defined in Figure 4.2, the main part of SwissTM algorithm is presented in Figure 4.3,

and the contention manager pseudo-code is given in Figure 4.5.

Ownership records. SwissTM uses meta-data organized in ownership records, or orecs for

short, to keep track of accesses to memory locations. To simplify the presentation, the pseudo-

code assumes that each ownership record corresponds to a single memory location. The

details of storing and accessing the ownership records are discussed in Section 4.2.4, together

with other implementation issues.

The ownership record consists of a read and a write lock. Both of these locks are acquired

by writers: the read lock is used to detect read-write conflicts and the write lock is used to

detect write-write conflicts. When a transaction acquires a particular write lock, it stores to it

a pointer to the corresponding write-set entry. This facilitates fast read-after-write and write-

after-write checks. Write locks are set to zero when released. When a transaction acquires a

particular read lock it sets its value to 1. Otherwise the read locks are set to the current orec

version, shifted to the left by one. This scheme enables transactions to distinguish between an

acquired and a free read lock by simply checking whether its least significant bit is set or not.

By using two locks instead of one, as is usually done in other STMs, SwissTM is able to detect

different types of conflicts at different points in the execution: write locks are acquired at the

time of write, to eagerly detect write-write conflicts, and read locks are acquired at commit

time, to lazily detect read-write conflicts. With this approach, a read lock is always acquired by

the transaction that already holds the corresponding write lock. Consequently, transactions

53

Chapter 4. SwissTM

0xA

0

read lock

write lock

(a) Not acquired

0xA

0xBBAB

write-set

read lock

write lock

(b) Acquired for update, transaction executing

1

0xBBAB

write-set

read lock

write lock

(c) Acquired for update, transaction committing

0xC

0

read lock

write lock

(d) Not acquired, after commit

Figure 4.1: Different states of an ownership record.

acquire read locks using an ordinary write, in contrast to acquiring write locks, which require

use of atomic compare-and-swap.

Figure 4.1 illustrates different states of an orec, when the location it corresponds to is updated

by a transaction. The orec starts unlocked with version equal to 5, as depicted in Figure 4.1(a).

Thus the read lock holds value 0xA which corresponds to the orec version shifted to the left

by one. When a transaction acquires the write lock, it stores a pointer to its write-set entry,

as in Figure 4.1(b). The read lock is not updated at this time, so the concurrent readers can

proceed with reading the location without conflicting with the writer. Figure 4.1(c) depicts

what happens at commit time, when the writer transaction acquires the read lock too. In

this state, both the read and the write lock are held by the same transaction, which now has

exclusive access to the corresponding memory location. After commit, both locks are released,

with the read lock updated to contain the new orec version, equal to 6 in the example, shifted

to the left by one position, as in Figure 4.1(d).

Data structures. Pseudo-code in Figure 4.2 defines types and global data used by SwissTM.

It includes the declaration of an architecture-specific word type, which is the granularity at

which SwissTM detects conflicts and logs updates. SwissTM relies on the system-specific

long-jump buffer, declared in the figure, to handle transaction restarts. The pseudo-code also

declares the log and log iterator types, provided by the implementation, and the ownership

record, consisting of a read and a write lock. The transaction descriptor maintains book-

keeping data local to a transaction. Apart from the long-jump buffer used for restarts, it

maintains the read-set validity timestamp and read- and write-sets. It also maintains several

variables used for contention management, which are discussed below.

54

4.2. Design and implementation

1 // architecture-specific word type
2 typedef word_t;
3 // system-defined long jump-buffer
4 typedef jmpbuf_t;
5 // implementation-specific log type
6 struct log_t;
7 struct iter_t;
8 // lock type
9 struct TxOrec {

10 word_t write_lock;
11 word_t read_lock;
12 };
13

14 // transaction-local descriptor
15 struct TxDescriptor {
16 jmpbuf_t jmpbuf;
17 word_t valid_ts;
18 log_t read_set;
19 log_t write_set;
20 // contention manager
21 word_t cm_ts;
22 int succ_aborts;
23 bool aborted;
24 };
25 // shared time-base
26 word_t commit_ts;

Figure 4.2: SwissTM pseudo-code (types and shared data).

Global variables. The only global variable SwissTM uses is the shared time-base, denoted

as commit_ts, which is used to speed-up read-set validations, as discussed in Section 3.2

and below.

Transaction start. The code that uses SwissTM sets a long-jump buffer to the instruction

that invokes TxStart. The long-jump buffer is then passed to the TxStart call as an argu-

ment and is stored in the descriptor (Figure 4.3, line 3). When a transaction aborts, it restarts

itself by executing a long-jump to the provided long-jump buffer, effectively transferring ex-

ecution to the start of the transaction (line 101). At its start, the transaction also reads the

shared time-base commit_ts and stores its value in the descriptor as its validity timestamp

(line 4).

Transactional read. To read a memory location, a transaction performs the following steps:

1. It maps the location to the corresponding orec (lines 10–12).

2. It checks whether it previously acquired the corresponding write lock, in which case the

read needs to return the value of transaction’s last write to the location (line 14). If it did,

the read immediately returns the location’s new value stored in the write-set (line 15),

ensuring that read-after-write accesses are handled correctly.

3. The transaction next reads consistent values of the read lock and the memory location

(lines 17–28). To do so, it reads the read lock, then the location, and then the read lock

again. These steps are repeated until the two values of the read lock match, and the

lock is not held by any transaction. Spinning here is safe: the owner of the lock is in its

commit phase and, hence, it does not try to acquire any additional write locks, which

eliminates the possibility of a deadlock with the transaction that is performing the read.

As the lock owner is already in its commit phase, it will soon release the lock, so the wait

at this point is expected to be short. The alternative to waiting is to abort the current

transaction or the owner of the lock, but neither is beneficial: the owner will soon

55

Chapter 4. SwissTM

1 void TxStart(TxDescriptor *tx,
2 jmpbuf_t jmpbuf) {
3 tx->jmpbuf = jmpbuf;
4 tx->valid_ts = commit_ts;
5 cm_on_start(tx);
6 }
7 word_t TxReadWord(TxDescriptor *tx,
8 word_t *addr) {
9 // map address to meta-data

10 TxOrec *lock = map_addr_to_lock(addr);
11 word_t *wlock = &lock->write_lock;
12 word_t *rlock = &lock->read_lock;
13 // check for read-after-write
14 if(is_locked_by_me(tx, wlock))
15 return get_write_value(wlock, addr);
16 // read version and value consistently
17 word_t version = *rlock;
18 while(true) {
19 if(is_locked(version)) {
20 version = *rlock;
21 continue;
22 }
23 word_t value = *addr;
24 word_t version2 = *rlock;
25 if(version == version2)
26 break;
27 version2 = version;
28 }
29 // validate read set if needed
30 add_to_read_set(tx, rlock, version);
31 if(version > tx->valid_tx)
32 if(!extend(tx))
33 rollback(tx);
34 return value;
35 }
36 void TxWriteWord(TxDescriptor *tx,
37 word_t *addr,
38 word_t val) {
39 // map address to meta-data
40 TxOrec *lock = map_addr_to_lock(addr);
41 word_t *wlock = &lock->write_lock;
42 word_t *rlock = &lock->read_lock;
43 // check for write-after-write
44 if(is_locked_by_me(tx, wlock)) {
45 store_write_value(wlock, addr, val);
46 return;
47 }
48 // acquire the write lock
49 while(true) {
50 word_t wl = *wlock;
51 if(is_locked(wlval) {
52 if(cm_should_abort(tx, wlval))
53 rollback(tx);
54 continue;
55 }
56 word_t entry = add_to_write_set(
57 tx, wlock, addr);
58 if(compare_and_swap(
59 wlock, UNLOCKED, entry))
60 break;
61 return_to_write_set(tx, entry);
62 }
63 // validate read set if needed
64 if(*rlock > tx->valid_ts)

65 if(!extend(tx))
66 rollback(tx);
67 cm_on_write(tx);
68 }
69 void TxCommit(TxDescriptor *tx) {
70 // check if read-only
71 if(is_read_only(tx)) return;
72 // lock read locks
73 for(iter_t *it in tx->write_set) {
74 *it->read_lock = LOCKED;
75 }
76 // get commit timestamp
77 word_t ts = fetch_and_increment(
78 &commits_ts);
79 // validate read set
80 if(ts > tx->valid_ts + 1) {
81 if(!validate_commit(tx)) {
82 for(iter_t *it in tx->write_set) {
83 *it->read_lock = it->version;
84 }
85 rollback(tx);
86 }
87 }
88 // copy values to memory
89 for(iter_t *it in tx->write_set) {
90 *it->address = it->value;
91 *it->read_lock = (ts << 1);
92 *it->write_lock = UNLOCKED;
93 }
94 cm_on_commit(tx);
95 }
96 void rollback(TxDescriptor *tx) {
97 for(iter_t *it in tx->write_set) {
98 *it->write_lock = UNLOCKED;
99 }

100 cm_on_rollback(tx);
101 longjmp(tx->jmpbuf);
102 }
103 bool extend(TxDescriptor *tx) {
104 word_t ts = commit_ts;
105 if(validate(tx)) {
106 tx->valid_ts = ts;
107 return true;
108 }
109 return false;
110 }
111 bool validate(TxDescriptor *tx) {
112 for(iter_t *it in tx->read_set) {
113 if(it->version != *it->read_lock) {
114 return false;
115 }
116 }
117 return true;
118 }
119 bool validate_commit(TxDescriptor *tx) {
120 for(iter_t *it in tx->read_set) {
121 word_t rlval = *it->read_lock
122 if(it->version != rlval)
123 if(!is_locked_by_me(tx, rlval) {
124 return false;
125 }
126 }
127 return true;
128 }

Figure 4.3: SwissTM pseudo-code (base algorithm).

56

4.2. Design and implementation

commit, so the current transaction needs to wait only for a short while, and aborting

either transaction would result in an unnecessary waste of work they performed.

4. Then, the transaction validates the read set (lines 30–33). Before validation, it stores the

address of the read lock and its version into the read set, to ensure that the orec does

not change during the validation. This ensures that races between the ongoing read

and concurrent updates to the same location are avoided. To validate the read-set, the

transaction first compares orec’s version to the transaction’s validity timestamp. If the

orec’s version is lower or equal to the timestamp, the read-set is still consistent and the

full validation is not necessary. If it is higher, then the transaction tries to extend validity

of the read-set (lines 103–110).

To do so, the transaction first reads the current value of the shared time-base counter

commit_ts and then checks whether any of the orecs in its read-set have been updated

since first accessed by the transaction (lines 111–118). If all orecs are still the same,

the validation is successful and the read-set validity timestamp can be updated to the

value of commit_ts observed before the validation. By first reading commit_ts and

then validating the read-set, the transaction ensures that the read-set was valid at the

time it read commit_ts, thus making it safe to adopt the commit_ts’s value as its

new validity timestamp. Whereas the read-set extension takes work proportional to the

read-set’s size, it is not performed very often because the orec’s version is usually lower

than transaction’s validity timestamp, so it does not impact performance significantly. In

cases when the version of the newly accessed orec is higher than the validity timestamp,

the transaction has two choices: either to abort immediately, or to try to extend the

read-set validity. The latter option tries to reduce the amount of work wasted by aborts,

and this is why it is used in SwissTM.

5. Finally, if the read-set is valid, the value read from the location is returned to the caller.

Transactional write. To update a memory location, a transaction performs the following

steps:

1. As when reading, it first maps the location to the corresponding orec (lines 40–42).

2. The transaction then checks whether it has previously acquired the write lock in the

orec. If it has, the corresponding value in the write-set is updated, ensuring that write-

after-write accesses are handled correctly, and the write call returns (lines 44–47).

3. Next, the transaction attempts to acquire the write lock (lines 49–62). To do so, it first

checks whether the lock is held by another transaction. If it is, the transaction invokes

the contention manager (line 52) to check whether it should abort. In case it is allowed

to keep executing, the owner of the lock will be signaled to abort. However, the lock

owner will not immediately detect that it has been aborted and even once it does, it

will take some time for it to release the lock during rollback. For that reason, when the

57

Chapter 4. SwissTM

transaction wins the contention management, it simply keeps spinning until the lock is

released.

After the transaction observes that the lock has been released, it prepares a new write-set

entry and uses atomic compare-and-swap instruction to acquire the lock by storing the

address of the entry into the lock (lines 56–58). If the acquire attempt fails, the write-set

entry is returned to the write-set, and the transaction performs the above steps again in a

repeated attempt to acquire the lock. Acquiring the lock fails only if another transaction

manages to acquire it first, between the time of reading the write lock and attempting

the compare-and-swap. When the acquire fails, the transaction simply re-reads the write

lock and performs contention management with the new owner of the lock, spinning

until either the acquire attempt succeeds, or the contention manager decides to abort

the transaction. Spinning here is safe because the contention manager ensures that

transactions do not deadlock.

4. The transaction next validates its read-set (lines 64–66), using the version of the orec it

has acquired. The validation proceeds as with the read and if it succeeds, the write call

returns. The reason for validating the read-set even when writing might not be obvious

at first. It is described below why the validation is indeed necessary, after the description

of transaction commit.

Transaction commit. A read-only transaction commits immediately without any checks

(line 71), as its read-set is guaranteed to have been consistent at the time of the last read.

A read-write transaction performs the following steps:

1. It first acquires read locks of all locations in its write-set (lines 73–75). The read locks

can be acquired using a simple store, as the transaction already holds the corresponding

write locks.

2. Next, the transaction obtains a unique commit timestamp by atomically incrementing

the shared time-base counter commit_ts (line 77), using fetch-and-increment instruc-

tion. This value is used as the new version for all updated locations. The time when

fetch-and-increment is performed represents the unique point at which the transaction

is serialized in the global ordering of transactions.

3. Transaction then validates its read-set (lines 80 and 81). The validation is not necessary

if transaction’s commit timestamp is higher than its validity timestamp by one, which

means that no transaction committed since the last read-set validation. The commit-

time validation is similar to the validation performed during transaction’s execution

(lines 119–128). The only difference is that it also checks whether the read lock has

been acquired by the current transaction to correctly handle locations that are first read,

and then updated by the same transaction. If the validation fails, the transaction first

58

4.2. Design and implementation

T1 Read(A) ← 0

T2 Read(B) ← 0 Write(A,1) commit

Write(A,1) Write(B,1) commit

Figure 4.4: A non-serializable execution permitted if there is no validation on write.

releases all read locks and then performs a rollback as usual (lines 82–86). If the read-set

is valid, the commit succeeds.

4. The transaction then copies the values from its redo-log to memory locations, and then

releases the read and the write locks, in that order (lines 89–93). The transaction releases

the read locks by setting them to the commit timestamp shifted left by one position,

and write locks by setting them to zero, denoted as special value UNLOCKED in the

pseudo-code.

Validation on write. The reason for validating the read-set when writing should be clearer

now: the commit-time validation simply ignores the read locks that have been acquired

by the committing transaction, assuming that the read-set validity was ensured before the

corresponding read lock was acquired (line 123). Figure 4.4 depicts a classical example of

a non-serializable execution that would be permitted by SwissTM if the read-set validation

was not performed when writing. In the figure, transaction T1 reads variable A, getting A’s

old value 0, and then writes 1 to variable B . Concurrently, T2 reads B , getting B ’s old value 0,

and then writes 1 to A. Clearly, there is no serializable execution of transactions T1 and T2, so

transaction T1 has to be aborted. However, if transaction T1 also writes to A after T2 commits,

as in the figure, and does not validate its read-set at that point, the commit validation does

not detect the conflict with T2, and T1 is allowed to commit. This is clearly incorrect, as no

serializable execution of T1 and T2 exists. The read-set validations performed on writes are

necessary to eliminate these and similar inconsistencies.

There are several alternatives to validating the read-set on every write:

1. The validation is necessary only if the write is preceded by the read of the same location.

Transactions could, therefore, search their read-sets and perform the validation only if

they actually previously read the location being updated.

2. Transactions could validate their read-sets before acquiring the read-locks during the

commit (line 73). Doing so would detect potential read-set inconsistencies at commit

time. Note that the validation after acquiring the read locks is also necessary in this case.

59

Chapter 4. SwissTM

1 // shared counter for second phase
2 word_t greedy_ts;
3

4 void cm_on_start(TxDescriptor *tx) {
5 if(tx->succ_aborts == 0) {
6 tx->cm_ts = INF;
7 }
8 }
9 void cm_on_write(TxDescriptor *tx) {

10 if(tx->cm_ts == INF)
11 if(size(tx->write_set) == CM_THRS) {
12 tx->cm_ts = fetch_and_increment(
13 &greedy_ts);
14 }
15 }
16 }
17 void cm_on_commit(TxDescriptor *tx) {
18 tx->succ_aborts = 0;
19 tx->aborted = false;
20 }
21 void cm_on_rollback(TxDescriptor *tx) {
22 tx->succ_aborts++;

23 wait_random(tx->succ_aborts);
24 }
25 bool cm_should_abort(TxDescriptor *tx,
26 word_t *wlock) {
27 // check if aborted
28 if(aborted)
29 return true;
30 // first phase
31 if(tx->cm_ts == INF)
32 return true;
33 // second phase
34 TxDescriptor *other = owner(wlock);
35 if(other->cm_ts == INF) {
36 other->aborted = true;
37 return false;
38 }
39 if(other->cm_ts > tx->cm_ts) {
40 other->aborted = true;
41 return false;
42 }
43 return true;
44 }

Figure 4.5: SwissTM pseudo-code (contention manager).

3. Transactions could store the version of the read-locks into the write-set entries before

acquiring them. The validation at commit time would then check whether the version

in the read-set matches the version in the write-set.

Each of these approaches has their advantages and limitations, but the choice does not impact

the performance significantly. I opted for validation on write, because it (1) detects the existing

conflicts early, thus reducing the amount of wasted work by transactions that are doomed to

abort, and (2) does not require read-set traversals during writes.

Transaction rollback. A transaction is rolled back by releasing the write locks it has acquired

and jumping to the jump buffer provided by the client code at transaction start (lines 96–102).

There is no need to release the read locks, as they are held only during transaction commit

and are released explicitly if the transaction aborts after acquiring them (lines 82–84).

Contention manager. Figure 4.5 contains the pseudo-code of the Two-phase contention

manager. The main part of the SwissTM algorithm communicates occurrence of certain events

in the transaction’s execution to the contention manager by invoking the appropriate callback

functions provided by the contention manager. The contention manager defines callbacks for

transaction’s start, rollback, and commit, and transactional writes. In addition, it also provides

a function that transactions invoke to resolve write-write conflicts.

The contention manager uses several fields in the transaction descriptor: the timestamp

used to order long update transactions in the second phase of contention management, the

number of successive aborts used to calculate back-off interval on restarts, and the indication

60

4.2. Design and implementation

of whether the transaction has been aborted or not. The contention management timestamp

is also used to indicate which phase of contention management the transaction is in: it is

set to a special value INF in the first phase and to the timestamp value in the second. The

contention manager uses global variable greedy_ts to generate contention management

timestamps.

On each of the events in transaction execution the contention manager performs the following

actions:

• When a transaction starts for the first time, its timestamp is set to INF, to have transac-

tions start in the first phase of contention management (line 6). This timestamp is not

modified on restarts, to keep the assigned timestamp value across restarts.

• When a transaction in the first contention management phase performs a write, the

contention manager checks whether the number of writes has become higher than

a predefined threshold used to switch between contention management phases.2 If

it has, the transaction moves to the second phase and obtains a unique contention

management timestamp by atomically incrementing the shared counter greedy_ts

(lines 10–15).

• On transaction commit, the number of successive aborts is reset to 0, to indicate that

the next call to TxStart is not a restart, but a start of a new transaction (line 18).

• On transaction rollback, the number of successive aborts is incremented by one and the

transaction spins for a short while to reduce contention (lines 22 and 23). To calculate

the back-off interval, the transaction randomly generates a number lower than the

maximum back-off interval, which is linearly proportional to the number of successive

aborts. The transaction restarts by performing a long jump, as described above, only

after performing the back-off.

When a transaction detects a write-write conflict, it invokes cm_should_abort function of

the contention manager. The return value of this function indicates whether the transaction

should abort or not. If the function returns false, it always first sets the aborted flag in

the descriptor of the current lock owner, thus ensuring that two transactions never deadlock

(lines 36, 37 and 40, 41). A transaction checks whether the aborted flag is set, meaning

it should abort, only when it encounters a conflict itself and tries to resolve it by invoking

cm_should_abort (lines 28 and 29). Thus, transactions are allowed to continue executing

as long as they do not encounter a conflict, even if another transaction is waiting for them to

release a lock. This approach eliminates frequent checks of the aborted flag and guarantees

that transactions which do not get blocked by other transactions commit. Once a conflict is

detected, the transaction first checks if it has already been aborted by some other transaction

before checking whether it has priority over the lock owner.

2The threshold is set to 10 in the implementation as this value results in good performance.

61

Chapter 4. SwissTM

To decide whether to abort itself or the lock owner, the transaction performs the following steps

(lines 31–43). In the first phase of the contention management, the transaction immediately

aborts (lines 31 and 32). In the second phase, the transaction first checks which phase of

contention management the owner of the lock is in. If the owner is in the first phase, it is

signaled to abort and the transaction keeps executing (lines 35–38). If the owner is in the

second phase as well, then the contention management timestamps are compared and the

transaction with the lower timestamp wins (lines 39–42). In this way, the contention manager

prioritizes longer transactions that have performed more work, over shorter ones.

4.2.3 Correctness argument

I did not formally prove correctness of SwissTM. Instead, I rely on intuitive reasoning and

extensive testing to ensure that the algorithm is indeed correct. Next, I present the intuitive

arguments for SwissTM’s correctness.

Atomic updates. Transactions acquire both read and write locks before copying the values

to memory. Thus, no other transaction can observe partial results of a commit: if transaction

T1 updates variables A and B , other transactions can observe either old or new values of both

variables. Similarly, the updates of two transactions cannot be mixed: if transactions T1 and

T2 both update variables A and B , with T1 writing a1 and b1 and T2 writing a2 and b2 to them,

then transaction T3, that starts after T1 and T2 commit, can observe A and B as either a1 and

b1 or a2 and b2, not as some mix of values written by T1 and T2. This means that updates

performed by a transaction appear to be atomic to all other transactions.

Consistent reads. When transaction T starts, it reads the current value v1 of the shared

time-base. When reading a memory location, if the version of the location is lower or equal to

v1, that means that the location has not been updated since T started. Thus, it belongs to the

memory snapshot that would be taken at the time of T ’s start, meaning that the read-set is

consistent.

It can happen that T gets the commit timestamp of a currently committing transaction Tc ,

as its validity timestamp, and that it tries to read a memory location that Tc has still not

finished updating. In this case, however, the read lock of the location is still held by Tc , as

transactions acquire all read locks before acquiring the commit timestamp and release them

only after updating the memory locations protected by the locks. The read locks prevent T

from reading a mix of old and new values of locations updated by transaction Tc , maintaining

the consistency of T ’s read-set in this case as well.

When transaction T extends validity of its read-set from v1 to v2 it ensures that all locations

in the read-set have remained the same since its start by performing a full validation of the

read-set. If the locations in T ’s read-set have not changed since it started, then T can continue

62

4.2. Design and implementation

v1 v2 v3 v4

A

B

C

D

E

a1 a2 a4

c1

d1

b1 b3

e1 e3

snapshot(v4)

Figure 4.6: Example validity timestamp extension.

executing as if it always executed on the snapshot valid at time v2. To ensure that v2 and the

validation are consistent during the extension, T first reads the shared time-base, getting v2,

and then performs the validation. This means that the read-set might actually be valid at some

point after v2, which also means that it is valid at v2, so the extension is correct.

Figure 4.6 illustrates why extension of the read-set validity timestamp is correct. It depicts

several variables: A, B , C , D, and E and the history of their values as the time passes and

transactions commit. Each point in time, depicted as v1–v4, represents a commit of one

transaction. In the figure, A was updated at times v2 and v4, B and E were updated at time

v3, while variables C and D have not been updated at all. To build a snapshot valid at some

point in time, one needs to move from that point in time towards left and select the first value

encountered for each variable. The figure illustrates building of a snapshot valid at time v4,

which contains variables a4, b3, c1, d1, and e3. The figure depicts snapshots at times v1 and v4

by representing the values belonging to the snapshot at v4 as squares, the values belonging to

the snapshot at v1 as circles, and the values belonging to both snapshots as rounded squares.

Clearly, if a transaction starts with a validity timestamp v1 and reads values c1 and d1, it can

safely extend its validity timestamp to v4, as c1 and d1 belong both to snapshot at v1 and at v4.

Hence the extension of read-set validity does not violate the consistency of the read-set.

Serializability. Read-only transaction T is consistent at the time of its last read, which is

ensured by the read-set validations. Therefore it serializes to the time of the last read, which

corresponds to its validity timestamp.

Update transaction T acquires both read and write locks for all locations in its write-set,

obtains the commit timestamp, and validates its read-set before committing values to the

updated memory locations. Successful read-set validation means that locations in T ’s read-set

belong to the snapshot taken at the time when the commit timestamp is obtained. The writes

are serialized to the same time as well, because both read and write locks are acquired before

63

Chapter 4. SwissTM

Rm[i-1] Wm[i-1]

Rm[i] Wm[i]

Rm[i+1] Wm[i+1]

...

...
4(i-1)

4(i-1) + 1
4(i-1) + 2
4(i-1) + 3

4i
4i + 1
4i + 2
4i + 3
4(i+1)

4(i+1) + 1
4(i+1) + 2
4(i+1) + 3

...

...
Orec table

Memory

Figure 4.7: SwissTM ownership record table mapping.

obtaining the commit timestamp. Therefore, the whole transaction serializes to the point

when the shared time-base is atomically incremented.

4.2.4 Implementation details

This section presents several implementation details that are omitted from the algorithm

description for clarity. Most importantly, it describes where the orecs are stored, how they are

mapped to memory locations, and what the implications of the chosen mapping scheme are. It

also presents several other implementation details, including the used memory management

scheme, the implementation of the efficient log data structure, the implications of using

SwissTM on systems with relaxed memory models, and how transactions deal with version

overflows.

Orec table. The algorithm description assumes that memory locations are mapped to orecs

one-to-one. However, to provide such a one-to-one mapping scheme with a completely

general programming interface, which allows transactional accesses to any location in memory,

requires preallocating a huge number of orecs. For that reason, SwissTM, similarly to, for

example, TinySTM and TL2, maintains the orecs in a separate global orec table, depicted in

Figure 4.7. On every access, the address of the accessed memory location is first mapped to an

entry in the table to obtain the orec corresponding to the location. The mapping is performed

by shifting the address of the location right by four positions on 32-bit systems, and by five

on 64-bit systems, and setting high order bits to zero. I empirically selected the shift size, as

explained in Section 4.4. The orec table contains 222 entries, so the high order bits are cleared

by performing bitwise AND operation between the shifted address and 222 −1.

64

4.2. Design and implementation

head

current_ptr

count = 2

Figure 4.8: Log data structure.

With this scheme, groups of four consecutive memory locations map to one orec, as Figure 4.7

illustrates, resulting in a many-to-one mapping between memory locations and orecs. Fur-

thermore, such groups of four memory words that are a multiple of 224 words apart also map

to the same orec. Having multiple memory locations map to the same orec can result in false

conflicts, which occur when two transactions access different memory locations that map

to the same orec and thus conflict, despite actually accessing different data. False conflicts

potentially increase abort rates, thus adversely impacting the performance, but they do not

cause noticeable performance impact in practice. They, however, make the implementation of

the SwissTM algorithm slightly more complex, as transactions have to deal with the possibility

of several words mapping to the same orec.

Redo logs. Because multiple memory locations map to the same orec, it is not sufficient

for write-set entries to store only one address-value pair, as presented in the pseudo-code.

Instead, they store a linked-list of address-value pairs, to support updates to multiple memory

locations that map to the same orec. To amortize costs of memory allocation, each thread

keeps a pool of linked-list nodes for storing these address-value pairs, implemented using the

log data structure described below. The per-orec address-value pair lists need to be traversed

whenever a transaction performs a read-after-write or write-after-write access to find the

correct address-value pair. Similarly, they are traversed when copying values from redo-log to

memory during commits.

Efficient logging. Transactions use an optimized log data structure to maintain their read-

and write-sets. The most important requirements for the log data structure is to efficiently

support inserts of new elements: these occur frequently, as transactions add new elements to

their read- and write-sets during the execution. In particular, it is important to avoid frequent

memory allocations when inserting new elements into the log. The log also needs to support

efficient traversals because transactions traverse their read-sets, when validating, and their

write-sets at commit-time, when acquiring the read locks and when copying updates to the

shared memory. It is also important that the log can be emptied quickly, because transactions

empty their read- and write-sets when they commit or abort. Furthermore, the log needs to

enable the removal of the last inserted element, as the last inserted write-set entry is returned

65

Chapter 4. SwissTM

to the write-set when acquiring of the write lock fails. Finally, it needs to provide a rough

estimate of the number of inserted elements, to enable the contention manager to decide

whether a transaction should transition to the second phase of contention management or not.

The returned number of elements in the log does not need to be accurate, as the contention

manager only needs to know if it is higher than the predefined threshold. The log does not

need to support any form of element lookup because transactions look up write-set entries

using the pointer stored in the write locks and do not look up read-set entries at all.

To efficiently support the required operations, I implemented the log as a doubly linked-

list of arrays, illustrated in Figure 4.8. The log is initialized with a single array, and new

arrays are added to the list as needed. Each array holds 2048 entries to avoid frequent memory

allocations and to support short transactions with a single array. The arrays are not deallocated

when the log gets emptied, as future transactions are likely to require similar log sizes. The

implementation only maintains the head of the list, the currently used array, and the number

of occupied elements in the array. The figure shows a log with three arrays, where each array

has five elements and seven elements were inserted into the log. The occupied array elements

are depicted as grayed in the figure.

To insert a new element, the counter that tracks the number of occupied elements in the

currently used array is incremented. When the current array becomes full, the next array in

the list is used. A new array is allocated only when all arrays in the list are fully occupied. In

the example log from the figure, that would happen during the sixteenth insert. To remove the

last inserted element, the counter is decremented and if the removed element was first in its

array, the pointer to the currently used array is set to the previous array. To empty the log, the

counter is set to zero and the current array is set to the head of the array list. Log traversals

visit all currently used arrays, from the head of the list to the array pointed to by the current

array pointer, and traverse the occupied elements in each of the arrays. The described log

organization is simple, efficient, and flexible, and it helps SwissTM achieve good performance

by reducing logging overheads compared to the standard collection classes.

Version overflows. The presented SwissTM algorithm disregards possibility of overflows of

the shared time-base used to generate orec versions. If the time-base overflows, the time-based

validation does not work correctly: after the overflow, transactions are not able to determine

whether orecs were updated before or after their start.

On 64-bit architectures the overflows are indeed very unlikely: with version updates occurring

on every CPU clock cycle at frequency of 4 GHz, it takes around 230 seconds, or more than

30 years to overflow a 64-bit word. Typical transactions last for at least several thousand

cycles, which means that it would take thousands of years to actually overflow a 64-bit shared

time-base. However, on 32-bit architectures, the overflows are much more likely. Even if

transactions take 10,000 cycles on average, a single CPU at 4GHz would overflow a 32-bit

counter in less than an hour. Taking into account that multiple CPUs update the shared

66

4.2. Design and implementation

time-base, the overflow could occur much sooner. Therefore, SwissTM needs to correctly

handle the overflows of the time-base on 32-bit systems.

To deal with the overflows, each transaction checks its commit timestamp to detect whether

an overflow is about to happen just after obtaining it during the commit. If the timestamp

is close to the maximum value that can be stored in a memory word, the transaction tries to

reset the shared time-base. Transactions do not wait until they observe the maximum value,

as that would allow an overflow by several concurrently committing transactions: if one of

the transactions increments the shared time-base to its maximum value, the next increment

will cause an overflow of the time-base by setting it to zero. To prevent such scenarios, a

“safety window” of unused version numbers is reserved. The window has to be larger than the

maximum number of concurrently executing threads, which is in the order of hundreds for

typical systems.

When a transaction detects that the reset of the time-base is necessary, it aborts itself and

signals the other threads that a reset of the time-base is in progress by setting a shared flag.

The flag is set atomically using a compare-and-swap to prevent multiple transactions from

performing the reset at the same time. The transaction that sets the flag waits for all executing

transactions to complete, and, after that, it proceeds to reset the time-base and all read locks in

the orec table by setting them to the initial system version. To ensure that no new transactions

start while the reset is in progress, each transaction checks the value of the flag before starting

and waits for the ongoing reset to complete. When the reset is done, transactions proceed to

execute as usual.

Relaxed memory models. For simplicity, SwissTM pseudo-code assumes sequentially con-

sistent memory model. In reality, however, both the compiler and the hardware reorder

instructions to improve performance of the executed code. The reordering could cause prob-

lems when instructions need to be executed in the exact order specified by the pseudo-code.

For example, reading consistent values of the memory location and the corresponding read

lock requires the sequence of three reads that cannot be reordered (lines 17, 23, and 24 in

Figure 4.3). Likewise, when releasing the locks during commit, it is essential that values get

copied to memory first, the read lock gets released next, and only then the write lock gets

released too (lines 90–92). To prevent reordering of instruction in these and similar cases,

declared the shared variables as volatile and used the necessary memory barriers in the

implementation.

Memory manager. SwissTM supports transactional allocation and deallocation of memory

blocks. When performing memory management operations transactions log the operations

during their execution, and make them permanent if they commit or rollback them if they

abort.

67

Chapter 4. SwissTM

N

T2

ReadRead

T1

Write

commit

free

Figure 4.9: Example of a problem that can occur if deallocations are performed at the commit-
time.

Transactional memory allocation is simpler to support of the two. When a transaction allocates

a memory block, the block is allocated using the underlying non-transactional memory

allocator and the address of the memory block is logged. If the transaction commits, its

allocation log is simply discarded. If it aborts, the performed allocations need to be rolled

back, which is done by traversing the allocation log and deallocating all memory blocks in it.

Similarly, when a transaction deallocates a memory block, the deallocation is logged. Unlike

allocations, the deallocations are not performed immediately: the deallocated memory might

get reallocated and its contents changed after the deallocation, which makes the rollback

of the deallocations difficult. Instead, the deallocations are postponed until the transaction

commits. If the transaction aborts, its deallocation log is simply discarded and none of the

blocks gets actually deallocated. If the transaction commits, then the deallocations need to be

performed. However, it is not safe to perform the deallocations immediately on commit, as

some other transactions might still be referencing the deallocated block. This is a well known

problem with memory deallocation when readers are invisible [29, 46, 60, 80], and is briefly

mentioned in the previous chapter. Basically, the deallocating transaction cannot be sure, at

commit-time, that no other transaction is about to access the memory block after it commits.

Figure 4.9 illustrates that a reader transaction can indeed access deallocated memory if the

deallocations are performed immediately on commit. In the example, two transaction are

accessing a linked list. Transaction T1 is unlinking node N from the list, whereas transaction

T2 is traversing the list. In the example, T2 obtains a pointer to N and is then blocked for a

while before dereferencing it. Then, T1 unlinks N from the list, successfully commits, and

deallocates N immediately after commit. If the next step that T2 performs, after resuming, is

the memory access at line 23 in Figure 4.3, it will read deallocated memory previously occupied

by N . This can cause the program to crash, if the memory has already been returned to the

operating system and unmapped from the process’s address space. Other problems related to

68

4.2. Design and implementation

memory management can occur if some of the data accesses to N are not transactional, which

is often done for performance. Examples of such usage are discussed in the previous chapter.

To ensure that the deallocated memory will not be accessed by a concurrent transaction,

the deallocation needs to be postponed until all transactions referencing the memory block

complete, either by committing or aborting. SwissTM takes a coarser-grained approach,

similar to the ones in [46, 66], and postpones the deallocation until all transactions concurrent

to the deallocating transaction have completed, regardless of whether they are referencing

the memory to be deallocated or not. Furthermore, the deallocating transaction does not

need to wait until all concurrent transactions actually complete. Instead, it is enough to

wait until the other transactions have observed the changes performed by the deallocating

transaction. Note that the deallocating transaction unlinks the deallocated objects from

all shared data structures thus preventing concurrent transactions that have observed its

changes from accessing the deallocated memory. Transactions’ validity timestamps are used

to determine when it is safe to perform the actual deallocations: when all validity timestamps

become higher or equal to the commit timestamp of the deallocating transaction, that means

that all other transactions have observed the deallocating transaction’s updates, making it

safe to deallocate the memory. To avoid postponing deallocations indefinitely if some thread

stops executing transactions, the validity timestamps are set to a special value on commits

and aborts, indicating that their thread is not executing any transaction at the moment.

To optimize the memory deallocations, a thread does not wait to perform the actual deallo-

cations after the deallocating transaction commits. Instead, it postpones the deallocations,

by putting them in a thread-local log together with the transaction’s commit timestamp, and

continues the execution. Periodically, the thread traverses this log and performs all dealloca-

tions that have become safe, in the following way. The log is organized as a linked-list of arrays,

similarly to the log data structure described above. Each of the arrays stores a number of

pointers to memory blocks for deallocation and the commit timestamp of the last transaction

that stored pointers in the array. When a transaction commits, it stores the pointers to the

deallocated memory blocks into the current deallocation array. If the array becomes full, the

transaction writes its commit timestamp to the array, moves it to the list of full arrays, and ob-

tains a new array for the future transactions. It also attempts to deallocate the memory blocks

stored in the list of full arrays at this time. To deallocate the memory, the thread reads validity

timestamps from transaction descriptors of all threads in the system and finds the minimum

value. It traverses the list of full arrays and frees all memory blocks pointed to by the arrays

that have the timestamps lower than or equal to the minimum observed validity timestamp. In

this way, the deallocations are buffered to reduce the overheads of frequently determining the

minimum validity timestamp and traversing the list of full arrays. The downside of buffering

is that the memory requirements of the application are temporarily increased, but this does

not cause any problems in practice, even with large-scale STMBench7 workloads.

69

Chapter 4. SwissTM

Supported platforms. I built SwissTM to be portable, using standard C/C++ integer and

pointer types, standard language and system library calls, and atomic_ops [10] library for

portable support of atomic instructions on different systems. This resulted in code that is

largely platform-independent. I built SwissTM versions for Linux and MacOS on x86 and

Solaris on SPARC, with support for both 32-bit and 64-bit versions for x86. SwissTM can be

ported to other platforms as needed, with just a little additional effort.

4.3 Evaluation

In this section, I present an extensive evaluation of SwissTM, which compares performance of

SwissTM to performance of RSTM [77], TL2 [28], and TinySTM [43] on a range of benchmarks:

STMBench7 [52], STAMP [17], Lee-TM [8], and the red-black tree micro-benchmark. I first

describe the benchmarks in detail, and then present and discuss the results.

4.3.1 Benchmarks

The benchmarks I used for the experiments represent a large spectrum of workload types: from

simple data structures with small transactions, which characterize the red-black tree micro-

benchmark, to complex applications with possibly long transactions, which characterize

STMBench7.

STMBench7. Section 3.3 describes STMBench7 in detail. Here, I summarize its most impor-

tant features to contrast it to the other benchmarks used in the evaluation. STMBench7 [52] is

a synthetic benchmark that aims at representing realistic, complex, object-oriented applica-

tions. It exhibits a large variety of operations, ranging from very short, read-only operations

to very long ones that modify large parts of the data structure, and workloads, ranging from

workloads consisting mostly of read-only transactions to workloads dominated by update

transactions. The data structure used by STMBench7 is many orders of magnitude larger than

in other typical STM benchmarks. Also, its transactions are longer and access more objects.

STMBench7 is inherently object-based and, also, its implementations use standard language

libraries. A thin wrapper that implements object-based interface on top of the word-based

one, described in Section 3.3, is thus necessary to use STMBench7 with word-based STMs,

such as TL2, TinySTM, and SwissTM.

STAMP. STAMP [17] is a TM benchmarking suite that consists of eight transactional pro-

grams, which can be configured to represent different workload characteristics. In the ex-

periments, I used STAMP 0.9.9 and the 10 workloads defined in its distribution. STAMP

applications are representative of various real-world workloads, including bioinformatics,

engineering, computer graphics, and machine learning workloads. While STAMP covers a

70

4.3. Evaluation

broad range of possible STM uses, its does not involve transactions as long and as complex as

transactions of STMBench7. Also, some STAMP benchmarks use fine-grained transactional

synchronization, which is not typical for code that might be produced by average, non-expert

programmers or generated automatically by a compiler, for example along the lines of auto-

matic mutual exclusion [1]. Furthermore, some STAMP algorithms, such as bayes, split logical

operations into multiple transactions and use intricate programming techniques that are not

representative of average programmers’ skills. Because of the different characteristics, STAMP

and STMBench7 complement each other well when evaluating STM performance.

Next, I briefly describe the benchmarks and workloads that constitute STAMP. More details

are available in [17].

Bayes implements an algorithm for learning the structure of a bayesian network, using hill-

climbing search with a combination of local and global search. It uses long transactions,

with large read- and write-sets.3 Most of the execution time is spent inside transactions,

which encounter high contention. Transactions in bayes also combine transactional and

non-transactional accesses to shared data, exploiting the relaxed nature of the algorithm,

which is not representative of how average programmers write code.

Genome performs genome sequence matching. It does so in two phases: the threads first

eliminate duplicate DNA segments from the input, and then they match the remaining seg-

ments. All string manipulations are performed using non-transactional accesses to improve

performance. Genome uses transactions of medium length, with medium-sized access sets.

Threads spend most of the execution time inside transactions, but the transactions encounter

relatively low contention.

Intruder emulates signature-based network intrusion detection. To detect intrusion attempts,

it compares network packets to signatures of past network intrusions. The threads obtain the

network packets from a single shared queue, which turns out to be a source of high contention,

especially at higher concurrency levels. The transactions are short in duration, they access a

medium number of memory locations, but they encounter high contention. Threads spend a

medium amount of time in transactions.

Kmeans implements the K-means clustering algorithm, that partitions input data into K

similar sets. Input data is processed in several iterations with threads synchronizing on barriers

between iterations. Kmeans uses very short transactions that access only a few locations: the

most complex transaction accesses only four locations. Most of the processing time is spent

outside of the transactions. I used two different kmeans workloads: a high-contention and a

low-contention one, denoted as kmeans-high and kmeans-low, respectively.

Labyrinth is a circuit-routing program that is used to find the shortest paths between points

in a three-dimensional maze. It uses Lee’s algorithm [98] and is quite similar to Lee-TM [8]

3Whereas the bayes transactions are long and have large access sets with respect to other STAMP benchmarks
they are still much shorter and access much fewer objects than STMBench7 transactions.

71

Chapter 4. SwissTM

Workload Parameters
bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1

genome -g16384 s64 -n16777216

intruder -a10 -l128 -n262144 -s1

kmeans-high -i random-n65536-d32-c16.txt -m15 -n15 -t0.00001

kmeans low -i random-n65536-d32-c16.txt -m40 -n40 -t0.00001

labyrinth -i random-x512-y512-z7-n512.txt

ssca2 -s20 -i1.0 -u1.0 -l3 -p3

vacation-high -n4 q60 -u90 -r1048576 -t4194304

vacation-low -n2 -q90 -u98 -r1048576 -t4194304

yada -a15 -i ttimeu1000000.2

Table 4.2: STAMP workloads.

benchmark described below. The code and the inputs are different from Lee-TM, and that

is why I include both benchmarks in the evaluation. The transactions labyrinth uses are

long, with large access sets, but, in my experience, they do not experience particularly high

contention. Most of the processing is done inside transactions.

Ssca2 benchmark implements the first kernel from a set of four computational kernels with the

same name, that operate on multi-graphs. The kernel builds an efficient graph using adjacency

arrays, with transactions being used only to synchronize the access to the arrays. Such access

patterns result in short transactions with small read- and write-sets that experience little

contention. Consequently, most of the processing is performed outside of the transactions.

Vacation emulates an on-line transactional system that supports a travel agency, with the data

stored in several tree data structures. The program is similar to SPECjbb2000 [110] benchmark.

Vacation uses transactions of medium length that perform a medium number of memory

accesses, but most of the execution time is spent inside transactions. Similarly to kmeans,

there are two vacation workloads: a high-contention vacation-high and a low-contention

vacation-low workload. In my experience, though, threads encounter little contention in both

of them.

Yada is a program for Delaunay mesh refinement that operates on a graph of mesh triangles,

which gets continuously updated by different threads during program execution. Transactions

in yada are large, with large read- and write-sets and they experience medium contention.

Most of the execution time is spent inside transactions.

Table 4.2 lists all the STAMP workloads used in the experiments and specifies the input

parameters for each of them.

Lee-TM. Lee-TM [8] is a benchmark based on Lee’s circuit routing algorithm [98] that exposes

large, realistic workloads. The algorithm takes pairs of locations on an integrated circuit as

its input and produces non-intersecting routes between them. While transactions of Lee-TM

72

4.3. Evaluation

are rather large, they exhibit very regular access patterns: every transaction first reads a large

number of locations while searching for a suitable path, and then updates a small number of

them while setting the path. Moreover, the benchmark uses a simple data structure, which is,

in essence, a matrix of integer variables representing the state of the points on the integrated

circuit. As mentioned above, STAMP contains a benchmark, called labyrinth, that uses the

same algorithm as Lee-TM. However, Lee-TM comes with real-world input sets that make it

more realistic than labyrinth. Lee-TM software distribution includes two large input data sets:

memory and main circuit boards.

Red-black tree. Most work on STMs is evaluated using various micro-benchmarks. The

red-black tree micro-benchmark was first used in the initial paper on dynamic STMs [63], to

demonstrate the flexibility of STM, and has been used for evaluation of various STMs ever

since. In the benchmark, a single shared red-black tree is used to implement an integer set.

Each transaction executes a single lookup, insert, or remove of a randomly chosen integer from

the set. The integers are chosen from a predefined range of values. Initially, half of the integers

from the range are inserted into the tree. The ratio of insert and remove operations is the same,

which keeps the tree size roughly constant during the execution, with the size equal to half

of the selected range of values. The level of contention between threads can be modified by

changing the ratios of executed operations and the range of values from which the integers

are selected. In the experiments, I used the range of 16,384 values and a mix of 80% lookup

and 20% update operations. The short and simple transactions of the micro-benchmark

represent a good test of STM mechanics and are good for comparing low-level details of

various implementations. The red-black tree micro-benchmark is included in the evaluation

to measure the impact of supporting SwissTM’s quite sophisticated conflict detection and

contention management policies on its performance with short transactions.

4.3.2 Experimental settings

All measurements were performed on the system used in the previous chapter: a system with

four dual-core AMD Opteron 8216 CPUs at 2.4 GHz, with 1024 KB cache, for a total of eight

cores. The system has 8 GB of RAM and runs Linux operating system. The results are averaged

over multiple runs, where the length and the number of runs were chosen to reduce variations

in collected data. I used 20 runs for STMBench7 and STAMP, 10 runs for LeeTM, and 80 runs

for the red-black tree micro-benchmark.

I used the TL2 x86 implementation provided with the STAMP benchmark suite version 0.9.9.

I used RSTM version 3 and TinySTM version 0.9.5 available from the respective web pages.

The STMs were configured to obtain best performance on the used benchmarks. Unless

stated otherwise, RSTM was configured to use eager conflict detection, invisible reads with the

commit counter heuristic, and the Polka contention manager. I used the default configuration

of TL2 with deferred updates, lazy conflict detection, Timid contention manager, and GV4 al-

73

Chapter 4. SwissTM

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

SwissTM
TinySTM

RSTM
TL2

(a) Read dominated

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

SwissTM
TinySTM

RSTM
TL2

(b) Read-write

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

SwissTM
TinySTM

RSTM
TL2

(c) Write dominated

Figure 4.10: Throughput of STMBench7 with SwissTM, RSTM, TL2, and TinySTM.

74

4.3. Evaluation

gorithm [69] for incrementing the shared time-base. Similarly, I used the default configuration

of TinySTM with in-place updates, encounter-time locking, and Timid contention manager.

Similarly to the previous chapter, I could not use the original TL2 implementation as it does

not support x86 architecture, which I used in the experiments. Also, the original TL2 does not

support transactional memory management in a straightforward manner, and is, therefore,

difficult to use with benchmarks I used in the evaluation without significant changes to the

benchmark code. While I did not use the original TL2 implementation in a setting that it

was primarily designed for, I believe that the TL2 for x86 is the best representative of the TL2

algorithm and design available for x86 architecture.

4.3.3 STMBench7

Figure 4.10 shows the performance of all used STMs on STMBench7. In this experiment, RSTM

was configured to use the Serializer contention manager, as this resulted in the best perfor-

mance. The figure shows that SwissTM outperforms all other STMs on both read-dominated

and read-write workloads by a significant margin, while also achieving superior scalability.

SwissTM achieves 55% higher throughput than TinySTM, which performs best of the other

STMs, on the read-dominated workload and almost 40% higher throughput on the read-write

workload. The difference in achieved performance with respect to other STMs is higher:

SwissTM outperforms RSTM by 65% and TL2 by 175% on the read-dominated workload, and

RSTM by 80% and TL2 by more than 250% on the read-write workload. Furthermore, SwissTM

also achieves the highest throughput in the high-contention write-dominated workload, but

it is only marginally faster than TinySTM, achieving about 5% higher throughput. SwissTM

outperforms the other two STMs by considerable margins even on the write-dominated work-

load: it achieves about 60% higher throughput than RSTM and about 200% higher throughput

than TL2.

The main reason for the good performance of SwissTM is (1) its optimism in detecting read-

write conflicts when compared to RSTM and TinySTM, and (2) its conservatism in detecting

write-write conflicts when compared to TL2. The contention management scheme used by

SwissTM also helps boost performance, as illustrated in Section 4.4. The reason for TinySTM

having almost the same performance as SwissTM on the write-dominated workload is that

SwissTM’s more optimistic policies are better suited to low-contention than high-contention

workloads, such as the write-dominated STMBench7. TL2 performs poorly even in the read-

dominated workload: it does not scale after four threads and its performance becomes even

worse on higher-contention workloads. The main reason for this is its use of the lazy conflict

detection scheme, which wastes more work performed by aborted transactions than the eager

write-write conflict detection used by other STMs.

75

Chapter 4. SwissTM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada

S
pe

ed
up

 -
 1

1
2
4
8

(a) TL2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada

S
pe

ed
up

 -
 1

1
2
4
8

(b) TinySTM

Figure 4.11: SwissTM compared to TL2 and TinySTM on STAMP.

4.3.4 STAMP

Figure 4.11 compares the performance of SwissTM, TL2, and TinySTM on the STAMP work-

loads. Due to API incompatibility, I could not implement STAMP with the version of RSTM I

used: RSTM is object-based, whereas STAMP requires a word-based interface, which makes

it difficult to simply plug-in RSTM into STAMP. Instead, STAMP programs would have to be

fully reimplemented to use the object-based interface, which is outside of the scope of this

thesis. The figure depicts the speedup of SwissTM compared to TL2 and TinySTM, calculated

as Speedup = DurationOtherTM
/

DurationSwissTM and presented as Speedup−1, which means

that SwissTM outperforms TL2 and TinySTM for positive values in the figure and performs

worse for negative values.

76

4.3. Evaluation

As the figure shows, SwissTM outperforms TL2 on all STAMP workloads, for all thread counts.

SwissTM outperforms TL2 by over 50% with eight threads on the bayes, intruder, and yada

workloads, achieving almost twice as high performance as TL2 on yada. The difference in

achieved performance is smaller on the other benchmarks, but is still significant: SwissTM

outperforms TL2 by over 20% on kmeans-high, kmeans-low, and labyrinth, and by about 10%

on genome, ssca2, and vacation-high. SwissTM performs only slightly better than TL2 on

vacation-low, having about 5% better performance.

Similarly, SwissTM achieves better performance than TinySTM on STAMP, although the ob-

served difference in performance is smaller than with TL2. With eight threads, SwissTM

outperforms TinySTM on all STAMP workloads, with the exception of kmeans-low where the

performance is roughly the same, as TinySTM achieves only about 1% higher performance.

SwissTM outperforms TinySTM by over 45% with eight threads on intruder, kmeans-high, and

yada, and by over 12% on bayes, genome, labyrinth, and ssca2. It is only slightly faster on the

two vacation workloads where it achieves about 5% better performance.

To summarize, SwissTM outperforms both TL2 and TinySTM in all STAMP workloads except

one, TL2 by up to 100% and TinySTM by up to 45% with eight threads. In the only workload

where it does not outperform TinySTM, the difference in performance is only 1%, which is

negligible. It also achieves good performance with lower thread counts, and it scales well as

the number of concurrent threads increases.

4.3.5 Lee-TM

Figure 4.12 compares the performance of SwissTM, RSTM, and TinySTM on the Lee-TM

benchmark, depicting the time Lee-TM takes to complete the execution with different STMs. I

do not show the results of Lee-TM with TL2 as the executions with the version of TL2 I had at

my disposal do not complete even with a single thread, due to a bug in the implementation.

The results show that RSTM has by far the lowest performance. The main reason for its poor

performance are high overheads of accessing simple objects used in Lee-TM. The objects con-

sist of a single integer variable, and treating integer variables as full-fledged objects introduces

significant overheads compared to accessing them directly with the word-based STMs. For this

reason, RSTM implementation of Lee-TM takes almost twice as long to complete as SwissTM

and TinySTM implementations. SwissTM and TinySTM have very similar performance, with

SwissTM being faster by a small margin of between 4% and 8% for all thread counts.

These results show that the more sophisticated conflict detection and contention manage-

ment policies of SwissTM do not matter as much with Lee-TM as with STMBench7, because

transactions access data in uniform patterns and there is little contention. Interestingly, Lee-

TM results demonstrate that the implementation cost of relatively sophisticated policies in

SwissTM is not necessarily high, as SwissTM performs better than TinySTM on Lee-TM even

with a single thread.

77

Chapter 4. SwissTM

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8

D
ur

at
io

n
[s

]

Threads

RSTM
TinySTM
SwissTM

(a) Memory board

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8

D
ur

at
io

n
[s

]

Threads

RSTM
TinySTM
SwissTM

(b) Main board

Figure 4.12: Execution time of Lee-TM benchmark with SwissTM, RSTM, and TinySTM.

4.3.6 Red-black tree

Figure 4.13 compares the performance of SwissTM, TL2, TinySTM, and RSTM on the com-

monly used red-black tree microbenchmark. Similarly to Lee-TM results, RSTM delivers

significantly lower performance than the other three STMs, due to high overheads of accessing

simple objects. Such low-level overheads have most significant impact on micro-benchmarks

like this one, resulting in RSTM achieving 4x lower throughput than SwissTM.

The higher overheads of accessing single memory locations are the reason for SwissTM having

lower performance than TinySTM and TL2 with fewer than three threads: TL2 and TinySTM

use only one lock for each memory location, whereas SwissTM uses two, which results in

slightly higher overheads. It is worth noting that red-black tree is the only benchmark for which

slightly higher overheads of SwissTM having two locks in orecs have more than negligible

performance impact.

78

4.4. Dissecting SwissTM

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
6 tx

/s
]

Threads

SwissTM
TL2

TinySTM
RSTM

Figure 4.13: Throughput of SwissTM, TL2, TinySTM, and RSTM on red-black tree.

SwissTM exhibits better scalability than TinySTM and TL2 and, despite having 17% and 12%

lower single-threaded performance respectively, it outperforms them with more than four

threads. Furthermore, it achieves 25% higher throughput than TinySTM and 20% than TL2

with eight threads. The experiment with the red-black tree micro-benchmark shows that

even with relatively sophisticated policies SwissTM achieves good performance and scalability

in small-scale workloads that accentuate the low-level overheads, if implementation uses

efficient techniques and data structures.

4.4 Dissecting SwissTM

The extensive evaluation of SwissTM’s performance in the previous section shows that Swis-

sTM indeed performs well across a wide-range of workloads. In this section, I evaluate the

design choices underlying SwissTM, by comparing them to their most prominent alterna-

tives. I individually evaluate: the mixed eager-lazy conflict detection strategy, the Two-phase

contention manager, and the locking granularity.

4.4.1 Conflict detection

Current state-of-the-art STMs typically detect both read-write and write-write conflicts in the

same way, either eagerly as soon as conflicts occur, such as TinySTM, McRT-STM, and Bartok

STM, or lazily at commit time, such as, for instance, TL2. Detecting conflicts eagerly helps

avoid wasting work of transactions that are doomed to abort after a conflict. Lazy conflict

detection, on the other hand, is more optimistic and gives transactions more possibilities to

commit. Figure 4.14 illustrates the advantages and limitations of both approaches.

Figure 4.14(a) depicts an execution of an STM that uses the lazy conflict detection. In the

figure, transaction T2 spends time between t3, which is the commit time of T1, and t4, which is

79

Chapter 4. SwissTM

V

T1

T2

commit

abort

RW

RW

t1

t2

t3

t4

(a) Lazy

V

T1

T2

commit

commit

W

t3

R

t1

t1

t4

abort

(b) Eager

Figure 4.14: Limitations of pure lazy and eager conflict detection strategies.

the commit time of T2, performing work that is doomed to be rolled back. The period between

t3 and t4 can be significant if transactions are long. It is worth noting that both T1 and T2 could

commit in such an execution with an STM that uses the lazy conflict detection, if they both

only write to V . However, pure write-write conflicts are typically rare, as transactions usually

first read some data and then update it later. Because of this, STMs that use lazy conflict

detection react too slowly to write-write conflicts, which are good signs that the conflicting

transactions cannot proceed in parallel, and this results in transactions performing work that

has to be rolled back later. Figure 4.14(b), shows an example execution of an STM that uses

eager conflict detection. There, transaction T2 is aborted at time t1 and has to wait until time

t4 before continuing, although it could commit already at time t3 if lazy scheme was used. The

waiting time of T2 might be significant if T1 is very long.

As discussed, SwissTM takes the best of both strategies: it detects write-write conflicts eagerly

and read-write conflicts lazily. This combined strategy is beneficial for complex workloads

with long transactions because it (1) prevents transactions with write-write conflicts from

running for a long time before detecting the conflict, and (2) allows short transactions having

a read-write conflict with longer ones to proceed, thus increasing parallelism.

The comparison of several conflict detection variants presented in Figure 3.4 in the previous

chapter, clearly shows that eager conflict detection is better than lazy for large-scale workloads,

which is confirmed by the experiments presented in the previous section. Next, I empirically

outline the scenarios in which the mixed eager-lazy conflict detection is better than the pure

eager conflict detection.

To compare the eager-lazy and pure eager schemes, I modified the Lee-TM benchmark and

compared the performance of SwissTM and TinySTM on the modified benchmark. The

performance of the original Lee-TM does not seem to be significantly impacted by the choice

of the conflict detection and contention management schemes, because the transactions in

Lee-TM are very regular: they first read a large number of locations and then update a few

of those locations. To change this, I introduced a dose of irregularity in Lee-TM by adding a

single object Oc that every transaction reads at its start. In addition, each transaction updates

80

4.4. Dissecting SwissTM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8

D
ur

at
io

n
[s

]

Threads

TinySTM 20%
TinySTM 5%

SwissTM 20%
TinySTM

SwissTM 5%
SwissTM

Figure 4.15: Execution time of SwissTM and TinySTM in “irregular” Lee-TM benchmark with
memory circuit board input data set.

Oc at its start with a small probability R, thus probabilistically causing a read-write conflict

with all other transactions.

Figure 4.15 compares the performance of TinySTM and SwissTM when R is 0%, 5%, and

20%. It reveals that TinySTM is very sensitive to the long-lasting read-write conflicts among

transactions, as its performance degrades significantly even when R is only 5%. Worse, when R

is 20% TinySTM does not scale to more than three threads. In contrast, SwissTM’s performance

degrades only slightly even when R is 20%, with performance still scaling well as the number of

threads increases. The contention manager used by SwissTM does not impact the performance

on the “irregular” Lee-TM much, as only a few write-write conflicts are caused for small

values of R. Therefore, the main reason for SwissTM’s resiliency to the long-lasting read-

write conflicts in the “irregular” Lee-TM is the manner in which they are detected. With lazy

detection of read-write conflicts, if the reader transactions attempts to commit before the

writer, it succeeds, thus increasing the parallelism among transactions. In contrast, with

eager detection of read-write conflicts, a single transaction that writes to Oc prevents all other

transactions from committing before it commits or aborts.

These experiments illustrate that applications exhibiting regular access patterns benefit the

most from lowering single-location access costs and are not impacted significantly by the

policy implemented by the conflict detection scheme. However, for applications where the

access patterns introduce even small irregularities, especially those creating long-lasting read-

write conflicts, SwissTM’s optimistic approach yields significant benefits. Combining eager

write-write and lazy read-write conflict detection enables SwissTM to take the best of the both

worlds and achieve good performance across a range of workloads.

81

Chapter 4. SwissTM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
3 tx

/s
]

Threads

RSTM Greedy
RSTM Polka

Figure 4.16: Best STMBench7 read-dominated throughputs achieved by RSTM with Polka and
Greedy contention managers.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

10
6 tx

/s
]

Threads

Two-phase
Greedy

Figure 4.17: Throughput of SwissTM with the Two-phase contention manager and with Greedy
on the red-black tree.

4.4.2 Contention management

Figure 4.16 shows that, on STMBench7, RSTM using Greedy performs better than when using

Polka contention manager, similarly to what is shown in the previous chapter. Similarly,

Greedy outperforms other contention managers provided in RSTM distribution [100]. For this

reason, SwissTM uses Greedy for large transactions, such as the ones in STMBench7.

However, Greedy performs poorly in workloads where there are many short transactions. The

reason for this is the implementation of Greedy: each transaction atomically increments the

single shared counter at its start, to obtain the contention management timestamp. Greedy

uses these timestamps to totally order the transactions, which allows it to abort the younger

transaction in case of a conflict. With short transactions, however, threads keep constantly

updating the counter, significantly increasing the contention and the number of cache misses.

82

4.4. Dissecting SwissTM

This impacts the performance adversely, and the counter becomes the scalability bottleneck.

Figure 4.17 compares the performance of SwissTM with the Two-phase contention manager

and with Greedy on the red-black tree micro-benchmark. The performance of the two SwissTM

variants is virtually identical with a single thread. However, the Greedy variant is slower already

with two threads and it scales poorly: with more than six threads, the performance starts to

degrade. This problem is hard to notice with longer transactions as the overheads caused

by the increase in the rate of cache misses is relatively small compared to the other work

performed by transactions. As shown in Figure 4.17, the Two-phase contention manager

completely solves the problem, improving both performance and scalability over Greedy, and

achieving 60% higher throughput than Greedy with eight threads. This is because it allows all

short and read-only transactions to commit without incrementing the shared counter used

by the Greedy algorithm, thus greatly reducing contention on the shared counter. Yet, the

Two-phase contention manager handles conflicts among long transactions as efficiently as

Greedy.

A natural question is one of whether the second phase of the Two-phase contention man-

ager is necessary at all, or is the Timid contention manager appropriate for all transac-

tions. After all, Figures 4.13 and 4.17 demonstrate that SwissTM performs very well even

when there are only a few transactions that transition to the second phase of contention

management. To answer this question, I compare performance of SwissTM with the Two-

phase and Timid contention manager on STMBench7. Figure 4.18 shows the results of the

comparison for all three STMBench7 workloads with 1 to 8 threads. It depicts speedup of

SwissTM when using the Two-phase contention manager compared to Timid, calculated

as Speedup = ThroughputTwo-phase

/
ThroughputTimid . The comparison shows that SwissTM

with the Two-phase contention manager achieves up to 16% higher throughput than with

Timid in the high-contention, write-dominated workload. This difference is, expectedly, lower

in the lower-contention workloads where there are fewer conflicts: on read-dominated work-

load SwissTM with Two-phase contention manager outperforms SwissTM with Timid by at

most 3% and on read-write workload by at most 9%.

These experiments show that both phases of the Two-phase contention manager indeed help

SwissTM efficiently support mixed workloads, as the different phases improve its performance

on different types of workloads.

SwissTM uses linear back-off on aborts, proportional to the number of successive transaction

restarts. It might seem beneficial, however, to have transactions restart immediately after

rollback, as the waiting just decreases the reaction time before the transaction is restarted.

TinySTM, for example, adopts the approach of immediate restarts. However, restarting im-

mediately tends to increase contention on cache lines containing data that get updated very

frequently. Consequently, short back-offs after transaction rollbacks can improve perfor-

mance, as discussed in Section 3.4. To evaluate the effects of the back-offs, I compared the

performance of SwissTM with and without back-off on the intruder benchmark from STAMP. I

chose the intruder benchmark, as it is a good candidate to show the impact of the back-offs:

83

Chapter 4. SwissTM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

1 2 3 4 5 6 7 8

S
pe

ed
up

 -
 1

Threads

read
read/write

write

Figure 4.18: Comparison of SwissTM performance with the Two-phase contention manager
and with Timid on STMBench7.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

D
ur

at
io

n
[s

]

Threads

No back-off
Linear back-off

Figure 4.19: Execution time of intruder with SwissTM with and without back-off on transaction
restart.

it contains a “hot spot”, as transactions repeatedly dequeue elements from the same shared

queue. Figure 4.19 shows the results of the experiment. The results convey that the immediate

restart can indeed cause scalability problems with higher thread counts, as the performance

with eight threads is lower than with four, when transactions restart immediately after aborting.

As the results also show, the simple randomized linear back-off scheme resolves this scalability

issue and has about 45% better performance with eight threads than the scheme with no

back-off.

4.4.3 Locking granularity

An important implementation choice when building a new STM is the orec table configuration,

in particular the size of the memory stripe that gets mapped to each orec. Increasing the size

84

4.4. Dissecting SwissTM

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

2 3 4 5 6 7 8

A
ve

ra
ge

 s
pe

ed
up

 -
 1

Lock granularity (log2)

Figure 4.20: Average speedup across all benchmarks used, with one subtracted, of locking
granularities from 22 to 28 compared to all other granularities, when using eight threads.

of the memory stripe reduces locking and validation time, as it improves data access locality,

but it also increases the rate of aborts, as the number of false conflicts increases with the size

of the stripe. The optimal value for the stripe size is application specific, and different STMs

adopt different stripe sizes. For example, TinySTM and TL2 use the stripe size of one word,

whereas McRT-STM uses the the stripe size of the whole cache line.

While implementing SwissTM, I used the available benchmarks to experimentally determine

the best stripe size for SwissTM. Figure 4.20 compares the performance of several locking

granularities. Each granularity is a power of two, as this significantly simplifies address-to-

lock mapping, as described in Section 4.2.4. For each granularity, the figure depicts the

average speedup, with one subtracted, of that particular granularity over all other granularities

used with eight threads. The figure shows performance with the highest number of threads

available in order to increase the probability of false conflicts and avoid underestimating their

effects. The experiments were performed on a 32-bit architecture, which means that the word

size is 22 bytes. The results show that SwissTM performs best with granularity of 24 bytes,

while achieving only slightly lower performance with granularities of 23 and 25 bytes. It is

interesting to note that SwissTM with the commonly used stripe sizes of one word and one

cache line, which is 26 bytes, has, respectively, 4% and 5% lower performance on average than

with the selected stripe size of 24 bytes. The results also convey that using coarser locking

granularities adversely impacts performance: SwissTM with stripe size of 28 bytes has 20%

lower performance than with the stripe size of 24 bytes. The breakdown of the performance

impact of locking granularity across benchmarks is given in Table 4.3.

An interesting conclusion based on these results is that, whereas using different locking

granularities does impact performance, the impact of using sub-optimal stripe size is usually

not significant, being in the order of several percent. Also, even when using coarser locking

85

Chapter 4. SwissTM

Difference in performance
24 vs. 22 24 vs. 23 24 vs. 25 24 vs. 26 24 vs. 28 22 vs. 26

bayes 0.16 0.45 0.42 0.81 0.92 0.57
genome 0.13 0.04 -0.01 −0.03 0.12 −0.14
intruder 0 -0.02 -0.04 −0.04 0.04 −0.04
kmeans-high 0.19 0.1 0.04 0.4 1.67 0.18
kmeans-low 0.14 -0.11 -0.03 0.05 0.45 −0.08
labyrinth −0.12 -0.14 -0.07 −0.09 -0.14 0.04
ssca2 0 0 0 0 -0.01 0
vacation-high 0.14 0.05 -0.02 −0.03 0.01 −0.15
vacation-low 0.12 0.04 -0.03 −0.05 -0.08 −0.15
yada 0 0.12 0.02 -0.03 0.21 0.12
rbtree −0.01 0 -0.03 0 0.15 0.01
leetm-memory 0.01 -0.01 -0.01 −0.03 -0.02 −0.04
leetm-main 0.02 -0.04 0 −0.01 0.01 −0.02
sb7-read 0 0 -0.04 −0.02 -0.04 −0.02
sb7-read-write 0 −0.01 -0.01 −0.03 -0.03 −0.02
sb7-write −0.04 -0.02 -0.05 −0.06 -0.03 −0.02
Average 0.05 0.02 0.01 0.06 0.20 0.01

Table 4.3: Comparing several different locking granularities. The values represent relative
speedups, with one subtracted, when using eight threads.

granularities the rate of false conflicts is not increased to the level where it prevents SwissTM

from scaling.

To avoid any confusion, it is worth pointing out that in all experiments presented so far,

SwissTM uses the same locking granularity of 24 bytes.

4.5 Extending SwissTM

In this section I describe two extensions to base SwissTM: integration of SwissTM with standard

compilers and support for the privatization idiom.

4.5.1 Compiler support

To truly support a simple programming model SwissTM needs to be integrated with an STM

compiler. Otherwise, the use of the low-level interface exposed by SwissTM can be tedious

and can lead to subtle and hard-to-detect bugs if programmers, mistakenly, do not perform

all accesses to shared data using STM. To make SwissTM easier to use, I integrated it with

Intel’s C/C++ compiler [85], by implementing the compiler’s ABI [67] on top of the SwissTM’s

word-based interface.

86

4.5. Extending SwissTM

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8

D
ur

at
io

n
[s

]

Threads

Compiler
Manual

Figure 4.21: Performance of genome with and without STM compiler.

To do so, I extended SwissTM to support accesses to data types of sizes different than the

word size. Supporting accesses to data types that are multiple words in size is simple: such an

access is converted into several word-level accesses which are supported by base SwissTM.

Supporting accesses to smaller data types that only occupy a part of the word, such as char

and short types, is more involved. To support such data types I extend the redo log entries

with a word-sized bit-mask that specifies which parts of the memory location are actually

updated by the transaction. At commit time, the value is not simply copied from the redo

log to the memory location. Instead, the memory location is first read, its value is then

combined with the new value from the log using bitwise operators and the bit-mask, and the

resulting value is stored to the memory location. Furthermore, when a write-after-write access

is performed, the bit-mask is updated to correctly reflect the parts of the location that are

updated by the transaction.

It is worth mentioning that most STM compilers, including the widespread GNU gcc, have

adopted the Intel’s ABI, which means that, in addition to the Intel’s compiler, it is also possible

to use SwissTM with these compilers.

When STM compiler replaces memory references in atomic code blocks with STM read and

write calls, it typically introduces more STM calls than strictly necessary. This happens because

the compiler cannot always accurately distinguish between references to transaction-local and

shared data. To produce correct code, it has to, conservatively, replace all memory accesses

that are not guaranteed to be transaction-local with STM reads and writes. The additional STM

calls reduce the performance of the generated programs. Figure 4.21 compares performance

of genome when using STM compiler and when manually inserting STM calls. It shows that

the impact is small, but not negligible: using the STM compiler reduces performance between

20% and 30%. Importantly, the performance impact does not increase with the thread count

and remains roughly equal for all thread counts. I discuss the problem of unnecessary read

87

Chapter 4. SwissTM

N P1 P2

T2

ReadRead

T1

Write
commit

Read

commit

write write

Figure 4.22: Example problem caused by use of privatization in SwissTM.

and write STM calls inserted by the compiler and its impact on performance in more detail in

Section 5.5.

4.5.2 Privatization safety

The cost of executing an STM read or write call is much higher than the cost of performing the

same access using an ordinary CPU instruction. Therefore, it is often beneficial for a thread to

execute a short transaction and make some objects private to itself, for example by removing

the object from a shared collection data structure, and then perform further processing on the

objects using non-transactional accesses. This idiom is called privatization [106].

Base SwissTM, as well as other similar STMs that use invisible reads, such as TinySTM, TL2,

and McRT-STM, does not support privatization idiom. Figure 4.22 shows an example execution

where transactional reads observe the effects of non-transactional writes to privatized data. In

the figure, two threads access a shared linked list. Transaction T1 privatizes list nodes P1 and

P2 by setting the forward pointer of node N , which precedes P1, to NULL. After T1 commits, its

thread proceeds to non-transactionally modify the privatized nodes. Transaction T2 traverses

the list concurrently with T1. Before T1 commits, it gets a reference to P1 by reading the forward

pointer of N . Once T1 commits, SwissTM algorithm guarantees that T2 will fail its next read-set

validation and will thus abort. However, T2 continues to execute without validating, as none of

the non-transactional writes performed by the other thread updates the orecs corresponding to

P1 and P2. Therefore T2 observes some of the non-transactional writes performed by the other

thread. In case T2 is a read-only transaction, it will even be allowed to commit, as read-only

transactions do not perform validation at commit time. Similar problems occur even when

transactions incrementally validate their read-sets on every read, and with STMs that use

in-place updates or non-blocking designs [107].

To make SwissTM privatization-safe, all non-transactional accesses to the privatized data

need to be postponed until the other threads in the system observe the updates performed

88

4.5. Extending SwissTM

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

D
ur

at
io

n
[s

]

Threads

Privatization safe
Not privatization safe

Figure 4.23: Performance of genome with and without privatization support.

by the privatizing transaction. In the example above, this means that non-transactional

writes to P1 and P2 would be postponed until T2 validates or finishes. To support correct

privatization of data in SwissTM, I implemented a privatization barrier which needs to be

executed by the thread that executes the privatizing transaction after the transaction commits,

but before accessing the privatized data non-transactionally. To provide more general support

for privatization, the barrier can be executed after each transaction commit, as a part of the

STM commit call, regardless of whether the transaction privatizes any data or not. Such

transparent support for the privatization idiom is considered by many as necessary in a

complete STM system [24, 69, 85]. Inside the barrier, the thread ensures that each transaction

concurrent to the privatizing transaction either completes or its read-set validity timestamp

becomes equal to or higher than the privatizing transaction’s commit timestamp, before

continuing execution.

Figure 4.23 illustrates the impact of threads executing the privatization barrier on performance

of genome. The experiment demonstrates the worst-case cost of privatization, as threads ex-

ecute the privatization barrier after each transaction to transparently ensure privatization

safety, although none of the transactions privatize data. The figure shows that the performance

impact increases with the number of threads: with a single thread it is barely noticeable at

around 1%, but it keeps increasing and reaches 35% with eight threads. I return to the privati-

zation problem and discuss the impact of providing privatization support on performance of

SwissTM in more detail in Section 5.6.

It is interesting to note that the privatization problem is similar to the memory management

problem discussed in Section 4.2.4. Actually, memory management is an instance of privati-

zation: before deallocating an object, the thread first uses a transaction to make the object

inaccessible to other threads, hence privatizing it, and then it passes the object to the under-

lying non-transactional memory allocator that performs non-transactional accesses to the

object. The major difference between memory management and the general privatization

89

Chapter 4. SwissTM

problem is that memory deallocations can be buffered and performed at a later time, to

improve performance as described, whereas that is not possible in general case of privatiza-

tion. This makes it much more expensive to solve the general privatization problem than the

memory deallocation problem.

4.6 Summary

This chapter presents SwissTM, an effective compilation of STM design choices for mixed

workloads characterized by non-uniform, dynamic data structures and varying transaction

sizes. Those kinds of workloads are inherent to many applications that might be expected to

significantly benefit from the STM paradigm and multi-core architectures. SwissTM greatly

outperforms state-of-the-art STMs in precisely such workloads, while also delivering good

performance in smaller-scale scenarios. It is worth pointing out that, despite the wide perfor-

mance evaluation I performed, it is possible to come up with workloads in which SwissTM

does not outperform other STMs, particularly STMs that are optimized for precisely those

workloads.

Not surprisingly, the design of SwissTM is a result of trial-and-error. I reported on various

choices that might have seemed natural at some point, but revealed inappropriate in certain

workloads, such as the use of the Greedy contention manager or the pure eager conflict

detection. Besides those, I also experimented with nested transactions, using closed nesting,

and multi-versioning schemes, but I could not see a clear advantage of those techniques in

the considered workloads.

90

5 Practical STM Performance

The evaluation presented in the previous chapter demonstrates that SwissTM indeed performs

well compared to other state-of-the-art STMs across a wide range of workloads. In all cases

it either outperforms them, sometimes significantly or matches their performance. The

evaluation, however, fails to provide insight into several very important questions: How does

SwissTM, and STM in general, compare to other synchronization techniques? Could STM be

used in practice to outperform locking and lock-free synchronization, or, at least, sequential

single-threaded code, or are the overheads of book-keeping in software simply too high for

STM to be usable in practice?

Perhaps surprisingly, this question attracted little attention by others. The only real analysis

of STM’s suitability for use in practical systems concluded that STM is not more than a

“research toy” [19], as it failed to outperform sequential, single-threaded code in most cases,

even when using eight hardware threads. My motivation in this chapter is to revisit these

conclusions, by investigating whether STM can be used in practice, at least for some workloads,

or is it really just a “research toy”. To this end, I conducted a similar, but more thorough,

analysis of the performance of SwissTM and its comparison to sequential code. I used a

wider range of benchmarks, including the ones from previous chapter, and two computer

systems that support higher levels of concurrency. The evaluation also considered several STM

programming models, with different combinations of STM compiler support and support for

the privatization idiom, which enables me to discuss the best STM programming model from

the point of view of both usability and performance.

5.1 Overview

Whereas a well-optimized STM implementation can certainly reduce the overheads of book-

keeping in software, as shown in the previous chapter, the STM overheads still remain rather

high. A complete STM system usually includes an STM compiler and also supports the

privatization idiom in some form [5, 85]. Therefore, there are three main sources of overheads

in STM:

91

Chapter 5. Practical STM Performance

1. Synchronization costs. With STM, each access to a shared memory location from a

transaction is performed by an STM read or write call. In contrast, with sequential code,

these accesses are performed by a single CPU instruction. As the previous chapter illus-

trates, STM read and write routines are significantly more expensive than corresponding

CPU instructions because they maintain book-keeping data about the accesses they

perform. With SwissTM, each access: (1) checks for a previous write to the same lo-

cation, (2) detects conflicts with other concurrent transactions, (3) updates its read-

or write-set, (4) validates the read-set, and also (5) logs the new value in the write log,

when performing a write access. Therefore, even the fast path of the read and write

calls consists of more than 10 instructions, making them significantly more expensive

to execute than ordinary CPU read and write instructions. Furthermore, some of these

steps also use expensive atomic instructions, such as compare-and-swap for acquiring

the locks, or access shared meta-data, which increases the cache miss rate. This further

increases the overheads of SwissTM’s reads and writes. Similarly to SwissTM, other

STMs perform analogous steps and their reads and writes have comparable costs. All of

these overheads significantly reduce single-threaded performance when compared to

sequential code.

2. Compiler over-instrumentation. To use STM, STM library calls for starting and com-

mitting transactions need to be inserted in the code and all memory accesses from

inside transactions have to be replaced by STM read and write calls. This process is

called instrumentation. The instrumentation of a program can be manual, when pro-

grammers modify the code manually, as was assumed in previous chapters. To truly

make the programming with STM simple, however, an STM compiler [45, 57, 85] is

needed, in which case it is said that the instrumentation is compiler-based. With the

compiler, the programmers only need to specify which sequences of statements have to

be executed atomically, by enclosing them in atomic blocks, as the examples in Chap-

ter 2 show. The compiler then generates code that invokes appropriate STM read and

write calls. While using an STM compiler significantly reduces programming complex-

ity, it can degrade the performance of resulting programs, when compared to manual

instrumentation, due to over-instrumentation [19, 38, 121]. As discussed in the previous

chapter, the compiler cannot always precisely distinguish between accesses to shared

and transaction-local data and, hence, it has to instrument the code conservatively.

Such conservative instrumentation can result in unnecessary calls to STM, when STM is

used to access transaction-local data, further increasing the overheads of using STM.

3. Transparent privatization. Making some shared objects private to a thread is known

as the privatization idiom. Privatization is typically used to allow non-transactional

accesses to some data, either to improve performance by avoiding costs of STM calls

when accessing private data or to support legacy code. As privatization is not supported

by the base STM algorithms that use invisible reads, privatizing data with such STMs

can lead to various race conditions [106]. Invisible-read STMs can be extended to

provide support for safely privatizing data, as I described in the context of SwissTM

92

5.1. Overview

Instrumentation Privatization
SwissTM-ME manual explicit
SwissTM-CE compiler explicit
SwissTM-MT manual transparent
SwissTM-CT compiler transparent

Table 5.1: Considered programming models.

in Section 4.5.2. Supporting privatization, however, introduces additional overheads,

due to the necessary synchronization among the threads. There are two different

approaches to enabling privatization of data: (1) a programmer marks transactions

that privatize data, so the STM can safely privatize data only for these transactions,

or (2) the STM ensures that all transactions safely privatize data. The first approach

is called explicit and the second transparent. Explicit privatization places additional

burden on programmers, but it does not incur the privatization overheads when they

are not necessary. On the other hand, transparent privatization makes programming

simpler, but it incurs runtime overheads that can be high [121]. In an extreme case

when transactions do not privatize any data, explicit approach to privatization incurs no

cost, while transparent privatization impacts all transactions significantly. In this case,

transparent privatization is particularly expensive, as threads do not benefit from being

able to access some shared data non-transactionally, but pay the costs of privatization

nevertheless. Many believe that it is crucial for a complete STM system to provide

transparent privatization support, as it makes the exposed programming model simpler

and easier to understand [24, 69, 85].

The experiments from the previous chapters, as well as many research papers have conveyed

the scalability of a number of STMs with the increasing number of threads on various bench-

marks [2, 3, 8, 17, 28–30, 43, 54, 62, 69, 76, 77, 85, 92, 93, 99, 102, 108], demonstrating that

STMs can indeed scale well. These results, however, do not compare STM to sequential code,

thus completely ignoring the fundamental question of whether STM can be a viable option for

actually speeding up the execution of programs, or are the various overheads simply too high

and prevent any practical use of STM.

Two notable exceptions are the work on STAMP benchmarks [17] and evaluation performed

by Cascaval et al. [19]. The STAMP evaluation shows that STM outperforms sequential code in

most STAMP benchmarks, but it uses experiments based on a hardware simulator. Recently,

the evaluation by Cascaval et al. [19] shows that, with real hardware, STM performs worse

than sequential code even when using up to eight hardware threads, and for that reason it is

argued that STM is only a “research toy”. These findings are based on the experiments with

micro-benchmarks and a subset of the STAMP benchmark suite with specific configurations.

In this chapter, I revisit the conclusions by Cascaval et al. [19] by presenting an extensive

comparison of SwissTM performance to performance of sequential code. My experiments

93

Chapter 5. Practical STM Performance

SwissTM-ME SwissTM-CE SwissTM-MT SwissTM-CT
System Avg Min Max Avg Min Max Avg Min Max Avg Min Max
SPARC 9.1 1.4 29.7 - - - 5.6 1.2 23.6 - - -
x86 3.4 0.54 9.4 3.1 0.8 9.3 1.8 0.34 5.2 1.7 0.5 5.3

Table 5.2: Summary of SwissTM speedup over sequential code.

were based on a larger set of benchmarks and real hardware that supports much higher

levels of concurrency than in the previous chapters and the evaluation of Cascaval et al.

Besides the benchmarks from Chapter 4, I used three additional micro-benchmarks, based

on the linked-list, skip-list, and hash-table data structures. In the experiments, I used 17

workloads in total, which span a wide range of workload characteristics. The experiments

were conducted on two hardware platforms: a Sun Microsystems UltraSPARC T2 CPU system,

referred to as SPARC in the remainder of the chapter, which supports 64 hardware threads,

and a four quad-core AMD Opteron x86 CPU system, referred to as x86 in the remainder of

the chapter, which supports 16 hardware threads. These experiments constitute the most

extensive performance comparison of STM to sequential code to date, both in terms of used

benchmarks and hardware architectures. The goal of the experiments is to determine whether

SwissTM can outperform sequential code and, thus, promise to speed up actual real-world

code in the near future. The conclusions based on the collected results, however, do not apply

just to SwissTM and they evaluate the ability of STM in general to achieve good performance.

To be exhaustive, I considered all combinations of privatization and compiler support for STM,

summarized in Table 5.1. I used the techniques described in Section 4.5.1 to integrate SwissTM

with Intel’s STM compiler [85] and in Section 4.5.2 to make SwissTM privatization-safe.

Table 5.2 summarizes the results of the experiments. It illustrates that SwissTM-ME outper-

forms sequential code on both systems and on all benchmarks, except for high contention

write-dominated STMBench7 workload on x86. The achieved speedups are in some cases

impressive: SwissTM outperforms sequential code by up to 29x on SPARC with 64 concur-

rent threads and by up to 9x on x86 with 16 concurrent threads. The experiments confirm

that, while compiler over-instrumentation impacts the performance, it does not significantly

impact the scalability. SwissTM-CE outperforms sequential code in all STAMP benchmarks

with high contention and in all but one micro-benchmark out of fourteen workloads.1 The

speedups are slightly lower than without the compiler, but they are still high, as SwissTM-CE

outperforms sequential code by up to 9x with 16 concurrent threads on x86. On the other

hand, supporting transparent privatization impacts both the performance and the scalability

of SwissTM, sometimes even significantly. However, SwissTM-MT still outperforms sequential

code in all benchmarks on SPARC and in all but several high-contention workloads on x86,

outperforming sequential code on 14 out of 17 workloads on x86. The speedups achieved

1I did not collect the measurements for SwissTM-CE on the SPARC system, as I did not have a compiler for it
at my disposal. Furthermore, Intel’s STM compiler does not compile STMBench7 correctly, so I was not able to
collect the STMBench7 results on x86 either.

94

5.2. Experimental settings

with SwissTM-MT are lower than with SwissTM-ME: it outperforms sequential code by up to

23x on SPARC with 64 concurrent threads and by up to 5x on x86 with 16 threads, compared

to 29x and 9x respectively with SwissTM-ME. Furthermore, SwissTM performs reasonably

well in several workloads even when using STM compiler to instrument the benchmarks and

providing support for privatization transparently: SwissTM-CT outperforms sequential code

on all but two high-contention STAMP benchmarks and two micro-benchmarks, meaning it

outperforms sequential code on 10 out of 14 workloads on x86, by up to 5x with 16 concurrent

threads.

To summarize, the performed experiments show that SwissTM indeed outperforms sequential

code in most configurations and benchmarks, offering already now a viable paradigm for

concurrent programming. These results are important as they support initial hopes about the

good performance of STM, and motivate further research in the field. The results also support

reasoning about the best STM programming model and they show that, at the moment, STM-

CE hits the “sweet spot” considering both programmability and performance, making it best

suited for practical use today.

The results of my experiments contradict these of Cascaval et al. [19] and I believe that reasons

for this are three-fold: (1) in STAMP workloads by Cascaval et al. threads encounter higher

contention than in the default STAMP workloads, which I used in my experiments, (2) I used

different hardware systems with higher levels of parallelism, and (3) I used SwissTM, which has

higher performance than STMs used in the evaluation performed by Cascaval et al. according

to the experiments presented in the previous chapter.

5.2 Experimental settings

The experimental settings used in this chapter are similar to the settings in the previous

chapters. The biggest difference is the use of larger machines that support more hardware

threads, and the use of three additional micro-benchmarks.

Hardware. I used the following system configurations for the experiments:

• A system with a Sun Microsystems UltraSPARC T2 CPU at 1.2 GHz and 32 GB memory

running Solaris 10 operating system. The CPU has 8 cores, where each core multiplexes

8 hardware threads, for a total of 64 supported hardware threads. For brevity, the system

is referred to as SPARC.

• A system with four quad-core AMD Opteron CPUs at 2.2 GHz and 8 GB memory running

Linux operating system with kernel version 2.6.22.19. This system supports a total of 16

hardware threads. For brevity, the system is referred to as x86.

95

Chapter 5. Practical STM Performance

Benchmarks. I used the same benchmarks to compare the performance of SwissTM and

sequential code as in the previous chapter: STMBench7 to evaluate SwissTM on large-scale

workloads, STAMP to evaluate it on a wide range of medium-scale workloads, and micro-

benchmarks to measure performance with small transactions. I used four micro-benchmarks,

based on the red-black tree, linked-list, skip-list, and hash-table data structures. All bench-

marks have the same structure as the red-black tree described in the previous chapter, except

that they use different data structures to implemented the shared integer set. In the exper-

iments, I configured them to use the range of 131,072 values and a mix of 90% lookup, 5%

insert, and 5% remove operations.

On x86, all benchmarks, including the manually instrumented ones, were compiled using

the Intel’s experimental compiler, which supports STM language constructs. For compiler-

instrumented benchmarks, I used language constructs, such as tm_pure and tm_waiver,

to turn off STM instrumentation of code blocks where safe, as is also done in the original

STAMP implementation which uses manual instrumentation. On SPARC, I used the available

GNU gcc compiler, which did not support transactional constructs. As I did not have an

STM compiler for the SPARC architecture at my disposal, I could not perform experiments

with the compiler-instrumented benchmarks on SPARC. Likewise, I could not collect the

measurements for compiler-instrumented STMBench7 on x86 because of runtime errors in

the compiler-instrumented STMBench7, which were the result of bugs in the compiler.2

Experimental methodology. The execution of each experiment was repeated for at

least five times, to reduce the variance in the collected measurements. The graphs re-

port averages from these executions. SwissTM performance is reported as the speedup

over the sequential code, where the speedups are calculated as follows: Speedup =
ThroughputSwissTM

/
ThroughputSequential for STMBench7 and micro-benchmarks, and

Speedup = DurationSequential
/

DurationSwissTM for STAMP.

5.3 SwissTM-ME performance

First, I present the experiments with SwissTM-ME, which uses manual instrumentation and

supports privatization through explicit calls. As none of the benchmarks uses privatization,

the threads do not execute privatization barriers at all, meaning that no overheads related to

privatization are incurred in these experiments.

SPARC. Figure 5.1 depicts SwissTM-ME performance on SPARC. It shows speedup of code

that uses SwissTM-ME with different thread counts, over sequential, non-instrumented code.

The results convey that SwissTM-ME outperforms sequential code already with a small num-

ber of threads: with just four threads it outperforms sequential code on 14 out of 17 work-

2Here, as in Chapter 3, STMBench7 demonstrated its usefulness as a correctness testing tool.

96

5.3. SwissTM-ME performance

 0

 5

 10

 15

 20

 25

 30

sb7-read

sb7-read-write

sb7-write

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

 -
 1

1
2
4
8

16
32
64

Figure 5.1: SwissTM-ME on SPARC.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

sb7-read

sb7-read-write

sb7-write

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

 -
 1

1
2
4
8

16

Figure 5.2: SwissTM-ME on x86.

loads. This illustrates that SwissTM-ME is indeed a viable option for writing parallel code

performance-wise, as it can achieve reasonable performance on today’s systems with just a

handful of threads. Furthermore, the figure shows that SwissTM-ME outperforms sequential

code on all used workloads when using all 64 threads supported by the system, and that

it achieves very good speedups in several cases. Performance is the best on vacation-low

workload, where SwissTM-ME is 29x better than the sequential code. In several other cases

the speedups are only slightly lower, as SwissTM-ME outperforms sequential code by more

than 10x on the following six workloads: sb7-read, kmeans-low, labyrinth, vacation-high,

hash-table, and rbtree.

97

Chapter 5. Practical STM Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

sb7-read

sb7-read-write

sb7-write

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

SPARC x86

Figure 5.3: SwissTM-ME single thread overheads.

Despite rather good speedups over sequential code in several cases, SwissTM-ME does not

always outperform sequential code by large margins. For example, on the sb7-write, ssca2, and

linked-list workloads the speedups are lower than 2x even when using 64 threads, mostly due

to high contention encountered by threads in these workloads. In general, the experiments

confirm that the less contention the workload exhibits, the more benefit can be expected from

STM. For example, SwissTM outperforms sequential code by more than 11x on low-contention

sb7-read, but by less than 2x on high-contention sb7-write workload of the same benchmark.

x86. Figure 5.2 presents the performance of SwissTM-ME on the x86 system. The perfor-

mance is comparable to the performance on SPARC, as SwissTM-ME outperforms sequential

code when using four threads on 13 out of 17 workloads. Furthermore, when using all 16

threads supported by the system, SwissTM clearly outperforms sequential code on all work-

loads except on the challenging, high-contention sb7-write workload. The performance gain,

when compared to sequential code, is lower than on SPARC: the speedups are up to 9x on

x86 compared to up to 29x on SPARC, mostly because there are also fewer hardware threads

on x86. Also, the relative performance is better on SPARC because all threads execute on the

same chip which reduces the costs of inter-thread communication compared to multi-chip

x86, and because SPARC has much lower performance.

Singe-thread overheads. It is interesting to compare the performance of single-threaded

SwissTM-ME to sequential, non thread-safe, code. Such a comparison illustrates “pure” book-

keeping overheads of SwissTM without considering overheads introduced by the compiler

and transparent support for privatization. Figure 5.3 depicts the speedup of STM code over

the sequential code with a single thread. It shows that the overheads with a single thread

98

5.4. Contradicting earlier results

vary significantly across the benchmarks, with performance ranging from just 10% of the

performance of sequential code, for example on linked-list on SPARC and sb7-write on x86, to

virtually the same performance as sequential code, for example on labyrinth on both systems.

On average, SwissTM-ME with a single thread performs almost twice as slow as the sequential

code. This means that it needs at least two threads on average to achieve the performance of

the sequential code, even with perfect scalability. As programs rarely scale perfectly, SwissTM-

ME actually needs to use more than two threads to do so in most cases: with two threads, it

outperforms sequential code in just 11 out of 34 experiments on both systems combined.

Summary. To summarize, SwissTM-ME achieves good performance on both SPARC and

x86 systems, clearly showing that STM-ME algorithms can scale and perform well in various

settings. It is, however, important to point out that, while SwissTM-ME outperforms sequential

code in all but one workload, the achieved speedups are not very impressive in all cases, such

as, for example, 1.4x speedup with 64 threads on ssca2 on SPARC, or 1.3x speedup with 16

threads on kmeans-high on x86. These and similar examples confirm that STM, while showing

great promise for certain workloads, is not the prefect fit for all of them.

Further optimizations. On some of the used workloads, such as, for example, intruder and

yada, performance degrades when too many threads are used, due to increased contention

among threads. A possible approach to solving this issue is to modify the thread scheduler

and have it avoid running more concurrent threads than is optimal for a given workload. For

this, the STM runtime would have to provide some additional information, and it is likely that

such a solution would not be easily applicable to all programs.

5.4 Contradicting earlier results

In contrast to the results presented above, the experiments performed by Cascaval et al. [19]

indicated that STMs do not perform well on three of the STAMP benchmarks I also used:

kmeans, vacation, and genome. In their experiments, the used STMs failed to achieve the

performance of sequential code both on kmeans and vacation benchmarks, whereas the

performance on genome was only about 2.5x better than sequential, even when using eight

threads. In contrast, in my experiments, SwissTM-ME outperforms sequential code on all

of those benchmarks when using eight threads on x86, achieving 5.6x speedup on genome.

In the following, the three main reasons for this dramatic difference in the observed STM

performance are discussed:

1. Workload characteristics. A closer look at the experimental settings of Cascaval et al.

reveals that the STAMP benchmarks were configured in a specific way, which increased

the contention among threads. In contrast, I used the default STAMP workloads, as de-

fined in STAMP distribution 0.9.9. The results presented in Figures 5.1 and 5.2 illustrate

99

Chapter 5. Practical STM Performance

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

genom
e

hm
eans-high

km
eans-low

vacation-high

vacation-low

S
lo

w
do

w
n

-
1

1
2
4
8

(a) Workload impact

-1

-0.5

 0

 0.5

 1

 1.5

 2

genom
e

km
eans-high

km
eans-low

vacation-high

vacation-low

S
lo

w
do

w
n

-
1

1
2
4

(b) Hyper-threading impact

Figure 5.4: Impact of experimental settings used by Cascaval et al. [19] on STM performance.

the well known fact that the performance of parallel programs is typically the lowest in

highly contended workloads, which means that the experiments performed by Cascaval

et al. actually evaluated STM in particularly unfavorable settings.

To evaluate the impact of the workload characteristics on the performance of SwissTM-

ME, I repeated the experiments using both default STAMP workloads and the workloads

used by Cascaval et al. on a system with two quad-core Xeon CPUs, with 8 hardware

threads in total. I used a different machine than in the previous experiments because

this one is more similar to the machine used by Cascaval et al. Figure 5.4(a) depicts

the slowdown of the higher contended workload compared to the default STAMP work-

loads, calculated as: Slowdown = SpeedupDefault

/
SpeedupHighCont . I used both the

low-contention and high-contention default workloads for kmeans and vacation bench-

marks to understand the performance difference in both cases. The figure shows that

the custom workload configuration indeed degrades the performance of SwissTM-ME.

100

5.4. Contradicting earlier results

The biggest difference is on the kmeans-low workload, with the slowdown of around 3.2x.

The performance impact is also significant on the kmeans-high workload, where it is

around 20%, and on both vacation workloads, where it is around 35%. The performance

impact is the smallest with genome, but it is still non-negligible at around 10%.

2. Different hardware. The experiments presented in this chapter use systems which

support more hardware threads than the ones in experiments of Cascaval et al: 64 and

16 threads compared to only 8. This naturally benefits parallel code as using more

threads typically leads to better overall performance.

Furthermore, the x86 system does not use hyper-threading, whereas the one used by

Cascaval et al. does, which also impacts the performance, as hardware thread mul-

tiplexing sometimes hampers performance. To better understand the impact of the

hyper-threading, I repeated the experiments with the default STAMP workloads on a

system with two single-core hyper-threaded Xeon CPUs, for a total of 4 hardware threads.

Figure 5.4(b) depicts the slowdown on this system compared to a similar machine with-

out hyper-threading. The slowdown is calculated using speedups over sequential code

on different systems: Slowdown = SpeedupNoHyper

/
SpeedupHyper . The figure shows

that hyper-threading impacts performance significantly, especially with higher thread

counts. This results in a slowdown of around 65% for the genome workload and around

40% in the two vacation workloads. The performance difference in kmeans workloads is

significant even with a single thread, which is the result of differences in the used CPUs

that are not related to hyper-threading. Still, even with kmeans, slowdown with four

threads is much higher than with one and two threads, meaning that hyper-threading

impacts scalability adversely in kmeans workloads too.

3. More efficient STM. A part of the difference in the obtained results stems from my

use of a more efficient STM. I did not directly compare SwissTM to all STMs in the

evaluation of Cascaval et al. because (1) IBM STM is not freely available, so I could

not use it in the experiments, and (2) McRT-STM [85, 99] can only be used with the

compiler instrumentation and transparent privatization, which does not allow for a fair

comparison with SwissTM-ME. However, the results presented in the previous chapter

show that SwissTM outperforms TL2 on the STAMP benchmarks used by Cascaval et al,

and TL2 performed comparably to the other STMs in their experiments. Therefore, it

can be concluded that a part of the difference in the observed STM performance indeed

stems from the use of SwissTM in my experiments, instead of other STMs with lower

performance.

In addition to the presented results, I have confirmed that STM in general can achieve better

performance than was suggested by Cascaval et al, by repeating a subset of the experiments

with TL2 [28], McRT-STM [85, 99], and TinySTM [43]. The performance results with the Bartok

STM [57], on a subset of STAMP benchmarks, were also provided to us and they too confirm

the general conclusions from above. These results are presented in a separate technical

report [32].

101

Chapter 5. Practical STM Performance

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

 -
 1

1
2
4
8

16

Figure 5.5: SwissTM-CE on x86.

 0

 0.2

 0.4

 0.6

 0.8

 1

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

1 2 4 8 16

Figure 5.6: Compiler over-instrumentation overheads on x86.

5.5 SwissTM-CE performance

Next, I evaluate SwissTM-CE, which uses Intel’s STM compiler to instrument the benchmark

code and relies on programmers’ hints to provide explicit privatization support. As discussed,

compiler instrumentation often replaces more memory references by STM calls for reading

and writing data than strictly necessary, resulting in the reduced performance of generated

code. Ideally, the compiler would replace memory accesses with STM calls only when they

referenced data that is shared by threads. However, the compiler does not have (1) information

about all uses of variables in the whole program and (2) semantic information about variable

102

5.5. SwissTM-CE performance

Threads Min Max Avg
1 0 0.42 0.16
2 0 0.4 0.17
4 0 0.4 0.11
8 0 0.47 0.11

16 0 0.44 0.17

Table 5.3: Summary of the compiler over-instrumentation overheads on x86.

use, which is typically available only to the programmer. Consequently, the compiler cannot

always determine which variables are read-only or private to the transaction, and thus can be

accessed non-transactionally. This is why the compiler instruments the code conservatively,

usually generating more STM calls than necessary. Unnecessary STM calls reduce performance

because they are more expensive than the CPU instructions that they replace. It is very

important to evaluate these over-instrumentation overheads because the compiler is the

crucial component of the full-fledged STM system, as it enables programmers to use STM in a

truly simple manner.

The speedups of SwissTM-CE when running with different numbers of threads over sequential

code are presented in Figure 5.5. As discussed, I could not collect the measurements on

SPARC, for lack of STM compiler, and for STMBench7 on x86 due to the limitations of the

STM compiler I used. The figure shows that the performance is lower than the performance

of SwissTM-ME, but is still rather good: SwissTM-CE outperforms the sequential code on 10

out of 14 workloads with four threads and on all but 1 workload with eight threads. Similarly

to the results with SwissTM-ME, the highest observed speedup is over 9x, on the labyrinth

workload. Overall, SwissTM-CE outperforms sequential code in all benchmarks but kmeans-

high. However, it scales well on kmeans-high promising to outperform the sequential code on

systems with more hardware threads.

The overheads of using an STM compiler with SwissTM are illustrated in Figure 5.6

and Table 5.3, by comparing the performance of SwissTM-ME and SwissTM-CE. The

figure depicts the speedup of SwissTM-CE over SwissTM-ME calculated as Speedup =
SpeedupSwissTM-CE

/
SpeedupSwissTM-ME , using the speedups of the two SwissTM variants over

the sequential code. The table shows the overheads calculated as 1− Speedup. The over-

instrumentation costs are typically not very high: they remain around 20–30% for all workloads

but kmeans where they are about 40%. Furthermore, in several workloads, such as labyrinth,

ssca2, and hash-table, the performance is only barely impacted by over-instrumentation,

resulting in similar performance of SwissTM-CE and SwissTM-ME. Interestingly, the over-

instrumentation overheads remain approximately the same for all thread counts, conveying

that over-instrumentation does not greatly impact scalability of STM.

It is worth pointing out that the Intel’s STM compiler I used already implements several

optimizations to reduce the effects of over-instrumentations [38, 85]. Therefore, the overheads

are not as high as they might be with a compiler that relies on less sophisticated techniques.

103

Chapter 5. Practical STM Performance

To summarize, the additional overheads introduced by compiler over-instrumentation remain

acceptable as SwissTM-CE outperforms sequential code on 10 out of 14 workloads with only

four threads and in all but 1 workload overall, and they do not impact scalability of STM.

Further optimizations. Optimizations that replace full STM load and store calls with spe-

cialized, faster versions of the same calls, to exploit the ability of some STMs to perform, for

example, fast read-after-write accesses, are described in [85]. While the Intel’s compiler I

used indeed supports such optimizations, I did not implement the lower cost STM barriers in

SwissTM, because the deferred-update STMs do not benefit significantly from them. More so-

phisticated techniques, such as data structure analysis performed by the compiler to optimize

the generated code, could also be used [94].

Further compiler optimizations are possible in the context of higher-level languages, such as

Java and C#. Several optimizations have been proposed in the context of Java to eliminate

transactional accesses to immutable data and data allocated inside current transaction [3].

Data-flow analysis can also be used to eliminate some of the unnecessary transactional

accesses and replace them with non-transactional ones, as in [39]. Bartok-STM [57] uses

flow-sensitive inter-procedural compiler analysis, as well as runtime log filtering, to identify

objects allocated in the current transaction and eliminate transactional accesses to them.

5.6 SwissTM-MT performance

Next, I turn to evaluating the performance of SwissTM variants that transparently support

the privatization idiom, by measuring the performance of SwissTM-MT. Similarly to the

overheads of the compiler over-instrumentation, it is very important to evaluate the overheads

of transparent privatization support, as many believe that privatization support is crucial for

wider inception of STM.

Validation barriers used for ensuring privatization safety, described in Section 4.5.2, require

frequent communication between all threads in the system and can thus degrade performance

due to (1) the time threads spend waiting for each other and (2) the increased number of cache

misses. It is already known that a similar technique significantly impacts the performance and

scalability of STM in certain cases [121], which my experiments confirm.

As has already been mentioned, none of the used benchmarks requires privatization. There-

fore, the worst case scenario was measured: supporting transparent privatization only incurs

overheads, without the performance benefits of reading and writing privatized data outside of

transactions, that could compensate for these overheads. Also, the measured performance

costs are specific to the choice of privatization technique and implementation, and proposals

for reducing privatization costs exist [69, 78].

104

5.6. SwissTM-MT performance

 0

 5

 10

 15

 20

 25

sb7-read

sb7-read-write

sb7-write

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

 -
 1

1
2
4
8

16
32
64

Figure 5.7: SwissTM-MT on SPARC.

 0

 0.2

 0.4

 0.6

 0.8

 1

sb7-read

sb7-read-write

sb7-write

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

1 2 4 8 16 32 64

Figure 5.8: Overheads of ensuring privatization safety on SPARC.

SPARC. The performance of SwissTM-MT variant, which relies on manual instrumentation

of benchmarks and transparently provides privatization safety, on SPARC is shown in Figure 5.7.

The figure conveys that support for transparent privatization incurs significant overheads, but

that SwissTM-MT still performs rather well, outperforming sequential code on 11 out of 17

workloads with four threads and on 13 workloads with eight threads. Similarly to SwissTM-

ME on SPARC, SwissTM-MT outperforms sequential code in all workloads, when using all

64 threads supported by the system. The performance is, however, lower, as SwissTM-MT

outperforms sequential code by up to 23x compared to 29x with SwissTM-ME, and by 5.6x on

average compared to 9.1x on average with SwissTM-ME.

105

Chapter 5. Practical STM Performance

SPARC x86
Threads Min Max Avg Min Max Avg

1 0 0.06 0 0 0.45 0.08
2 0.02 0.47 0.16 0.03 0.58 0.29
4 0.03 0.59 0.26 0.06 0.64 0.4
8 0.03 0.66 0.32 0.08 0.69 0.48

16 0 0.75 0.35 0.17 0.85 0.51
32 0 0.77 0.34 - - -
64 0 0.8 0.35 - - -

Table 5.4: Summary of transparent privatization safety overheads.

-1

 0

 1

 2

 3

 4

 5

sb7-read

sb7-read-write

sb7-write

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

 -
 1

1
2
4
8

16

Figure 5.9: SwissTM-MT on x86.

Figure 5.8 and Table 5.4 convey the overheads of ensuring transparent privatization, by com-

paring the performance of SwissTM-MT and SwissTM-ME. The speedups and the overheads

are calculated in the same way as for SwissTM-CE above. Similarly to the experiments with

the compiler, transparent privatization barely impacts the performance for some of the work-

loads, such as, for example, ssca2 and kmeans-low, whereas in some cases the privatization

costs are as high as 80%, as in, for example, sb7-read. In contrast to the costs of complier

over-instrumentation, which in the experiments remain roughly constant for all thread counts,

the costs of ensuring privatization safety increase with the number of concurrent threads, thus

impacting both performance and scalability of SwissTM.

x86. The results of the same experiments on x86 are given in Figure 5.9. The data con-

firms the observations from the experiments on SPARC: the performance of SwissTM-MT

is lower than the performance of SwissTM-ME, but it is still reasonably good in many cases.

SwissTM-MT outperforms sequential code on 8 out of 17 workloads with four threads and on

106

5.6. SwissTM-MT performance

 0

 0.2

 0.4

 0.6

 0.8

 1

sb7-read

sb7-read-write

sb7-write

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

1 2 4 8 16

Figure 5.10: Overheads of ensuring privatization safety on x86.

14 workloads with eight threads. Overall, transparent privatization overheads reduce STM

performance below performance of sequential code in three benchmarks: sb7-read-write,

sb7-write, and kmeans-high. In contrast to the results on SPARC, the performance is impacted

the most with micro-benchmarks. This is because cache contention for shared privatization

meta-data induced by small transactions increases the rate of cache-misses, which are much

more expensive on multi-chip x86, than on single-chip SPARC.

Figure 5.10 shows the overheads of ensuring privatization-safety transparently on x86, which

are also summarized in Table 5.4. These are presented in the same way as the overheads of

SwissTM-CE. It shows that privatization costs are sometimes as high as 80%, for example with

hash-table and rbtree. In contrast to results on SPARC, transparent support for privatization

always incurs non-negligible costs, with the smallest impact on ssca2, where the overheads

are slightly less than 20% with 16 threads. The experiments on x86 also confirm that the costs

of transparent privatization increase with the number of threads, impairing scalability: the

average cost with a single thread is about 7% and it increases to about 50% at 16 threads.

Interestingly, the overheads of transparent privatization are higher than the overheads of

compiler over-instrumentation with more than two threads: on average, the performance

impact of privatization on x86 with sixteen threads is almost 50%, compared to 17% impact

of over-instrumentation. The impact of privatization also reaches 85% on some workloads,

compared to 44% impact of over-instrumentation.

To summarize, while the impact of transparent privatization can be significant, SwissTM-

MT still performs well on a wide range of workloads. Based on the presented results, it can

be concluded that reducing costs of cache coherence traffic by having more cores on the

same chip reduces the costs of transparent privatization, resulting in better performance

107

Chapter 5. Practical STM Performance

-1

 0

 1

 2

 3

 4

 5

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

 -
 1

1
2
4
8

16

Figure 5.11: SwissTM-CT on x86.

and scalability. Therefore, costs of transparent privatization might be reduced on the future

systems with a single processor and many cores.

Further optimizations. Two recent proposals [69, 78] aim to improve scalability of trans-

parent privatization by employing partially visible reads. By making readers only partially

visible, the cost of reads is reduced, compared to fully visible readers, and the scalability of

privatization support is improved, compared to invisible readers. To implement partially

visible readers, one approach uses timestamps [78], while the other proposes the use of a

variant of SNZI counters [40] in STM called SkyTM [69]. In addition, SkyTM avoids using cen-

tralized privatization meta-data, which further improves scalability. Whereas these techniques

improve scalability of privatization support, they greatly impact transactions that do not use

privatization, and programmers that are prepared to explicitly mark privatizing transactions.

5.7 SwissTM-CT performance

I also measured the performance of SwissTM-CT, where benchmarks are instrumented by

the compiler and privatization safety is ensured transparently. The results for only a subset

of workloads on x86 are available, for lack of full compiler support, as discussed. The per-

formance of SwissTM-CT is significantly lower than of any other SwissTM variant, but still

SwissTM-CT outperforms the sequential code in all workloads except intruder, kmeans-high,

hash-table, and rbtree. However, it requires higher thread counts to outperform sequential

code than the other SwissTM variants: with two threads SwissTM-CT performs better than

sequential code only on the genome and labyrinth workloads of all 14 workloads used. With

four threads STM-CT outperforms sequential code on 5 workloads, and with eight threads

108

5.8. Programming model

 0

 0.2

 0.4

 0.6

 0.8

 1

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada
hash-table

linked-list

rbtree

skip-list

S
pe

ed
up

1 2 4 8 16

Figure 5.12: Combined overheads of compiler over-instrumentation and transparent privati-
zation on x86.

Threads Min Max Avg
1 0 0.45 0.16
2 0.1 0.58 0.35
4 0.12 0.64 0.41
8 0.11 0.69 0.47

16 0.17 0.86 0.52

Table 5.5: Summary of combined over-instrumentation and transparent privatization over-
heads on x86.

on 8 workloads. Furthermore, the best achieved speedup over sequential code is only 4.5x,

compared to SwissTM-ME where it is over 9x.

The overheads of SwissTM-CT compared to SwissTM-ME are presented in detail in Figure 5.12

and Table 5.5. The overheads with 16 threads are sometimes as high as 80%, for example

on hash-table and rbtree, but are also sometimes as low as 20%, for example on ssca2. The

overheads of SwissTM-CT are largely a simple combination of SwissTM-CE and SwissTM-MT

overheads, meaning that both its performance and scalability are impaired. The techniques

for reducing transparent privatization and over-instrumentation overheads are applicable to

SwissTM-CT as well.

5.8 Programming model

The extensive experiments presented in this section imply that STM-CE variant, where the

programmers use compiler for instrumenting the programs, but explicitly require privatization

where needed, is the most appropriate programming model for STM in many cases: it performs

109

Chapter 5. Practical STM Performance

and scales well, and exposes a relatively simple programming model, hitting the “sweet-spot”

for most programers.

SwissTM-ME performs better than SwissTM-CE, but is probably too tedious and error prone

to use in most applications, and might be appropriate only for smaller applications or per-

formance critical sections of code. Without the compiler, it is very likely that there would be

too many instances of incorrect manual instrumentation, which would result in bugs that are

hard to detect, defeating the main purpose of TM paradigm. For that reason, an STM compiler

is crucial for usability.

On the other hand, transparently supporting privatization is not absolutely necessary: privatiz-

ing a piece of data is, most often, a conscious decision made by a programmer rather than an

accidental occurrence. Furthermore, unlike manual instrumentation, which requires annota-

tions of each memory access, explicit privatization requires only transaction-level annotations,

which means that it is not nearly as hard to use correctly as manual instrumentation. This

implies that explicitly marking privatizing transactions does not require too great an additional

effort from the programmer, and is, therefore, suitable for wider-spread use. The only case

when transparent privatization might have certain advantages is when lock-based code is

rewritten to use transactions: such code might not work correctly if it uses the privatization

idiom. In such cases, additional care is needed by programmers who opt to use an STM-CE

system.

5.9 Summary

In this chapter, I reported on the most exhaustive evaluation to date of the STM ability to

outperform sequential code. The evaluation uses SwissTM and compares it to sequential

code on 17 workloads with widely varying characteristics and two different parallel systems,

demonstrating that STM can perform well in a wide range of workloads. Whereas I do not

argue that STM is a silver bullet for general purpose concurrent programming, the presented

results contradict a recent study, which shows particularly bad performance of STM [19],

and suggest that STM is already now usable in practice for various types of programs. The

presented results support the initial hopes about STM performance and motivate further

research in the field.

Several techniques could further improve the STM performance, making it even more appeal-

ing. For example, static segregation of memory locations, depending on whether they are

shared or not, can minimize compiler instrumentation overhead, partially visible reads can

improve privatization performance, whereas reducing the rate of accesses to shared meta-data

can enhance scalability.

110

6 Related Work

In this chapter, I present the related work. First, I discuss some of my work done in parallel

with this thesis, that mostly focuses on the performance of STM. Then, I present related work

on the design and implementation of other techniques for improving STM performance.

6.1 My work

Compiler optimizations. As shown in the previous chapter, the overheads of compiler over-

instrumentation can be significant. In [38], transaction-local memory is identified as a major

source of compiler over-instrumentation overheads in STM. Transaction-local memory is

memory allocated inside a transaction, which cannot escape, or is captured by, the allocating

transaction. Accesses to such memory do not require calls to STM read and write functions. A

compiler unaware of that, however, may translate simple memory read and write instructions

accessing such memory into more expensive STM calls. This presents an opportunity to

improve performance of code instrumented with an STM compiler. The measurements with

the STAMP benchmark suite revealed that as many as 60% of the STM calls generated by a

base-line compiler are accesses to captured memory, which include 90% of the writes and 45%

of the reads. I proposed runtime and compiler optimizations to elide STM barriers to captured

memory. Similar techniques can also be used to elide barriers for accesses to thread-local

and read-only data. Those optimizations were implemented in the context of Intel C++ STM

compiler [85, 99]. The experiments with the STAMP benchmark suite on a system, with 24

cores in four chips showed that up to 18% performance improvement could be achieved when

running with 16 threads. The optimizations were integrated in the compiler I used in the

previous chapter.

Specializing STM interface. Recently, I started exploring a new approach to making STM

practical by trading some of STM generality for performance [36]. I developed SpecTM, an

STM that supports efficient short transactions. To do so, it restricts the interface traditionally

exposed by STM and it requires the developers to provide more details about transactional

111

Chapter 6. Related Work

accesses than in “traditional” STMs used in the previous chapters, such as an index of each

access inside a transaction. SpecTM also collocates user data and STM meta-data by using

transactional variables. I was able to build efficient and scalable hash-table and skip-list

data structures using SpecTM, which perform as well as their lock-free counterparts. They

outperform the same data structures built using a well optimized, “traditional” STM by more

than 60%, and have performance similar to sequential code with a single thread.

SpecTM is more difficult to use than “traditional” STMs, and is probably not a good fit for the

average programmers. However, it can significantly help the expert programmers as it enables

them to atomically access a handful of memory locations in their parallel algorithms. This

ability makes it much easier to develop efficient data structures than when having to rely only

on single-location atomic primitives, such as compare-and-swap and test-and-set, provided

directly by the hardware.

Using HTM. Whereas the performance of STM is good across a range of workloads, it is

not a silver bullet for all parallel workloads, as the evaluation in the previous chapter shows.

Hence, techniques for improving the performance of STM are needed. One possible ap-

proach to improving performance of transactional code is to use the best-effort HTMs, such

as Sun’s Rock [27], AMD’s ASF [4], or Intel’s TSX [91], once they become available. It has

already been shown that best-effort HTMs can improve the performance of parallel data struc-

tures [26, 27]. Furthermore, HTMs support stronger semantics when mixing transactional and

non-transactional accesses to data, by supporting strong atomicity, which solves many seman-

tical issues of STM. I showed that having a best-effort HTM can simplify dynamic memory

management in concurrent algorithms as well [37]. Interestingly, by using RockTM [27], I was

able to produce code that is simpler to write, despite the use of fine-grained transactions, that

performs better, and reclaims memory sooner than the state-of-the-art lock-free code.

Predicting scalability of STM. Conducting a thorough performance evaluation of an STM is

very time consuming. Depressingly, even with all this effort, and even with the same applica-

tion, it can still be hard to predict the performance if the number of underlying threads on

which the application needs to be deployed is different than those of the experiments. Basi-

cally, one might have to conduct an entire set of new experiments to get some understanding

of the performance of the STM with the new number of threads.

I proposed a pragmatic approach to contribute to changing this state of affairs in [33]. Using

classical engineering approximation techniques, I extract, from a set of STM performance

measurements, analytical performance functions to model the scalability of STMs. I showed,

more specifically, that polynomial and rational functions provide good interpolations of STM

performance: even with only a handful of measurements, the average prediction error in

most cases is around 1-2%. Furthermore, I showed that we can perform reasonably precise

extrapolations using rational functions: basically, using measurements with up to m threads,

112

6.2. Others

we can predict the performance up to roughly 2m threads with a relatively low error of around

10% in best cases.

I also discussed two possible applications of this pragmatic approach: (1) how to statically

decide whether to use an STM for a given workload and a given number of threads, and (2)

how to dynamically adjust the number of threads that execute in parallel to match the optimal

concurrency level of a given workload.

I also extended and applied the same approach to predicting the scalability of general parallel

applications, regardless of the synchronization technique they use, by developing PreSca, a

pragmatic system for predicting the scalability of parallel applications [34].

6.2 Others

Next, I describe several of the most prominent STM designs from the literature, followed by

a discussion of STM benchmarks and parallel applications implemented with TM. Then, I

describe several techniques for optimizing compilers and improving privatization support.

I also discuss approaches that relax transactional semantics to improve STM performance,

and several other techniques, including transactional scheduling and parallel nesting of

transactions.

6.2.1 STM design

There has been a lot of work on various approaches to building STMs, resulting in a plethora

of STM designs. I split the STMs discussed in this section into several loose categories: non-

blocking, which include initial dynamic STM designs, multi-versioned STMs, that keep several

versions of each object, lock-based STMs, which use locking for writes and typically rely on

invisible reads, and value-based STMs that use only global meta-data.

Static transactions. The initial STM proposal [101] exposes a static interface, which is meant

to be used for expressing low-level atomic primitives that operate on several memory locations,

such as a multi-word compare-and-swap (CASN). This is similar in spirit to direct implemen-

tations of CASN primitives, such as [58, 82], but more flexible, as it enables programmers to

express different atomic operations if needed. The implementations of the static STM and

CASN primitives are typically lock-free, meaning that progress of at least one thread in the

system is ensured.

Non-blocking STMs. The first dynamic STM proposal is DSTM [63]. It exposes an object-

based interface, similar to the one introduced in Chapter 2. DSTM uses invisible reads and

eagerly acquires objects for writing. Instead of using locking, it guarantees obstruction-

freedom, meaning that when a thread executes alone it makes progress [61]. DSTM uses

113

Chapter 6. Related Work

incremental read-set validation on every read to guarantee that transactions always operate on

consistent snapshots of memory. The notion of contention manager which resolves conflicts

among transactions was also introduced in the context of DSTM. Several contention managers

were later proposed and evaluated with DSTM, including Polka [100].

WSTM is a dynamic, word-based STM used as a basis for integrating transactional support in

Java [54]. It provides lock-free progress guarantees. Transactions use invisible reads, acquire

locations at commit-time and use buffered updates. Meta-data is stored in a separate table

of ownership records, where memory locations are mapped to the corresponding ownership

records using a hash-based approach. FSTM [46] has a similar design to WSTM, with the

exception that it is object-based: transactions use invisible readers, they buffer updates, and

acquire objects for writing at commit time. Like WSTM, FSTM is also lock-free. It is written in

C/C++ and uses epoch-based memory management to ensure safe memory reclamation in

the unmanaged environment.

ASTM [76] is another obstruction-free, object-based STM implemented in Java. It does not use

a single conflict detection scheme and instead adapts between different schemes to match the

characteristics of the executed workload. The base version of RSTM [77], used in the previous

chapters, is also obstruction-free and object-based. It can be configured to use a number of

conflict detection and contention management algorithms to best fit the workload at hand.

The newer versions of the library also feature lock-based and word-based designs.

Whereas most newer STM designs use locks to reduce the implementation overheads, two

obstruction-free STMs were proposed more recently. NZSTM [115] is an object-based

obstruction-free STM, that directly updates objects, uses eager acquire for writes, and visible

readers. In the common case it stores transactional meta-data in-place, together with the

objects, and resorts to a level of indirection only when a transaction is aborted. STM described

in [75] uses a similar approach to decouple the fast contention-free path and the slower com-

plex path that uses indirection. It also employs techniques that enable high performance

typical of lock-based STMs in its nonblocking design. For example, it uses timestamp-based

validation, can be configured to use either redo- or undo-logging, and several conflict de-

tection strategies. These techniques improve the performance of the obstruction-free STM

significantly, making it competitive in performance with lock-based STMs, such as TL2.

Multi-versioned STMs. JVSTM [16] proposes the use of multiple object versions to im-

prove the performance of long read-only transactions, which never need to abort with multi-

versioning. JVSTM is implemented in Java and it proposes a concept of transactional boxes to

support multi-versioning. JVSTM uses lazy detection of write-write conflicts. Interestingly,

JVSTM is one of the rare STMs that is actually used in production: it was used to replace locking

in a web-based applications. The authors report significant improvements in performance

perceived by the users, compared to locking.

114

6.2. Others

LSA-STM [92] is a multi-versioned STM that uses a shared time-base timestamp to ensure

read-set consistency, as was concurrently proposed by TL2. It is a lock-free, multi-versioned

STM, that can be configured to ensure either snapshot isolation, or opacity. Readers are

invisible and the shared timestamp is used to ensure that transactions are always accessing

consistent snapshots of memory. Validations are used to extend the validity of the read-sets.

Lock-based STMs. After the initial STM proposals that avoid the use of locks, and typically

provide non-blocking progress guarantees, lock-based designs were popularized by [41]. It

was argued that lock-based designs offer significant performance advantages over obstruction-

free ones, with limitations that are going to disappear in future architectures, or are justified

trade-offs, considering significant performance improvements they enable compared to non-

blocking designs. To demonstrate the performance benefits of the lock-based STM design, an

object-based STM that uses eager acquire and invisible reads was shown to outperform DSTM

and FSTM by a significant margin on the common red-black tree and skip-list benchmarks [41].

McRT-STM [99] is another lock-based STM. It exposes a word-based interface, and supports

configurable conflict detection granularity that can be either object-based or cache-line-

based. It is the first STM to use direct updates and undo-logging to reduce perceived high

overheads of deferred updates. McRTM-STM uses invisible reads and eager acquire conflict

detection. The evaluation of McRT-STM shows good scalability and performance: it outper-

forms coarse-grained locking on several micro-benchmarks. Interestingly, it also shows that if

locking is replaced with STM in the Sendmail application, where around 10% of the time is

spent in critical sections, the performance remains roughly the same. McRT-STM also comes

with a transaction-aware memory manager that uses an epoch-based scheme to reclaim

memory [66].

A lock-based and word-based STM, called TL, is proposed in [29]. TL supports both eager

and lazy acquire conflict detection and it always uses invisible reads. Interestingly, neither

in TL nor in McRT-STM transactions validate their read-sets when reading, thus allowing

for inconsistencies in transaction execution, and not guaranteeing opacity. TL uses non-

faulting load instruction, available on SPARC architecture, to avoid dereferencing invalid

pointers. It uses Bloom filters [15] to speed-up write-set lookups, when dealing with read-

after-write accesses. Three different mappings of memory locations to locks are proposed: per-

object, per-stripe, and per-word, with the conclusion that per-object and per-stripe locking

perform the best. The experiments suggest that lazy acquire performs better than eager

acquire and that STM often scales better than other fine-grained synchronization approaches.

TL also introduces quiescence-based memory management for safe transactional memory

deallocation, which essentially first privatizes deallocated data using a privatization barrier,

similar to the one used by SwissTM, and then deallocates it.

Bartok-STM [57] uses direct memory updates, similarly to McRT-STM, to eliminate write-log

lookups during reads, thus speeding them up significantly. It uses invisible reads and eager

115

Chapter 6. Related Work

locking. Locks are mapped to data at object-granularity, but logging is performed at the

field-granularity. Bartok-STM is implemented in the context of the Bartok runtime, and is

closely integrated with the compiler and the runtime, which enables significant optimizations.

The experiments show that the single-treaded performance with short transactions is around

50% of the performance of sequential, non-thread-safe code.

TL2 [28] extends the TL algorithm with a global shared timestamp used to ensure consistency

of transactions’ read-sets without relying on expensive read-set validations, the same as LSA-

STM. It uses lazy acquisition for writing, and invisible readers. TL2 supports per-stripe and per-

object locking granularities. Similarly to TL, it uses quiescence-based memory management.

TinySTM [43] implements very lightweight reads by combining the use of the shared times-

tamp to speed up read-set validations and direct updates to eliminate the write-set lookups

during reads. Transactions marked as read-only by the programmer are further optimized,

as they do not maintain read-sets. TinySTM also proposes the use of hierarchical locking to

reduce the costs of read-set validations even further. It uses lock-to-address mapping similar

to TL2’s per-stripe locking scheme. TinySTM outperforms TL2 in all experiments presented

in [43], which were based on the red-black tree and linked-list micro-benchmarks.

Each of the time-based STMs, including TL2, LSA-STM, TinySTM, and SwissTM, can suffer

from high contention on the shared timestamp, as all update transaction update the times-

tamp and all read-only transactions read it. To solve the problem of high contention on the

shared time-base, two techniques have been proposed. One is to use a single or multiple

synchronized physical clocks [93]. The other is to avoid some of the timestamp updates that

are not necessary [69]. For example, transactions that fail to increment the clock using a

compare-and-swap can safely use the old value of the counter as their commit timestamp.

The STM described in [105] is a word-based STM that uses lazy acquire and invisible reads

with the shared timestamp to improve the performance of read-set validations. In contrast

to most other lock-based STMs, it uses Polka contention manager to resolve conflicts among

transactions. Transactions use hash-tables to index their write-sets and, hence, speed-up the

write-set lookups when reading. The read-set extension is also used to extend the read-set

validity, similar to TinySTM and LSA-STM. The STM also uses visible read bits in the ownership

records to support irrevocable transactions, which are transactions that are guaranteed to

commit. The bit enables irrevocable transactions to use visible readers and, thus, win even

read-write conflicts. Transaction irrevocability is used to support transaction priorities, and

provide rather strong progress guarantees to transactions.

TLRW [30] is a recent STM that takes advantage of large-scale single-chip systems, such as

the ones based on Sun’s UltraSPARC T2 CPU, by using read-write locking. It uses efficient

read-write locks, which assign a byte-sized slot to each potential reader and deal with the

overflown readers using a counter. The locks can be of different sizes, to accommodate for

different number of readers, but are typically one or two cache-lines in size. Because it uses

visible reads, TLRW is privatization safe. As all the threads share the same L2-level cache in

116

6.2. Others

UltraSPARC T2, the increase in cache misses which results from the use of visible reads, does

not significantly impact performance. With its fast and simple read and write calls, TLRW

outperforms TL2 on several micro-benchmarks on a system using a single CPU. However, the

performance is significantly impacted on a system with two CPUs, where TLRW does not scale

well.

SkyTM [69] uses semi-visible reads to solve a different problem than TLRW: it increases

overheads of STM reads and writes, thus sacrificing some of the performance with lower

thread counts, to achieve better scalability at high levels of concurrency. SkyTM implements

semi-visible reads with scalable SNZI counters [40], enabling writer transactions to detect

conflicts and signal the readers that read-set validations are necessary. SkyTM is inherently

privatization-safe, due to its use of semi-visible reads, which removes one of the scalability

bottlenecks of traditional invisible-read STMs. The evaluation of SkyTM, based on a hash-table

micro-benchmark, shows that TL2 with scalable shared timestamp management scales better

and outperforms SkyTM even on a system with four UltraSPARC T2 CPUs, which supports

256 hardware threads. When transparent privatization safety is required, however, SkyTM

outperforms TL2, which fails to scale to more than one CPU.

Value-based validation. Unlike the STMs described so far, some STMs use only global meta-

data to detect conflicts among transactions. Such STMs typically use value-based validation.

For example, RingSTM [109] uses a single ring as a shared meta-data, in which committing

transactions store Bloom filters that represent their write-sets. These write-set representations

are used to detect conflicts between committing transactions and transactions that concur-

rently read data being updated. RingSTM is livelock-free and privatization safe by design. The

evaluation shows that it outperforms TL2 on some high-contention micro-benchmarks.

JudoSTM [86] is implemented in the context of a binary rewriting framework, called Judo,

enabling it to fully sandbox the executed code. To improve performance, JudoSTM does not

validate read-sets on each read and, instead, relies on sandboxing to isolate faults. It uses

invisible reads and deferred writes. It also buffers reads to avoid races which can sometimes

occur when a transaction reads the same location multiple times. To commit, each transaction

acquires a versioned lock, performs value-based validation of the read-set and commits its

write-log to memory. A similar, but finer-grained technique is also proposed. Read-only

transactions avoid acquiring the lock, by checking that no transaction committed before and

after commit-time validation. The evaluation based on micro-benchmarks and a small-scale

system with four cores shows that the overheads of JudoSTM are significant, compared to

coarse-grained locking, but that it outperforms RSTM on several workloads.

NOrec [24] uses a similar approach to JudoSTM. It relies on a single versioned lock and per-

forms value-based validation of read-sets. Unlike JudoSTM, it does not sandbox the executed

code, and, instead, transactions validate read-sets on every read to guarantee opacity. The

version, contained in the lock, is used to avoid validations when they are not needed, similarly

117

Chapter 6. Related Work

to the commit counter heuristics. NOrec provides strong semantic guarantees, including

livelock-freedom and privatization safety. The performance evaluation on UltraSPARC T2 sys-

tem shows that NOrec outperforms lazy acquire STM described in [105] on micro-benchmarks,

but that it is slower on more realistic STAMP workloads.

Database transactions. It is important to note that many of the techniques used by STM

were pioneered by database research [48, 118]. However, the characteristics of database and

STM workloads differ significantly, resulting in different designs of the databases and STMs.

Summary. My survey of the STMs from the literature illustrates that there are many possible

designs for STM, targeting various workload types and system configurations. These differ

from SwissTM as they mostly disregard large transactions, support for which is the main focus

of SwissTM. Furthermore, SwissTM is designed to provide good performance across a wide

range of workloads, not targeting just one point in the spectrum of workload characteristics.

Consequently, none of the presented STMs uses the same combination of techniques as

SwissTM: mixed eager-lazy conflict detection and the Two-phase contention manager.

6.2.2 Benchmarks

Several realistic benchmarks other than the ones I used in the presented experiments were

proposed. In the following, I overview several of these benchmark and parallel applications

implemented with TMs.

SPLASH-2 [119] is a suite of highly parallel applications that was designed for comparing

different architectural aspects of shared-memory multi-processor computer systems. In

particular, it has been used as a benchmark for a number of HTM systems [20, 21, 83]. The main

disadvantage of using SPLASH-2 for evaluating TM is the structure of SPLASH-2 programs: in

these programs, threads use fine-grained synchronization during short periods of time and

spend most of the time performing demanding calculations on thread-local data. While these

access patterns result in high performance, they also result in very simple transactions that

mostly access basic data types.

QuakeTM [47] and Atomic Quake [123] implement a server for the multiplayer Quake game

using Intel’s prototype STM compiler and library [85]. They use both coarse- and fine-grained

transaction granularities. The used transactions perform various operations on the large

shared data structure and use nesting, calls to standard libraries, and I/O operations. Therefore,

these benchmarks represent a good test for STM compilers and runtimes, but they also require

STM compiler support. The results presented in the papers demonstrate higher overheads of

using STM than the ones presented in Chapter 5.

WormBench [122] is a synthetic STM benchmark written in C# that simulates the Snake

game. Each thread drives a different snake in the shared game world. The environment, the

118

6.2. Others

characteristics of the snakes, and the ratio of executed operations can be configured to change

the workload characteristics. WormBench does not expose any new realistic workloads itself,

but is, instead, meant to be used to simulate the characteristics of other benchmarks. The

paper shows a configuration that approximates the characteristics of the genome benchmark

from STAMP as an example. The evaluation also shows that transactional WormBench using

Bartok-STM [57] performs worse than the sequential code even when using 16 threads.

Similarly to Atomic Quake and QuakeTM, SynQuake [73] is based on the Quake game. It is

a benchmark that models the core data structures and operations of the Quake server and

includes a synthetic workload generator to automatically execute player actions. SynQuake

is implemented both using state-of-the-art locking techniques and an STM system called

libTM [72]. It is integrated with libTM rather tightly, and is, therefore, not easy to port to other

STMs. The evaluation shows that STM scales better than state-of-the-art locking implementa-

tion and outperforms it with eight threads by more than 30% on average. This is mostly due to

the finer-grained synchronization STM uses, which results in less false sharing.

RMS-TM [68] is a set of applications from recognition, mining, and synthesis (RMS) domain,

which are argued to represent the future TM workloads. The applications are implemented

both using locks and TM, enabling the comparison of locking and TM performance. Similarly

to QuakeTM and Atomic Quake, the transactions execute I/O operations, use nesting, and

invoke library calls, therefore extensively testing the TM compiler and system support for

executing transactions of various characteristics. RMS-TM was implemented using the Intel’s

prototype STM compiler and library [85] and two HTMs [20, 116]. The evaluation demon-

strates that the benchmarks scale well up to eight threads, exhibiting better scalability than

the STAMP benchmarks with all three used TM systems.

6.2.3 Compiler optimizations

As was shown in [121] and in the previous chapter, using an STM compiler introduces certain

over-instrumentation overheads. Not surprisingly, several compiler optimizations that target

these and other STM overheads were proposed.

Bartok-STM [57] proposes a number of extensions to the STM compiler to reduce various

overheads. For example, it decomposes library’s transactional interface and extends the

existing compiler optimizations to take advantage of the decomposed interface when possible.

Also, it relies on inter-procedural analysis to eliminate STM calls to objects allocated inside the

current transaction. The analysis is complemented with runtime log filtering. The compiler

also tries to avoid read to write upgrades, that occur when object is accessed first for reading

and then for writing. In those cases, it opens the object for writing immediately at read

time, eliminating all costs of the read. Other optimizations include moving the common

calls for opening objects from invoked function to the caller and further decomposing the

log management functions. The presented evaluation confirms that, although individual

119

Chapter 6. Related Work

optimizations rarely result in great improvements by themselves, the effects add up, resulting

in noticeably better performance when they are combined.

The Java STM compiler described in [3] uses similar STM interface decomposition as Bartok-

STM to leverage the existing compiler optimizations. It also eliminates STM calls for reads of

constant data, such as fields declared as final in Java, and STM calls for reads and writes to

data allocated inside the current transaction. It optimizes read-after-write access patterns to

the same object by proactively acquiring the object for writing at the time of the read, similarly

to Bartok-STM. Furthermore, its just-in-time compiler inlines fast-paths of STM calls in the

generated native code to avoid costs of function calls. Similarly to the results presented for

Bartok-STM, the evaluation shows that the proposed optimizations significantly reduce the

overheads with a single thread, producing the code that is sometimes only 16% slower with

short transactions than coarse-grained locking.

The Intel’s C/C++ STM compiler described in [85], uses optimizations that aim to avoid

unnecessary read to write upgrades, similarly to what Bartok-STM compiler and Java compiler

from [3] do. It extends this approach to also optimize write-after-write and read-after-read

accesses to the same locations. It, furthermore, supports explicit annotations of functions and

code blocks that do not require STM instrumentation to improve their performance. I used

such annotations to optimize STAMP, where indicated by the original STAMP implementation.

The compiler described in [94] partitions program data based on the runtime program char-

acteristics to enable fine-tuning of STM algorithm for different partitions. For example, it

uses no concurrency control for read-only data partitions, a single lock for partitions that are

rarely updated, and the general-purpose STM algorithm for partitions that have more general

read-write access patterns. The presented evaluation, based on a subset of STAMP, shows that

this approach can sometimes indeed improve performance of the resulting programs.

The compiler from [39] proposes several compiler optimizations in the context of an object-

based STM. It, for example, uses data-flow analysis to detect many cases of read-after-write

and write-after-write access patterns in the same transaction, even if they are not close to

each other in the source code. This work proposes optimizations both for the locking STMs,

as typically proposed by others, but also for obstruction-free STMs.

The compiler used in the previous chapter uses some of the optimizations that were mentioned.

In particular, it uses all optimizations from [85], as well as some optimizations proposed in [38].

6.2.4 Privatization

The evaluation from the previous chapter shows that transparently supporting privatization for

STMs that use invisible readers and per-location meta-data incurs high overheads and impairs

scalability. To reduce these overheads, the use of partially visible readers is proposed in [78].

This approach relies on the shared time-base, used for optimizing the read-set validations.

On every read, transactions store their current timestamp into the orec of the location they

120

6.2. Others

are reading. The store can be omitted if the meta-data already contains a higher timestamp,

reducing the cost of the reads compared to fully visible readers. The writers need to execute

the privatization barrier after they commit only when one of the locations they updated is

actually being accessed by a concurrent reader, which is indicated by the timestamp stored in

its orec. This reduces the cost of the transparent privatization. The evaluation shows relatively

high overheads: up to 50% with 32 threads when compared to TL2 that is not privatization

safe.

It is worth repeating that some STM designs are, inherently, privatization safe. STMs that

use visible reads, such as TLRW [30], or semi-visible reads, such as SkyTM [69], do not suffer

from this problem. Read calls of these STMs, however, are typically expensive, as they update

shared meta-data. Also, STMs that rely only on centralized meta-data, such as RingSTM [109],

JudoSTM [86], and NOrec [24], are typically privatization safe. These STMs, however, are best

suited to workloads consisting of short transactions, as their scalability can be impacted by

transactions with long commits.

6.2.5 Relaxed transactions

Several relaxed models have also been proposed to improve STM performance. These are

typically aimed at more skilled programmers, as they are more difficult to use than traditional

STMs.

Early release [46, 63] allows programmers to manually remove objects from transactions’ read-

and write-sets. Removing the objects from read-sets reduces validation costs and can also help

avoid unnecessary conflicts in some cases. It is particularly appealing when implementing

data structures such as linked-list, where the updates to a node only depend on several

neighboring nodes. In these data structures, a traditional transaction contains in its read-set

all the nodes preceding the node being updated. With early release, the validation costs and

conflict probability are reduced, which improves performance overall. Using the early release,

however, can be difficult as programmers can easily write incorrect code if they are not careful,

and is thus better suited to experts than average programmers.

Open nesting [84] supports transaction nesting where inner transactions can commit inde-

pendently from the enclosing transaction. Open nesting introduces abstract locks to detect

conflicts at the semantical level, instead of the level of memory accesses. For example, two

transactions that, during their execution, insert different elements in a set do not conflict at

the semantical level, but they might conflict at the level of memory locations they access. This

happens when, for example, the two elements map to the same bucket in the hash-table set

implementation. With open nesting, inner transactions are used to insert the elements into

the set and they are allowed to commit, whereas the enclosing transactions only access the

abstract locks corresponding to the inserted elements. Consequently, the two top-level trans-

actions do not conflict as long as they access different abstract locks. This can significantly

improve the scalability of programs by allowing more inter-leavings between threads. The

121

Chapter 6. Related Work

evaluation presented in [84], based on the set micro-benchmarks, shows that open nesting

can indeed improve scalability compared to closed and flat nesting.

Transactional boosting [59] has a similar goal to open nesting: it uses lock-based implementa-

tions of common data structures inside transactions to improve performance of transactions

that access these objects. Similarly to open nesting, transactional boosting relies on abstract

locks to detect conflicts at the semantical level between transactions that access the same

lock-based objects. To rollback the updates of these objects when aborting, transactions

log the performed operations and execute compensating actions on aborts. A significant

advantage of transactional boosting over open nesting is that the operations on the low-level

data structures are typically more efficient as they use locking instead of transactions. The

presented evaluation shows that boosting can indeed improve STM performance: on a system

with eight threads it speeds-up TL2 on vacation from STAMP by around 2x, and on kmeans by

between 1.5x and 2x.

Elastic transactions [44] are similar to early release in that they only require a subset of accesses

performed by transaction to be serialized. Under certain circumstances, elastic transactions

can simply discard part of their read-set upon conflict and continue with the execution.

Elastic transactions are well suited to linear data structures, such as linked-lists, hash-tables,

and skip-lists, but they were also successfully applied to red-black trees. In general, elastic

transactions are rather difficult to apply to general data structures, and are, thus, better suited

to concurrency experts. The evaluation shows that elastic transactions improve performance

of STM by 36% on average on the micro-benchmarks.

I do not use any form of relaxed transactions with SwissTM, as I focus on performance of

more traditional STMs. Techniques such as transactional boosting and early release would

be straightforward to implement in the context of SwissTM, and they might help improve

performance on some workloads.

6.2.6 Other techniques

Several STMs propose switching between different algorithms at runtime to adapt to workload

characteristics. As mentioned, ASTM [76] adapts to workload characteristics, by maintaining

history of access patterns of previous transactions and switching between eager and lazy

object acquire. The STM described in [85] supports switching between invisible readers,

visible readers, and use of a single lock on per-transaction basis. To do so, it employs a level

of indirection when invoking the STM calls, enabling switching between various schemes at

runtime. The contention manager keeps switching to progressively less optimistic techniques

after a transaction repeatedly aborts to increase its chance of success. A similar, lightweight

adaptivity approach based on tables of function pointers, is described in [104]. It enables

several interesting optimizations, where transactions can start as read-only, which eliminates

read-after-write checks for example, and can transition into read-write transactions at the

time of the first write by changing the function pointer table. The paper describes another

122

6.2. Others

interesting usage of adaptivity, where transaction switch to progressively less optimistic modes

upon aborts, but using many more STM variants than in [85]. Despite several proposals,

adaptively switching between different STM variants based on the workload characteristics

has yet to prove it can improve performance of STM by any significant margin. Hence, it is not

used in SwissTM for anything more than for adaptively switching between the two contention

management phases.

DASTM [90] extends TL2 algorithm to implement STM that ensures conflict serializability [48]

instead of serializability. With DASTM, when a transaction detects a conflict, it, instead of

aborting, acquires a dependency on the conflicting transactions. The dependencies restrict

the commit order of transactions, and in cases of read-write conflicts, require forwarding of

uncommitted data between transactions. Experimental results show that DASTM can outper-

form TL2 by up to 4.8x on high contention workloads, such as a shared counter benchmark

and several high contention STAMP workloads.

Several papers propose transaction scheduling to proactively react to possible conflicts be-

tween transactions, based on the history of past conflicts. The main difference between

the scheduler and the contention manager is that the former decides whether to execute a

transaction or wait before the transaction starts, and the latter decides how to resolve the

conflict when it already occurs. A scheduler called Shrink is presented in [35].1 It uses the

access patterns of the previous transactions from the same thread to predict the locations

which the future transaction will access, and postpones transaction execution if there is too

much contention on that data. It improves performance, but typically only when the system is

overloaded. Similarly, a scheduler described in [120], detects when contention is too high and

serializes threads by storing them in a queue. In steal-on-abort approach for transactional

scheduling [9], each aborted transaction gets enqueued behind the transaction that caused

the abort, thus eliminating repeated aborts due to the same conflict. CAR-STM [31] proposes a

similar approach, but it extends it to enable users to assign per-transaction collision probabili-

ties used to schedule the transaction prior to abort. The described scheduling approaches can

help improve the performance of SwissTM in certain cases, and, in fact, Shrink was integrated

with SwissTM, but transactional scheduling is largely orthogonal to the main focus of this

thesis.

A transaction-aware, kernel-level scheduler, proposed in [74], enables lightweight communi-

cation between the kernel scheduler and STM through a common memory region, with the

goal of reducing repeated aborts. For example, it enables limited time-slice extensions for

threads that are currently executing a transaction, to prevent internal STM locks from being

held by a transaction that is blocked by the operating system.

Parallel nesting of transactions, where nested transactions execute concurrently, has also

been proposed as a way to better utilize increasing numbers of threads supported by modern

processors. NePaLTM [117] integrates nested parallel transactions with OpenMP, but allows

1I was involved in development of Shrink.

123

Chapter 6. Related Work

only limited interaction between nested transactions. For example, it serializes sibling trans-

actions that might access the same data. A parallel-nested STM prototype described in [12]2

implements efficient ancestor queries in a manner similar to what was proposed in [7]. It

is argued that efficient ancestor queries are important to support deep nesting hierarchies

that are likely to occur in complex programs. An evaluation of the prototype also shows that

parallel nesting makes sense in certain scenarios, but does not evaluate overheads of imple-

menting it in detail. NesTM [11] is another STM that supports parallel nested transactions. It

demonstrates that the overheads of supporting parallel nesting can be reasonably low, and

that program performance can be improved by using parallel nesting in certain scenarios.

Whereas parallel nesting seems promising, the current techniques have only limited positive

impact on performance.

2I was involved in development of this parallel nesting STM.

124

7 Conclusions

In this thesis, I described algorithmic and implementation techniques for software trans-

actional memory that efficiently support workloads consisting of large transactions. Such

workloads are of great importance if STM is to support large-scale applications, such as video

games, application and web servers. Surprisingly, support for large transactions has mostly

been neglected by previous work, as demonstrated in Chapter 3.

In Chapter 4, I proposed SwissTM, an effective mix of design choices and implementation

techniques, that achieves good performance on workloads with large transactions, while, at

the same time, not compromising on the performance with smaller transactions. SwissTM

uses the mixed eager-lazy conflict detection to detect write-write conflicts among transactions

eagerly and read-write conflicts lazily, and the Two-phase contention manager to incur low

overheads on short and read-only transactions, while still providing effective contention man-

ager for longer ones. Whereas I do not claim that SwissTM is the best choice for all imaginable

workloads, the extensive evaluation I presented shows that the proposed techniques are in-

deed effective in many cases: (1) SwissTM outperforms state-of-the-art STMs on large-scale

workloads of STMBench7 and (2) it either outperforms them, sometimes significantly, or

matches their performance on a wide range of workloads with smaller transactions. Further-

more, I “dissected” the design of SwissTM by evaluating performance impact of each of the

design choices I made. This analysis enables other STM designers to understand the individual

impact of these choices under different conditions, allowing them to reuse the techniques that

best fit their own STM designs.

I demonstrated that STM is indeed a viable choice for writing parallel applications today by

presenting an extensive comparison of SwissTM performance to performance of sequential

code in Chapter 5. The goal of the evaluation is to understand whether STM-based code

can outperform sequential code, and if it can, how many CPUs it requires to do so. After all,

writing parallel code using STM requires only slightly more effort than writing the equivalent

sequential code, and if the performance is better, the programmers might be tempted to

use STM even though it does not match the performance of more involved synchronization

techniques. The results show that the performance of STM is much better than previously

125

Chapter 7. Conclusions

claimed: in most cases, parallel code based on SwissTM indeed overcomes high overheads

of book-keeping in software and outperforms sequential code, often with only a handful of

threads.

The evaluation also considers various levels of support for privatization idiom and compiler

code instrumentation, thus improving the understanding of their respective costs and making

it possible to weigh their costs against the benefits. The results lead me to conclude that

existing techniques for ensuring privatization safety are too costly, in particular because they

do not scale well. On the other hand, the overheads of over-instrumentation introduced

by STM compilers are not as high and, more importantly, they remain roughly the same at

different thread counts. Furthermore, the benefits of using an STM compiler seem much

higher than the benefits of providing transparent privatization support. Taking all this into

account, I conclude that the most promising STM variant uses an STM compiler to instrument

programs, but requires programmers to explicitly mark privatizing transactions. Such an STM

variant delivers good performance while exposing relatively clean programming abstraction,

and, thus, hits a “sweet spot” for most programmers.

In conclusion, in this thesis I proposed SwissTM, a software transactional memory that effec-

tively supports workloads that use large-scale transactions, alongside of smaller-scale ones,

and demonstrated that software transactional memory can indeed be used in practice to write

parallel code that performs well on a range of workloads.

Future work. Whereas the performance of STM is often good, it is certainly not always

impressive. Consequently, it has to be improved further for STM to be more widely adopted.

Along with the new techniques that will boost the performance, we will need pragmatic models

and tools for predicting the performance of STM-based programs. Such tools are needed to

enable programmers predict performance of STM-based programs early in the development

cycle thus helping them decide whether to use STM for a particular programming task or not.

In the future, we are very likely to see increased interest in algorithms and data structures that

rely on very short transactions, possibly much shorter than transactions in the currently used

micro-benchmarks. Interest in such algorithms will be stirred by the upcoming best-effort

HTMs, in particular by Intel’s TSX [91]. Such HTMs typically support only short transac-

tions, and new concurrent algorithms are needed to fully utilize them. I have already started

investigating support for short software transactions: by specializing STM interface, I was

able to implement efficient short transactions at the cost of making the interface more awk-

ward to use [36]. The idea of short, specialized transactions in software is certainly worth

exploring further: such transactions enable us to develop algorithms in anticipation of HTM,

but benefit from them immediately, even before HTM is available. Interesting directions for

future work include exploration of new forms of STM specialization and integration of the

specialized transactions with compilers. Such integration would improve the performance

126

of the compiler-generated code, without forcing programmers to use awkward specialized

interfaces.

The best-effort nature of forthcoming HTMs will also make hybrid TM systems increasingly

more important. Building STMs that perform well on their own as well as when they are

integrated with an HTM is a challenging task, as the characteristics of the HTM significantly

impact the design of the STM. For example, using a simple single-lock implementation of

STM might be justified with hardware that supports transactions of at least moderate sizes.

However, with the first generations of HTMs, more sophisticated STM designs will be needed

to ensure progress and good performance in face of many transactions that hardware does

not support.

Looking at the broader picture, researchers will face many challenges in trying to fully exploit

future large-scale systems that support hundreds or even thousands of hardware threads.

To support scaling of that magnitude, we will have to further improve our understanding

of how to structure parallel applications and which programming constructs to use. Novel

algorithms and data structures will be the key in achieving this goal: as the number of hardware

threads keeps increasing, new scalability bottlenecks will get exposed in the data structures

and algorithms commonly used today, making them inadequate for future systems. In fact,

some, if not most, data structures commonly used nowadays are a better fit for sequential

than for parallel programs. To fully exploit the future large-scale parallel systems we will have

to replace them with fundamentally different data structures instead of simply implementing

them using different techniques, such as transactional memory. For instance, queues and

stacks are not very scalable as they impose linear ordering between the stored data elements.

On the other hand, pools can often be used in their place, and scalable implementations

of pools exist [6, 13]. Similarly, a fetch-and-increment counter that is used only to track

whether a certain value is equal to zero or not can be replaced by a more scalable SNZI data

structure [40]. These two examples represent the sort of radical changes we will see in the

design of future, highly-scalable data structures: relaxed, non-deterministic data structures

will replace the, today predominant, deterministic data structures that were optimized for

execution on obsolete sequential systems. Transactional memory is likely to play an important

role in building these new concurrent algorithms, as it greatly simplifies their design and

implementation.

127

Bibliography

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory and au-

tomatic mutual exclusion. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’08, pages 63–74, 2008.

[2] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha. Unlocking concurrency. ACM Queue,

4:24–33, December 2006.

[3] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeisman.

Compiler and runtime support for efficient software transactional memory. In Pro-

ceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’06, pages 26–37, 2006.

[4] Advanced Micro Devices, Inc. Advanced synchronization facility—proposed architec-

tural specification 2.1, 2009.

[5] Y. Afek, U. Drepper, P. Felber, C. Fetzer, V. Gramoli, M. Hohmuth, E. Riviere, P. Sten-

strom, O. Unsal, W. M. Moreira, D. Harmanci, P. Marlier, S. Diestelhorst, M. Pohlack,

A. Cristal, I. Hur, A. Dragojević, R. Guerraoui, M. Kapalka, S. Tomic, G. Korland, N. Shavit,

M. Nowack, and T. Riegel. The Velox transactional memory stack. IEEE Micro, 30:76–87,

September 2010.

[6] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable rendezvousing. In Proceedings

of the 25th International Conference on Distributed computing, DISC’11, pages 16–31,

2011.

[7] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism in transactional memory. In

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’08, pages 163–174, 2008.

[8] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham, M. Lujan, and K. Jarvis. Lee-TM: A non-

trivial benchmark suite for transactional memory. In Proceedings of the 8th International

Conference on Algorithms and Architectures for Parallel Processing, ICA3PP ’08, pages

196–207, 2008.

[9] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Watson. Steal-on-abort:

Improving transactional memory performance through dynamic transaction reordering.

129

Bibliography

In Proceedings of the 4th International Conference on High Performance Embedded

Architectures and Compilers, HiPEAC ’09, pages 4–18, 2009.

[10] The atomic_ops project. http://www.hpl.hp.com/research/linux/atomic_ops.

[11] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating

nested parallel transactions in software transactional memory. In Proceedings of the

22nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages

253–262, 2010.

[12] J. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and M. Kapalka. Leveraging parallel

nesting in transactional memory. In Proceedings of the 15th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’10, pages 91–100, 2010.

[13] D. Basin, R. Fan, I. Keidar, O. Kiselov, and D. Perelman. CAFÉ: scalable task pools with

adjustable fairness and contention. In Proceedings of the 25th International Conference

on Distributed Computing, DISC’11, pages 475–488, 2011.

[14] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI

SQL isolation levels. In Proceedings of the 1995 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’95, pages 1–10, 1995.

[15] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-

tions of the ACM, 13:422–426, July 1970.

[16] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis for memory transactions.

Science of Computer Programming, 63:172–185, December 2006.

[17] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional

applications for multi-processing. In Proceedings of the 2008 IEEE International Sympo-

sium on Workload Characterization, IISWC ’08, pages 35–46, 2008.

[18] M. J. Carey, D. J. DeWitt, C. Kant, and J. F. Naughton. A status report on the OO7 OODBMS

benchmarking effort. In Proceedings of the 9th Annual ACM SIGPLAN Conference on

Object-oriented Programming Systems, Languages, and Applications, OOPSLA ’94, pages

414–426, 1994.

[19] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee.

Software transactional memory: Why is it only a research toy? ACM Queue, 6:46–58,

September 2008.

[20] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek, C. Kozyrakis, and

K. Olukotun. A scalable, non-blocking approach to transactional memory. In Proceed-

ings of the 2007 IEEE 13th International Symposium on High Performance Computer

Architecture, HPCA ’07, pages 97–108, 2007.

130

http://www.hpl.hp.com/research/linux/atomic_ops

Bibliography

[21] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. Van Biesbrouck, G. Pokam,

B. Calder, and O. Colavin. Unbounded page-based transactional memory. In Proceed-

ings of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’06, pages 347–358, 2006.

[22] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F. Spear.

Hybrid NOrec: a case study in the effectiveness of best effort hardware transactional

memory. In Proceedings of the 16th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’11, pages 39–52, 2011.

[23] L. Dalessandro, V. J. Marathe, M. F. Spear, and M. L. Scott. Capabilities and limitations

of library-based software transactional memory in C++. In the 2nd ACM SIGPLAN

Workshop on Transactional Computing, 2007.

[24] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM by abolishing

ownership records. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’10, pages 67–78, 2010.

[25] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid trans-

actional memory. In Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’06, pages 336–346,

2006.

[26] D. Dice, Y. Lev, V. J. Marathe, M. Moir, D. Nussbaum, and M. Olszewski. Simplifying

concurrent algorithms by exploiting hardware transactional memory. In Proceedings

of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10,

pages 325–334, 2010.

[27] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial hard-

ware transactional memory implementation. In Proceedings of the 14th International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’09, pages 157–168, 2009.

[28] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proceedings of the 20th

International Symposium on Distributed Computing, DISC ’06, pages 194–208, 2006.

[29] D. Dice and N. Shavit. What really makes transactions faster? In the 1st ACM SIGPLAN

Workshop on Transactional Computing, Transact ’06, 2006.

[30] D. Dice and N. Shavit. TLRW: return of the read-write lock. In Proceedings of the

22nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages

284–293, 2010.

[31] S. Dolev, D. Hendler, and A. Suissa. CAR-STM: scheduling-based collision avoidance

and resolution for software transactional memory. In Proceedings of the 27th Annual

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’08,

pages 125–134, 2008.

131

Bibliography

[32] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM can be more than a

research toy. Technical Report LPD-REPORT-2009-003, EPFL, 2009.

[33] A. Dragojević and R. Guerraoui. Predicting the scalability of an STM: A pragmatic

approach. In the 5th ACM SIGPLAN Workshop on Transactional Computing, TRANSACT

’10, 2010.

[34] A. Dragojević and R. Guerraoui. A pragmatic approach for predicting scalability of

parallel applications, 2012. EPFL Technical report EPFL-REPORT-174869.

[35] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh. Preventing versus curing: avoiding

conflicts in transactional memories. In Proceedings of the 28th Annual ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing, PODC ’09, pages 7–16,

2009.

[36] A. Dragojević and T. Harris. STM in the small: Trading generality for performance in

software transactional memory. In Proceedings of the 7th ACM SIGOPS/EuroSys European

Conference on Computer Systems, EuroSys ’12, pages –, 2012.

[37] A. Dragojević, M. Herlihy, Y. Lev, and M. Moir. On the power of hardware transactional

memory to simplify memory management. In Proceedings of the 30th Annual ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’11, pages

99–108, 2011.

[38] A. Dragojević, Y. Ni, and A.-R. Adl-Tabatabai. Optimizing transactions for captured

memory. In Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’09, pages 214–222, 2009.

[39] G. Eddon and M. Herlihy. Language support and compiler optimizations for STM and

transactional boosting. In Distributed Computing and Internet Technology, volume 4882

of Lecture Notes in Computer Science, pages 209–224. 2007.

[40] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: scalable nonzero indicators. In Proceed-

ings of the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, PODC ’07, pages 13–22, 2007.

[41] R. Ennals. Software Transactional Memory Should Not Be Obstruction-Free. Technical

Report IRC-TR-06-052, Intel Research Cambridge Tech Report, 2006.

[42] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency

and predicate locks in a database system. Communications of the ACM, 19:624–633,

November 1976.

[43] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-based soft-

ware transactional memory. In Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’08, pages 237–246, 2008.

132

Bibliography

[44] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In Proceedings of the 23rd

international Conference on Distributed computing, DISC’09, pages 93–107, 2009.

[45] P. Felber, T. Riegel, C. Fetzer, M. Süsskraut, U. Müller, and H. Sturzrehm. Transactifying

applications using an open compiler framework. In the 2nd ACM SIGPLAN Workshop

on Transactional Computing, Transact ’07, 2007.

[46] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer Labora-

tory, 2003.

[47] V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal, E. Ayguade, T. Harris, and M. Valero.

Quaketm: parallelizing a complex sequential application using transactional memory.

In Proceedings of the 23rd International Conference on Supercomputing, ICS ’09, pages

126–135, 2009.

[48] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., 1st edition, 1992.

[49] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention Management. In

Proceedings of the 19th International Symposium on Distributed Computing, DISC ’05,

pages 303–323, 2005.

[50] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional contention

managers. In Proceedings of the 24th Annual ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, PODC ’05, pages 258–264, 2005.

[51] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Pro-

ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’08, pages 175–184, 2008.

[52] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: a benchmark for software transac-

tional memory. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on

Computer Systems, EuroSys ’07, pages 315–324, 2007.

[53] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K. Prabhu,

H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coherence and con-

sistency. In Proceedings of the 31st Annual International Symposium on Computer

Architecture, ISCA ’04, pages 102–, 2004.

[54] T. Harris and K. Fraser. Language support for lightweight transactions. In Proceedings

of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programing, Systems,

Languages, and Applications, OOPSLA ’03, pages 388–402, 2003.

[55] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan & Claypool, 2nd

edition, 2010.

133

Bibliography

[56] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions.

In Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’05, pages 48–60, 2005.

[57] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions. In

Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’06, pages 14–25, 2006.

[58] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-swap oper-

ation. In Proceedings of the 16th International Conference on Distributed Computing,

DISC ’02, pages 265–279, 2002.

[59] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-

concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’08, pages 207–216, 2008.

[60] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking memory management

support for dynamic-sized data structures. ACM Transactions on Computer Systems,

23:146–196, May 2005.

[61] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-

ended queues as an example. In Proceedings of the 23rd International Conference on

Distributed Computing Systems, ICDCS ’03, pages 522–529, 2003.

[62] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing software

transactional memory. In Proceedings of the 21st Annual ACM SIGPLAN Conference on

Object-oriented Programming Systems, Languages, and Applications, OOPSLA ’06, pages

253–262, 2006.

[63] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory

for dynamic-sized data structures. In Proceedings of the 22nd Annual ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing, PODC ’03, pages 92–101,

2003.

[64] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-

free data structures. In Proceedings of the 20th Annual International Symposium on

Computer Architecture, ISCA ’93, pages 289–300, 1993.

[65] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent

objects. ACM Transactions on Programmming Languages and Systems, 12:463–492, July

1990.

[66] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg. McRT-Malloc: a scalable

transactional memory allocator. In Proceedings of the 5th International Symposium on

Memory Management, ISMM ’06, pages 74–83, 2006.

134

Bibliography

[67] Intel Corporation. Intel transactional memory compiler and runtime application binary

interface, 2008. Revision 1.0.1.

[68] G. Kestor, S. Stipic, O. S. Unsal, A. Cristal, and M. Valero. RMS-TM: A transactional

memory benchmark for recognition, mining and synthesis applications. In the 4th ACM

SIGPLAN Workshop on Transactional Computing, Transact ’09, 2009.

[69] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum, and M. Olszewski. Anatomy

of a scalable software transactional memory. In the 4th ACM SIGPLAN Workshop on

Transactional Computing, TRANSACT ’09, 2009.

[70] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transactional memory. In the 2nd

ACM SIGPLAN Workshop on Transactional Computing, TRANSACT ’07, 2007.

[71] LPD-EPFL. Transactions@epfl. http://lpd.epfl.ch/transactions/.

[72] D. Lupei, A. Czajkowski, C. Segulja, M. Stumm, and C. Amza. Automatic adaptation of

transactional memory state management to application conflict patterns. In the 13th

Workshop on Interaction Between Compilers and Computer Architectures, Interact ’09,

2009.

[73] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick, and C. Amza. Transactional

memory support for scalable and transparent parallelization of multiplayer games. In

Proceedings of the 5th ACM SIGOPS/EuroSys European Conference on Computer Systems,

EuroSys ’10, pages 41–54, 2010.

[74] W. Maldonado, P. Marlier, P. Felber, A. Suissa, D. Hendler, A. Fedorova, J. L. Lawall, and

G. Muller. Scheduling support for transactional memory contention management. In

Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’10, pages 79–90, 2010.

[75] V. J. Marathe and M. Moir. Toward high performance nonblocking software transactional

memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice

of parallel programming, PPoPP ’08, pages 227–236, 2008.

[76] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive software transactional memory.

In Proceedings of the 19th International Symposium on Distributed Computing, DISC

’05, pages 354–368, 2005.

[77] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and

M. L. Scott. Lowering the overhead of software transactional memory. In the 1st ACM

SIGPLAN Workshop on Transactional Computing, Transact ’06, 2006.

[78] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable techniques for transparent priva-

tization in software transactional memory. In Proceedings of the 37th International

Conference on Parallel Processing, ICPP ’08, pages 67–74, 2008.

135

http://lpd.epfl.ch/transactions/

Bibliography

[79] M. Martin, C. Blundell, and E. Lewis. Subtleties of transactional memory atomicity

semantics. IEEE Computer Architecture Letters, 5:17–20, July 2006.

[80] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE

Transactions on Parallel and Distributed Systems, 15:491–504, June 2004.

[81] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper, C. Kozyrakis,

and K. Olukotun. An effective hybrid transactional memory system with strong isolation

guarantees. In Proceedings of the 34th Annual International Symposium on Computer

Architecture, ISCA ’07, pages 69–80, 2007.

[82] M. Moir. Practical implementations of non-blocking synchronization primitives. In

Proceedings of the 16th Annual ACM SIGACT-SIGOPS Symposium on Principles of Dis-

tributed Computing, PODC ’97, pages 219–228, 1997.

[83] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM: Log-based

transactional memory. In Proceedings of the 12th International Symposium on High-

Performance Computer Architecture, HPCA ’06, pages 254–265, 2006.

[84] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss, B. Saha,

and T. Shpeisman. Open nesting in software transactional memory. In Proceedings of

the 12th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming,

PPoPP ’07, pages 68–78, 2007.

[85] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie, R. Geva, S. Kozhukow,

R. Narayanaswamy, J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian. Design and imple-

mentation of transactional constructs for C/C++. In Proceedings of the 23rd Annual

ACM SIGPLAN Conference on Object-oriented Programming Systems Languages, and

Applications, OOPSLA ’08, pages 195–212, 2008.

[86] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A dynamic binary-rewriting approach

to software transactional memory. In Proceedings of the 16th International Conference

on Parallel Architecture and Compilation Techniques, PACT ’07, pages 365–375, 2007.

[87] V. Pankratius and A.-R. Adl-Tabatabai. A study of transactional memory vs. locks in

practice. In Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’11, pages 43–52, 2011.

[88] C. H. Papadimitriou. The serializability of concurrent database updates. Journal of the

ACM, 26:631–653, October 1979.

[89] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In Proceedings of

the 32nd Annual International Symposium on Computer Architecture, ISCA ’05, pages

494–505, 2005.

[90] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Committing conflicting transactions

in an STM. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’09, pages 163–172, 2009.

136

Bibliography

[91] J. Reinders. Transactional synchronization in Haswell, Feb. 2012. http://software.intel.

com/en-us/blogs.

[92] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager validation. In

Proceedings of the 20th International Symposium on Distributed Computing, DISC ’06,

pages 284–298, 2006.

[93] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory with scalable time

bases. In Proceedings of the 19th ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’07, pages 221–228, 2007.

[94] T. Riegel, C. Fetzer, and P. Felber. Automatic data partitioning in software transactional

memories. In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’08, pages 152–159, 2008.

[95] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing hybrid transactional

memory: the importance of nonspeculative operations. In Proceedings of the 23rd ACM

Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 53–64, 2011.

[96] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, B. Aditya, and E. Witchel.

TxLinux: using and managing hardware transactional memory in an operating system.

In Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems Principles,

SOSP ’07, pages 87–102, 2007.

[97] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional programming actually

easier? In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’10, pages 47–56, 2010.

[98] F. Rubin. The Lee path connection algorithm. IEEE Transactions on Computers, 23:907–

914, September 1974.

[99] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-STM: a

high performance software transactional memory system for a multi-core runtime. In

Proceedings of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’06, pages 187–197, 2006.

[100] W. N. Scherer, III and M. L. Scott. Advanced contention management for dynamic

software transactional memory. In Proceedings of the 24th Annual ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, PODC ’05, pages 240–248, 2005.

[101] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the 14th

Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC

’95, pages 204–213, 1995.

[102] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. L. Hudson,

K. F. Moore, and B. Saha. Enforcing isolation and ordering in STM. In Proceedings of the

2007 ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’07, pages 78–88, 2007.

137

http://software.intel.com/en-us/blogs
http://software.intel.com/en-us/blogs

Bibliography

[103] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. Wiley Publishing,

8th edition, 2008.

[104] M. F. Spear. Lightweight, robust adaptivity for software transactional memory. In

Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA ’10, pages 273–283, 2010.

[105] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A comprehensive strategy for

contention management in software transactional memory. In Proceedings of the 14th

ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, PPoPP

’09, pages 141–150, 2009.

[106] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization techniques for

software transactional memory. In Proceedings of the 26th Annual ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, PODC ’07, pages 338–339, 2007.

[107] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization techniques for

software transactional memory, 2007. Department of Computer Science, University of

Rochester Technical Report 915.

[108] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict detection and

validation strategies for softwaretransactional memory. In Proceedings of the 20th

International Symposium on Distributed Computing, DISC ’06, pages 179–193, 2006.

[109] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable transactions with a

single atomic instruction. In Proceedings of the 20th ACM Symposium on Parallelism in

Algorithms and Architectures, SPAA ’08, pages 275–284, 2008.

[110] Standard Performance Evaluation Corporation. Specjbb2000 benchmark, 2000.

[111] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas. A lock-free algorithm

for concurrent bags. In Proceedings of the 23rd ACM Symposium on Parallelism in

Algorithms and Architectures, SPAA ’11, pages 335–344, 2011.

[112] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software.

Dr. Dobb’s Journal, 30(3):202–210, Dec. 2004.

[113] H. Sutter. Welcome to the jungle. Dec. 2011.

[114] T. Sweeney. The next mainstream programming language: a game developer’s perspec-

tive. Invited talk at the 31st Annua ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL’06, 2006.

[115] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and C. Wang. NZTM: nonblocking zero-

indirection transactional memory. In Proceedings of the 21st ACM Symposium on Paral-

lelism in Algorithms and Architectures, SPAA ’09, pages 204–213, 2009.

138

Bibliography

[116] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris, and

M. Valero. EazyHTM: eager-lazy hardware transactional memory. In Proceedings of

the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42,

pages 145–155, 2009.

[117] H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian, and R. Narayanaswamy.

NePaLTM: Design and implementation of nested parallelism for transactional memory

systems. In Proceedings of the 23rd European Conference on Object-Oriented Program-

ming, ECOOP ’09, pages 123–147, 2009.

[118] G. Weikum and G. Vossen. Transactional information systems: theory, algorithms, and

the practice of concurrency control and recovery. Morgan Kaufmann Publishers Inc.,

2001.

[119] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:

characterization and methodological considerations. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, ISCA ’95, pages 24–36, 1995.

[120] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for transactional memory

systems. In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’08, pages 169–178, 2008.

[121] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S. Lee. Kicking the

tires of software transactional memory: why the going gets tough. In Proceedings of the

20th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’08, pages

265–274, 2008.

[122] F. Zyulkyarov, A. Cristal, S. Cvijic, E. Ayguade, M. Valero, O. Unsal, and T. Harris. Worm-

Bench: a configurable workload for evaluating transactional memory systems. In

Proceedings of the 9th Workshop on MEmory Performance: DEaling with Applications,

Systems and Architecture, MEDEA ’08, pages 61–68, 2008.

[123] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Harris, and M. Valero.

Atomic quake: using transactional memory in an interactive multiplayer game server. In

Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’09, pages 25–34, 2009.

139

Aleksandar Dragojević
Serbian nationality, born 7th October 1980, married
Phone: +41 78 662 92 17
Email: aleksandar.dragojevic@gmail.com

Education

2012 PhD in Computer Science at EPFL, Switzerland
2006 – 2012 Computer Science studies at EPFL, Switzerland
2004 Graduate Engineer in Electrical and Computer Engineering, University of Novi Sad
1999 – 2004 Computer Science Engineering Studies at FTN, University of Novi Sad

Experience

2011 Microsoft Cambridge, UK (3-month internship)
Developed a specialized software transactional memory (STM) that trades some
generality of traditional STMs for performance. The hash table and skip list
algorithms based on the specialized STM are simpler than the lock-free algorithms,
but they perform essentially as well, while outperforming “traditional” STM by 60%.

2010 Oracle Burlington, USA (3-month internship)
Worked on debugging and optimization of Oracle C/C++ transactional memory
(TM) runtime library and compiler. Also developed hardware TM-based algorithms
that outperformed the equivalent non-TM algorithms in all cases; even with the
best-effort hardware TM I had at my disposal.

2008 Intel Santa Clara, USA (3-month internship)
Worked on runtime and compiler optimizations for Intel C/C++ STM runtime
system and compiler. The optimizations I proposed were implemented and
deployed as a part of Intel’s research C/C++ STM-enabled compiler and their STM
library and delivered up to 15% performance improvements.

2005 – 2006 Levi9 Novi Sad, Serbia
Senior software developer, technical team leader, and project manager for a team of
six developers. Decided on technical questions and created long- and short-term
plans for the project. Extensively communicated with the clients to specify the
requirements. Kept the project running smoothly despite unclear specifications.

2004 – 2005 Navigator Novi Sad, Serbia
Software developer on a complex multi-tier ERP solution (several thousand classes).
Often solved technically challenging tasks that required obtaining new knowledge,
including: integration of 3rd party OLAP component, transparent replacement of
the grid component and custom report generation.

Main Interests

I am interested in many areas of computer science, but mainly in concurrent and distributed
computing. I prefer staying on the practical side of problems and enjoy implementing real systems,
ranging from simple script based solutions to everyday problems to complex production systems.

141

Publications and Workshops

• A. Dragojević, T. Harris. STM in the small: trading generality for performance in software
transactional memory. EuroSys ’12 the European Conference on Computer Systems, Bern,
April 11-13, 2012.

• A. Dragojević, M. Herlihy, Y. Lev and M. Moir. On The Power of Hardware Transactional
Memory to Simplify Memory Management. 30th annual ACM SIGACT-SIGOPS symposium
on Principles of distributed computing (PODC 2011), San Jose, California, USA, June 6-8,
2011.

• A. Dragojević, P. Felber, V. Gramoli and R. Guerraoui. Why STM can be more than a Research
Toy, Communications of the ACM, vol. 54, p. 70-77, April 2011.

• A. Dragojević and R. Guerraoui. Predicting the Scalability of an STM: A Pragmatic Approach.
5th ACM SIGPLAN Workshop on Transactional Computing (Transact 2010), Paris, France,
April 13, 2010.

• J. Baretto, A. Dragojević, P. Ferreira, R. Guerraoui and M. Kapalka. Leveraging Parallel
Nesting in Transactional Memory. 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2010), Bangalore, India, January 9-14, 2010.

• A. Dragojević, Y. Ni and A.-R. Adl-Tabatabai. Optimizing Transactions for Captured Memory.
21st Annual Symposium on Parallelism in Algorithms and Architectures (SPAA 2009),
Calgary, AB, Canada, August 11-13, 2009.

• A. Dragojević, A. Singh, R. Guerraoui and V. Singh. Preventing versus Curing: Avoiding
Conflicts in Transactional Memories. 28th Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC 2009), Calgary, Alberta, Canada, August 10-12,
2009.

• A. Dragojević, R. Guerraoui and M. Kapalka. Stretching Transactional Memory. ACM
SIGPLAN 2009 Conference on Programming Languages Design and Implementation (PLDI
2009), Dublin, Ireland, June 15-20, 2009.

• A. Dragojević, R. Guerraoui and M. Kapalka. Dividing Transactional Memories by Zero. 3rd
ACM SIGPLAN Workshop on Transactional Computing (Transact 2008), Salt Lake City,
Utah, USA, February 23, 2008.

142

	Title
	Acknowledgements
	Preface
	Abstract (English/Français)
	Contents
	List of Figures
	List of Tables
	Introduction
	Traditional concurrent programming
	Transactional memory
	Software transactional memory
	Contributions
	Outline

	Background
	Transactional execution
	Opacity
	STM interface
	STM semantics

	Large Software Transactions
	Overview
	STM design space
	Conflict detection
	Contention management
	Access granularity
	Update policy
	Progress guarantees

	STMBench7
	Alternatives to STMBench7
	Data and operations
	STMBench7 with word-based STMs

	Performance results
	Experimental settings
	Locking versus obstruction freedom.
	Towards the ideal conflict detection approach
	Visible reads
	Towards the ideal contention manager
	Conflict detection and contention management
	High concurrency levels

	STM robustness
	Memory restrictions
	Transaction size
	Other examples

	Programming issues
	External libraries
	Object-oriented features
	Non-faulting loads

	Summary

	SwissTM
	Overview
	Design and implementation
	Programming model
	Algorithm
	Correctness argument
	Implementation details

	Evaluation
	Benchmarks
	Experimental settings
	STMBench7
	STAMP
	Lee-TM
	Red-black tree

	Dissecting SwissTM
	Conflict detection
	Contention management
	Locking granularity

	Extending SwissTM
	Compiler support
	Privatization safety

	Summary

	Practical STM Performance
	Overview
	Experimental settings
	SwissTM-ME performance
	Contradicting earlier results
	SwissTM-CE performance
	SwissTM-MT performance
	SwissTM-CT performance
	Programming model
	Summary

	Related Work
	My work
	Others
	STM design
	Benchmarks
	Compiler optimizations
	Privatization
	Relaxed transactions
	Other techniques

	Conclusions
	Bibliography
	Curriculum Vitae

