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Abstract—Frequency response function measurements take a
central place in the instrumentation and measurement field
because many measurement problems boil down to the charac-
terisation of a linear dynamic behaviour. The major problems to
be faced are leakage- and noise errors. The local polynomial
method (LPM) was recently presented as a superior method
to reduce the leakage errors with several orders of magnitude
while the noise sensitivity remained the same as that of the
classical windowing methods. At the resonance frequencies, where
often most information about the system is to be retrieved, the
dominating error is the interpolation error. In this paper it is
shown that the interpolation error for sufficiently low damping is
bounded by (BLPM/B3dB)

R+2 with BLPM the local bandwidth
of the LPM, R the degree of the local polynomial that is selected
to be even (user choices), and B3dB the 3dB bandwidth of the
resonance, which is a system property.

Index Terms—frequency response function, nonparametric,
error analysis, interpolation errors

I. INTRODUCTION

The major challenge for the instrumentation and measure-
ment society is to develop improved and new measurement
techniques. Measuring the frequency response function (FRF)
to characterise the dynamic behaviour of a system is an
important sub-class among these problems. In this paper we
focus on the local polynomial method (LPM) [1], [2], [3]
that was recently presented as a superior alternative to the
widely spread and popular windowing methods [4], [5] to
solve that problem. All nonparametric methods suffer from
leakage and noise errors. Leakage errors form a fundamental
restriction for the standard methods and are present even in
the absence of measurement or process noise. At a cost of
an increase of the computation time, the LPM reduces the
leakage errors with several orders of magnitude while the
disturbing noise sensitivity remains the same as that of the
standard procedures. Because the continuously increase of the
available computer power removes the major drawback of the
more calculations demanding LPM, the authors believe that it
will become the standard method in many applications where
data with high signal-to-noise ratios are available. For that
reason it is extremely important to understand the errors of
the LPM.

The basic idea of the LPM is to use local polynomial
approximations of the transfer function and the transient

behaviour of the system caused by initial condition effects,
usually a polynomial of degree two is used. This finite order
approximation will create systematic errors, and it is the goal
of this paper to provide an upper bound on these errors. This
allows the reader on the one hand to better understand the
underlying error mechanism, and on the other hand it allows
us to provide the user with a simple rule of thumb to choose
the measurement conditions.

In Section II a brief introduction to the LPM is given, in
Section III the upper bound on the polynomial approximation
error for a lightly damped system is obtained and verified in
Section IV, followed by the conclusions.

II. THE LOCAL POLYNOMIAL METHOD: A BRIEF
INTRODUCTION

In this section we first describe the system and measurement
set-up in Section II-A, next we discuss very briefly the basic
idea in Section II-B, and finally we formulate the LPM as
a linear-least-squares problem that is solved frequency per
frequency. We refer the reader to [1], [3] for more detailed
information.

A. Set-up

In this paper we focus on a linear discrete time single-input-
single-output (SISO) system G0 (q) . Since we focus on the
interpolation errors, we do not consider here the impact of
disturbing noise and assume that the input u0 and the output
y0 are exactly known.

y0 (t) = G0 (q)u0 (t) , (1)

with q−1 the backward shift operator. All results apply also
to continuous time systems. For a finite record length t =
0, . . . , N − 1, as it is in practical applications, this equation
has to be extended with the initial conditions (transient) effects
of the dynamic plant tG:

y (t) = G0 (q)u0 (t) + tG (t) (2)

Using the discrete Fourier transform (DFT)

X(k) =
1√
N

N−1∑
t=0

x(t)e−j2πkt/N , (3)



an exact frequency domain formulation of (2) is obtained:

Y0 (k) = G0 (Ωk)U0 (k) + TG (Ωk) , (4)

where the index k points to the frequency kfs/N with fs the
sampling frequency, and Ωk = e−j2πkfs/N . The contributions
U0, Y0 in (4) are an O

(
N0
)
, the transient term TG, is an

O
(
N−1/2

)
. In these expressions, O(x) stands for ordo(x):

a function that goes to zero at least as fast as x. It is most
important for the rest of this paper to understand that (4) is an
exact relation [9], [6], [7], [8]. The finite record length requires
the use of a transient term in (2), and it turns out that the
leakage errors of the DFT are modelled by very similar terms
in the frequency domain. All these terms tG (t) , TG (Ωk) are
described by rational forms in q−1 (time domain) or z−1

(frequency domain), hence it are smooth functions of the
frequency.

B. LPM: the basic idea

In this section we give a very brief introduction to the
polynomial method. A detailed description, together with a full
analysis is given in [1], [2], a comparison with the classical
spectral windowing methods is found in [3].

The basic idea of the local polynomial method is very
simple: the transfer function G0 and the transient term TG
are smooth functions of the frequency so that they can be
approximated in a narrow frequency band around a user
specified frequency k by a complex polynomial. The complex
polynomial parameters are estimated from the experimental
data. Next G0 (Ωk), at the central frequency k, is retrieved
from this local polynomial model as the measurement of the
FRF at that frequency.

C. LPM: a local linear-least-squares estimate

We start from the full OE-expression (2), and consider again
the equivalent relation for the DFT-spectra:

Y0(k) = G0(Ωk)U0(k) + TG(Ωk) (5)

Making use of the smoothness of G0 and T , the following
polynomial representation holds for the frequency lines k+ r,
with r = 0,±1, . . . ,±n.

G0(Ωk+r) =

G0(Ωk) +
∑R
s=1 gs(k)rs +O(

(
r
N

)(R+1)
)

(6)

TG(Ωk+r) =

T (Ωk) +
∑R
s=1 ts(k)rs +N−

1
2O(

(
r
N

)(R+1)
)

(7)

Putting all parameters G0(Ωk), TG(Ωk) and the parameters of
the polynomial gp, tp, with p = 1, . . . , R in a column vector
θ, and their respective coefficients in a row vector K(k, r)
allows (5) to be rewritten (neglecting the remainders) as:

Y (k + r) = K(k, r)θ, (8)

Collecting (8) for r = −n,−n+ 1, . . . , 0, . . . , n finally gives

Yn = Knθ, (9)

with Yn,Kn the values of Y (k + r),K(k, r), stacked on top
of each other. Observe that the matrix Kn depends upon U0.
Solving this equation in least squares sense eventually provides
the polynomial least squares estimate for Ĝpoly(Ωk). In order
to get a full rank matrix Kn, enough spectral lines should
be combined: n ≥ R + 1. The smallest interpolation error is
obtained for n = R+ 1.

III. UPPER BOUNDING THE INTERPOLATION ERROR

A. Introduction

From the previous section, it turns out that the local
polynomial approximation plays a central role in the FRF-
estimation. The polynomial approximation errors will set
directly the errors of the LPM in the noiseless case. These
depend upon the polynomial degree R in (6) and (7), and on
the selected bandwidth n in (9). For that reason it is important
to bound the maximum approximation error. It will be shown
that the approximation errors can be described by a single
invariant of the system/setup, given by (BLPM/B3dB)R+2

with BLPM the local bandwidth of the LPM, R the degree of
the local polynomial that is selected to be even (user choices),
and B3dB the 3 dB bandwidth of the resonance ωn (where
|G (ω)|dB ≥ Gmax dB − 3, see Figure 1), which is a system
property. It can be shown that for a second order system
B3dB = 2ςωn, with ς the damping of the system.

Instead of focusing on the original problem in (5), we solve
here the underlying and more generic problem of the local
approximation of a transfer function in a given frequency band
by a polynomial of degree R. Using a similar notation as in
(9), we have that:

Gn = K̃nθ̃, (10)

with θ̃T = [G0 (Ωk) , g1, . . . , gR], and K̃n the corresponding
frequency matrix that does no longer depend on U .

It is well known that the transfer function of a system can
be written as the sum of a set of first order systems with
complex or real poles. The complex conjugated poles can be
grouped in 2nd order contributions. The approximation of the
transfer function reduces to the approximation of a first order
system if we can assume that the damping of the poles is low
enough (e.g. ς < 0.25). This is not a hard restriction, because
the polynomial approximation errors grow for a decreasing
damping, so this is the worst case situation. For that reason
we can also assume without great loss of generality that we
have only single poles with a low damping. The situation of
coinciding poles is excluded from this study. In this section we
will make for simplicity all the calculations on the continuous
time representation of the system, but all results apply without
loss of generality also for discrete time systems, as long as the
damping is sufficiently small.

B. Normalised second order system

Consider the normalised 2ndorder system with resonance
frequency ωn and damping ς :

G (s) =
GDCω

2
n

s2 + 2sςωn + ω2
n

=
b

s− p
+

b̄

s− p̄
, (11)



with s = jω the frequency variable, b =
−jGDCωn/(2

√
1− ς2) and p = −ςωn + jωn

√
1− ς2. The

over-score denotes the complex conjugate. The maximum
of the transfer function is at ω = ωn

√
1− 2ς2. Around that

frequency, the first term

G̃ (s) =
b

s− p
for s ' jωn (12)

in (11) dominates. This term becomes maximum at ω =
ωn
√

1− ς2. In this paper we will focus on systems with
ς � 1, so that both maxima coincide almost completely with
ωn which we call the resonance frequency s = jωn. So we
can focus completely on (12) that can be rewritten as

G̃ (s = jω) =
−∆− j
1 + ∆2

GDC
2ς

, (13)

with ∆ = ω−ωn

B3dB/2
. Observe that the real and imaginary part

of G̃ (∆) are respectively an odd and even function of ∆.

C. Least squares approximation of degree R

We are interested in G̃ (s = jω) = G̃ (∆ = 0) estim-
ated from a least squares fit in the frequency band ω̃ ∈[
ωn − B

2 , ωn −
B
2

]
, or ∆ ∈ [−1, 1]. For a symmetric grid

around zero, the fit of the real part will also be anti-symmetric
and hence equal zero for ∆ = 0, hence the error is completely
set of the fit on G̃imag . Since the latter is even, only even terms
will appear in the polynomial least squares approximation. For
that reason we set R to be even. Consider the Taylor expansion

G̃imag (∆) =
GDC

2ς

∞∑
k=0

(−1)k+1∆2k, (14)

for |∆| < 1. A fit of a polynomial of degree R will capture
all the contributions up to degree R of the Taylor expansion,
and the error will be dominated by the next contribution of
the Taylor approximation of degree R+ 2 so that we find that
the error EG on the estimate of G̃ (∆ = 0) is given by

EG = αR+2∆R+2 = αR+2

(
B

B3dB

)R+2
GDC

2ς
. (15)

with R even, and αR+2 a constant. Alternatively, (15) can be
written as

EG = αR+2

(
B

B3dB

)R+2

Gmax. (16)

The constant αR+2 can be determined explicitly making use
of the explicit expression of the least squares solution of (10):

θ̃LS = (K̃H
n K̃n)−1K̃H

n . (17)

All the coefficients in K̃n are a priory known, and the first
error term contributing to the solution will be the term of
degree R + 2 in (14). Using integral approximations for the
sums in the matrix- and vector products in (17) it can be shown
that for R = 2, the error is given by:

EG '
[

1.125 0 1.875
]  2/5

0
2/7

( B

B3dB

)4

Gmax,
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Figure 1. Behaviour of G0 around its resonance frequency. The 3 dB
bandwidth is emphasised in bold. The upper figure shows the amplitude in
dB. The lower figure shows the real (blue) and imaginar (red) part of G0.

or

EG ' 0.857

(
B

B3dB

)4

Gmax. (18)

It is possible to get more precise estimates for αR+2 by
calculating the coefficient numerically for a given frequency
grid. Calculating the coefficient for higher values of R can
be done similarly. It is important here to observe that the
invariants that are determining the maximum interpolation
error are: the degree R of the polynomial, the ratio B/B3dB ,
and Gmax. In the next section we will show that with these
3 parameters it is possible to cover indeed the interpolation
error for different resonance frequencies ωn, dampings ς , and
polynomial degrees R, as long as the damping ς < 0.25.

IV. VERIFICATION OF THE UPPER BOUND

In this section we verify the error bound (16). First we verify
the results on the normalised problem (13) for varying values
of B/B3dB , next we return to the original problem where
we verify the results for varying dampings ς , and resonance
frequencies ωn.

A. Study of the normalised problem

In this section we study the observed error for the normal-
ised problem for R = 2 and a varying choice of B/B3dB . We
selected 21 frequencies equidistantly distributed in the interval
[-1 1]. The numerically obtained value for α4 = 0.1018 to be
compared to the integral expression in (18) that was 0.0857.
In Figure 2 we show the ratio of the actual observed error
and the error predicted from the theory. It can be seen that for
B/B3dB < 0.2, a very good agreement between the theory
and the actual observations is found. For larger values, the
theoretic bound is too conservative, and hence gives still a



10
−2

10
−1

10
0

0.4

0.6

0.8

1

Relative Bandwidth B/B3dB

E
/E

G

Figure 2. Evaluation of the upper bound on the normalized problem (13) as
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Figure 3. Evolution of the upper bound on the original problem (11) as a
function of the maximal amplitude of the system.

safe bound. The deviations are due to the fact that higher
order terms should be included for larger values of B/B3dB ,
and for values close to 1 the Taylor series is even no longer
converging.

B. Study of the original problem

In this section we compare again the observed and the
theoretical error, but now on the original problem (11). The
ratio B/B3dB is varied between 0.01 and 1, the damping is
varied so that Gmax varied from 6 to 40 dB (with GDC = 1).
Again we can conclude from Figure 3 that the bound is precise.
For low dampings (small values of Gmax) the theoretical
bound is too small. This error is due to the fact that the second
term in the right side of (11), corresponding to the complex
conjugated pole, becomes too important while it was left out
in the theoretical analysis. We can also see that for larger
bandwidths the theoretical bound is again too conservative.

C. Solving the LPM problem

When carrying over the results from Sections IV-A and
IV-B, it should be kept in mind that all these results relied
heavily on the symmetry/anti-symmetry of the real/imaginary
part. In equation (9) this symmetry can be lost if the spectrum
of the excitation signal is not symmetric around the centre fre-
quency. In that case the convergence will be reduced with one
order to O

(
(B/B3dB)

R+1
)

. In practice we observe that with
the LPM the gain obtained by moving from Reven to Reven+1
is much smaller than moving from Reven to Reven + 2. This
is still due to the previous explained mechanism. As a general

conclusion we can state that the local bandwidth B that is
used should be (significantly) smaller than B3dB . This sets
immediately an underlimit on the acceptable measurement
time since B3dB is directly linked to the measurement time:

τ = 1/(ςωn) = 2/B3dB .

Since we need at least 2R+3 frequencies in the local interval
B, and B should be choosen to be smaller than B3dB , we find
that the measurement time Tmeas (which is the inverse of the
frequency resolution in Hz) should be larger than

Tmeas > 2π
2R+ 3

B3dB
= (2R+ 3)πτ

in order to be in the good operational conditions to use
the LPM around the resonance frequency of the system. For
example, for R = 2, the strict minimum will be Tmeas = 22τ
(corresponding to having 7 frequency points in B3dB).

V. CONCLUSIONS

In this paper we analysed the polynomial approximation
error of a 2nd order system. This is a generic problem because
it appears in many modelling and measurement techniques.
A theoretical bound on the interpolation error was derived
that results in a set of normalised numbers (order and relative
bandwidth of the fit) that give a lot of insight in the behaviour
of the approximation. Using these results, it is for example
possible to better understand the errors in the local polynomial
method. We also could translate these results in very practical
advices on the minimum required measurement time.
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