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It is necessary to take into account the micro discretization of natural rock when studying its macroscopic
failure behavior. This requirement has resulted in renewed and increased interest in the discrete or
framework/lattice numerical modeling techniques. However, to fully construct a numerical model for
practical applications using a discrete numerical model is computationally difficult with current comput-
ing technologies. Hence, a coupled model has been developed to overcome this limitation by coupling the
Distinct Lattice Spring Model (DLSM) and the Numerical Manifold Method (NMM). In the coupled model,
the microscopic discrete model of the rock is represented by a system of discrete particles interacting via
springs while the macroscopic level model is represented by the NMM. The proposed model bears a
structure of three layers corresponding to the DLSM model, the NMM model, and a model for coupling,
respectively. The coupling model is based on a newly developed Particle based Manifold Method (PMM)
to bridge the DLSM with the NMM. The proposed coupled model can reduce the computational resources
needed for the purely discrete particle based model. This study introduces theoretical aspects of the cou-
pled model together with a few examples to demonstrate its correctness and feasibility.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Various mechanical phenomena, such as stress wave propaga-
tion, crack coalescence, crack bifurcation and fragmentation, occur
in rocks under dynamic loads. Accurately modeling these dynamic
phenomena is not possible using existing continuum-based
numerical methods like the Finite Element Method (FEM) and
the Boundary Element Method (BEM). As such, in recent years,
there has been renewed interest in discrete or framework/lattice
numerical modeling techniques [1–5]. These models have the fol-
lowing characteristics in common: (i) the materials are discretized
into particles that are connected through spring-type forces; (ii)
the macro-mechanical response is derived from microscopic inter-
actions between particles; (iii) the material failure at the continu-
ous level is captured naturally from the spring failure at the
micro-discontinuous level; and (iv) the complex constitutive rela-
tionships and contact mechanisms are readily implemented. Due
to the discrete nature of these models, they are suitable for simu-
lating complex fracturing of rocks and solids under dynamic loads.
However, these models can only simulate small scale models due
to computational restrictions; for real applications, many millions
of particles are required for an actual system, which results in
computational times and memory demands that surpass the
ll rights reserved.
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capacity of modern personal computers. Of course, if super com-
puters are used with parallel implementation of the discrete
numerical models (e.g., [6,7]), these problems can be overcome
to some degree. However, coupled modeling provides a more excit-
ing and promising solution, which is not constrained by computing
capacity limitations at the arithmetic methodology level.

Given the reasons outlined above, coupled numerical tech-
niques are regarded as one of the directions for future develop-
ment in computational materials science [8–10]. Coupled
methods, e.g. multi-scale methods, usually couple atomistic
mechanics or quantum theory and classical continuum mechanics
[11–13]. A comprehensive review of such methods is given in
[14,15]. In recent years, a few studies were conducted using cou-
pled numerical techniques for geomaterials. In these models, the
microscopic model is the particle based discrete model and the
macroscopic continuum model utilized is typically the Finite Ele-
ment Method (FEM) e.g. [16–20]. The coupling of the Discrete Ele-
ment Method (DEM) and the FEM emerged in the late 1980s and
several different models were proposed, e.g. those in [21–23].
The coupled model used here is defined as a coupled numerical
model that links the particle based discrete method (microscopic
model) with a macroscopic continuum method. There are three
main components in coupled models for geomechanics: a micro-
scopic model, a macroscopic model and an interface/contact/
coupling method. The most widely used technique is to link a par-
ticle based discrete model with the FEM by using the contact
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Fig. 1. A solid elastic body under Lagrangian frame.
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between the FEM block domain and particles around the interface.
For example, Onate and Rojek [16] developed a contact algorithm
in their model, Yan et al. [17] used the ghost particle method, Lei
and Zang [20] used a penalty function method and Elmekati and
Shamy [18] and Cai et al. [24] used the contact function provided
in commercial codes to undertake a coupled analysis of geotechni-
cal systems. Another recently developed approach is the use of a
bridging domain to link two different scale models [19]; this cou-
pling technique is called the bridging domain method, which was
first developed by Xiao and Belytschko [25] for coupling Molecular
Dynamics (MD) and FEM. Even though there are numerous cou-
pling approaches available, many of them are not complete and
further developments are needed. For example, the interface cou-
pling method induces spurious wave. Using the bridging domain
method can eliminate the spurious waves, but attention needs to
be given to the miss-match between the Degrees Of Freedoms
(DOFs) of the FEM and those of the particle DEM. Lagrange multi-
pliers are often used to treat this problem, but at the expense of
further complication of the implementation of the coupled model.
Moreover, in most coupled models (e.g. [16–20]), the microscopic
and macroscopic domains remain unchanged during the computa-
tional process and transition from macroscopic level to micro-
scopic model is not considered.

In this paper, a continuum-discontinuum coupled model is
developed to simulate rock failure under dynamic loads, to
redressing some of the above-mentioned deficiencies. The work
is original in the following three ways: Firstly the micro and macro
numerical models are based on the newly developed Distinct Lat-
tice Spring Model (DLSM) [5] and the Numerical Manifold Method
(NMM) [26] such that the DOFs for each particle in the DLSM are
the same as those in the NMM node. This overcome the miss-
matching problem in [19], and facilitates coupling between micro
and macro numerical models. The second novel contribution of this
study is the Particle based Manifold Method (PMM), developed to
couple the DLSM and NMM. The last contribution is an automatic
translation technique devised to transform the PMM model
(macro-level model) into the DLSM model during calculations. This
paper covers theoretical aspects of the proposed model and gives a
few numerical examples to demonstrate the correctness and feasi-
bility of the developed model.

2. The microscopic and macroscopic models

2.1. Basics of elasto-dynamics

In this section, the basic equations for linear elasto-dynamics
are briefly introduced. Consider the elastic body X shown in
Fig. 2. The physical model and the
Fig. 1. The boundary C is composed of the traction boundary C t

and the displacement boundary Cu. The governing equation of mo-
tion, or momentum conservation, for the solid body under the
Lagrangian frame of reference is

r � rþ b ¼ q€u ð1Þ

subject to the boundary condition

u ¼ �u on Cu ð2Þ
r � n ¼ �t on Ct ð3Þ

where r is the gradient operator with respect to the current posi-
tion x, u is the displacement and €u is the acceleration, r is the Cau-
chy stress, q is the mass density, b is the body force per unit mass, n
is the outward normal vector on the boundary surface in the current
configuration, and �t and �u are the prescribed tractions and displace-
ments on the corresponding boundaries, respectively.

2.2. The Distinct Lattice Spring Model (DLSM)

Here, the DLSM [5] is selected as the microscopic numerical
model for the mechanical description of rock under dynamic loads.
The dynamic governing Eqs. (1)–(3) are not explicitly solved;
rather Newton’s second law of motion and the spring-like interac-
tion force between particles is used. This method is briefly intro-
duced in the following sections.

2.2.1. The physical model
In the DLSM, the material is discretized into mass particles with

different sizes. Whenever the gap between the two particles is
smaller than a given threshold value, the two particles are linked
together through a bond between their center points (see
Fig. 2a), which consists of normal and shear springs. The threshold
calculation cycle for the DLSM.



(a) Cubic I (b) Cubic II (c) Cubic III

(d) BCC I (e) BCC II (f) Random structure 

Fig. 3. Different lattice structures used in DLSM.
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value will influence the lattice structure of the model; different
threshold values will produce different lattice structures (see
Fig. 3). In the DLSM, the system equation is solved using Newton’s
second law of motion (the explicit central finite difference
scheme). The calculation cycle is illustrated in Fig. 2b. Given the
Fig. 4. The force and displacement relationships betwe
particle displacements (either prescribed initially or obtained from
the previous time step), new contacts and broken bonds are de-
tected. The list of neighboring particles for each particle is updated
and the contact and spring forces between particles are calculated
according to the prescribed force–displacement relations.
en two particles and the micro constitutive laws.



4 G.-F. Zhao et al. / Computers and Geotechnics 42 (2012) 1–20
2.2.2. Interactions between particles
Fig. 4a shows the forces exerted on a single particle. These

forces are made up of the external forces and contact forces be-
tween particles. The interaction between linked particles is repre-
sented by one normal spring and one shear spring as illustrated in
Fig. 4b. Unlike the conventional Lattice Spring Models (LSMs), the
shear spring is introduced making it possible to handle problems
with variable Poisson’s ratio. The normal spring is implemented
in a conventional way. For a bond connecting particle i and particle
j, the normal unit vector pointing from particle i to particle j is de-
fined (see Fig. 4c). The relative displacement is calculated as

uij ¼ uj � ui ð4Þ

The normal force between the two particles is defined as

Fn
ij ¼ knun

ij ð5Þ

where kn is the stiffness of the normal spring and un
ij ¼ ðuij � nÞn is

the vector of normal displacement (see Fig. 4c).
Fig. 5. Components and p
For the shear spring, the relative shear displacement between
two particles can be obtained simply as us

ij ¼ uij � un
ij as in some

conventional lattice spring models. However, it is easy to show
that the shearing force calculated in this way is not rotationally
invariant. To overcome this problem, we propose a local strain-
based method. Assuming the strain at the two particles is evalu-
ated as [e]i and [e]j respectively, the strain state of the connecting
bond is given as the average of the two particle strains:

½e�bond ¼
½e�i þ ½e�j

2
ð6Þ

where ½e� ¼
exx exy exz

eyx eyy eyz

ezx ezy ezz

2
4

3
5. The shear displacement vector is ob-

tained as

ûs
ij ¼ ½e�bond � nl� ðð½e�bond � nlÞ � nÞn ð7Þ

where l is the initial bond length, i.e. the initial distance between
the pair of particles. Thus the shearing force between the two par-
ticles is
rinciple of the NMM.



Fig. 7. The PMM element in the coupled DLSM.

Fig. 6. NMM model based on FEM mesh.
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Fs
ij ¼ ksûs

ij ð8Þ

where ks is the stiffness of the shear spring. The proposed method
together with the strain calculation procedure using the least
square method ensures that the model preserves the rotational
invariance. Details on the derivation is presented in Appendix A.

2.2.3. Damping and time step
The solution scheme used in the DLSM is conditionally stable.

To keep the computation stable, a time step could be chosen
according to the requirement that it is less than the time required
for elastic wave propagation through the smallest element of the
model. This leads to

Dtn ¼min
li

Cp

� �
ð9Þ

where Cp is the P-wave velocity of the model, li is the ith spring
length of the model. It should be mentioned that the input param-
eters of the DLSM are macroscopic elastic parameters rather than
microscopic spring parameters. This makes the DLSM model consis-
tent with conventional FEM modeling.

Mechanical damping is used in the DLSM to obtain static solu-
tions. For static analysis, the approach is conceptually similar to
dynamic relaxation [27]. The equations of motion are damped to
reach a force equilibrium state as quickly as possible under the ap-
plied initial and boundary conditions. The damping constant (set to
0.8 in the DLSM) is dimensionless and independent of mechanical
properties and boundary conditions. The local damping is reported
to be under-damped in general.

2.2.4. Relationship between spring parameters and elastic constants
In the DLSM, the input elastic parameters are the macro mate-

rial constants, i.e. the Young’s modulus E and the Poisson ratio m, in
order to keep it consistent with classical FEM. During calculation,
the micromechanical parameters are calculated based on the Real
Multi-dimensional Bond (RMIB) model [7]. Considering the mate-
rial heterogeneity, the equations are given as:

kn ¼
3

2a3D

Ei

1� 2v i
þ Ej

1� 2v j

� �
ð10Þ

ks ¼
3

2a3D

ð1� 4v iÞEi

ð1þ v iÞð1� 2v iÞ
þ ð1� 4v jÞEj

ð1þ v jÞð1� 2v jÞ

� �
ð11Þ

where Ei and Ej are the Young’s modulus assigned to the linked par-
ticles, and vi and vj are the corresponding Poisson’s ratios. The a3D is
the microstructure geometry coefficient of the lattice model.

It should be noted that the particle used in DLSM is rigid, and
the local strain refers to the local strain of the particle cluster
which includes the particle itself and other particles that have in-
tact bonds with the particle. The local strain of one particle is eval-
uated by a least square scheme which uses the displacement of the
particle cluster. By doing so, discontinuities (e.g. fracture/crack)
could be directly considered without using the ‘‘visibility criterion’’
adopted by most meshless methods. As the least squares scheme is
used in DLSM, the model can be viewed as a totally meshless meth-
od. There is no integration domain and the model only needs a col-
lection of points. In this sense, the DLSM can also be regarded as a
new meshless method where the Partial Differential Equations
(PDEs) are approximated through a lattice model. The local strain
technique allows the DLSM to only use half degree of freedoms
compared with the particle DEM (e.g. PFC), and therefore, it is more
computationally efficient. Details of DLSM can be found in [5,7].
2.3. Numerical Manifold Method (NMM)

The NMM [26] is a numerical method proposed to integrate
FEM with the Discontinuous Deformation Analysis (DDA) [28]. It
can be regarded as an advanced FEM or Partition of Unity (PU)-
based FEM. The relationship between PU based FEM and NMM is
discussed in detail in Kurumatani and Terada [29]. The basic prin-
ciple and the components of the approach are shown in Fig. 5. The
basic unit in NMM is the manifold element, which is made up of
the overlap of the neighboring physical covers. A physical cover
is the intersection of the mathematical cover and the physical do-
main. It is equivalent to the support domain for a node in classical
meshless methods. Details of how to construct these manifold ele-
ments can also be found in [29,30]. The degrees of freedom are de-
fined in these physical covers to represent the deformed state of
their physical domains. The meshing methodology is the most dis-
tinct feature of NMM, which makes the regular mesh applicable for
modeling of an irregular domain. For regular domains with convex



Fig. 8. Coupled calculation cycle in the coupled DLSM.
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geometry the application of NMM is identical to that an enriched
FEM model (see Fig. 6).

2.3.1. The explicit NMM
Traditionally NMM is implemented using an implicit time inte-

gration technique suited to modeling large deformation problems.
Here, we use an explicit technique to be able to couple the DLSM
and NMM seamlessly. In the explicit NMM the approximation
function is given in a similar way to the FEM: Firstly, the deforma-
tion function is defined in the physical cover (manifold node) as
cjðxÞ ¼
Xn

i¼1

bjiðxÞ � uji ð12Þ

where cj(x) is the displacement function of the jth physical cover, uji

is the general DOFs of the cover, bji(x) is the basis of the displace-
ment function and n is the number of DOFs. Then, the approxima-
tion function of the manifold element can be written as

uhðxÞ ¼
Xm

j¼1

/jðxÞcjðxÞ ¼
Xm

j¼1

/jðxÞ
Xn

i¼1

bjiðxÞuji ð13Þ



Fig. 9. Different coupled DLSM models for the bar under tensile loading.

Fig. 10. Contour maps of the displacement in z-
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where /j is the weight function of the cover and m is the number of
physical covers of the manifold element. The weight functions must
satisfy the partition of unity, namely

Xm

j¼1

/jðxÞ ¼ 1 ð14Þ

The manifold elements are called three-cover elements or eight-
cover elements in order to distinguish them from the FEM elements.
Equation (13) can then be written in a more familiar form as

uhðxÞ ¼
Xn�m

k¼1

NkðxÞuk ð15Þ

where Nk(x) is the shape function (the linear order NMM shape
functions are exactly the same as the corresponding standard FEM
element) and uk is the kth general degree of freedoms of the mani-
fold element. The integration equations can be obtained by applying
the weighted residual approach or variation principle and imposing
the boundary conditions to Eq. (1). This givesZ

X
qu� � €udV þ

Z
X
ru� : rdV þ k

Z
Cu

u� � ðu� �uÞdC

¼
Z

X
u� � bdV þ

Z
Ct

u� � �tdC; 8u� ð16Þ
direction for the different coupled models.



Table 1
The predicted z direction displacement using the different coupled DLSM models.

Full DLSM DLSM &
PMM

DLSM &
NMM

DLSM &
PMM &
NMM

L⁄ (mm) 18.00 18.00 19.00 19.00
Predicted (mm) 1.36e�2 1.36e�2 1.32 1.47e�2
Excepted (mm) 1.44e�2 1.44e�2 1.52e�2 1.52e�2
Error (%) 5.87 5.87 – 3.28
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where u is the displacement field and u⁄ is its variation. The third
term in the left-hand side is the penalty term involved in the
boundary condition (2). The k is a large number known as the pen-
alty parameter, which is taken as

k ¼ bE ð17Þ

where E is the elastic module, and b is a ratio that is suggested to be
from 40 to 100. In NMM, the direct boundary condition can be ap-
plied when the manifold nodes (physical cover) are placed exactly
on the boundaries. In this case, the third term in the left hand side
Fig. 11. Full comparison of displacement field predicted by FEM with coupled
DLSM for the beam bending problem.
of Eq. (16) can be neglected. From Eq. (16), we can now derive the
following discretized equation of motion:

Kut þM€ut ¼ Ft ð18Þ

where ut is the displacement vector and €ut is the acceleration vec-
tor. Ft is the external force vector given as

Ft ¼
XNel

e¼1

Z
Xe

NT
e bdXe þ

XNel

e¼1

Z
Ct

NT
e
�tdCt ð19Þ

The mass matrix M and stiffness matrix K are evaluated as follows:

M ¼
XNel

e¼1

qe

Z
Xe

NT
e Ne dX ð20Þ

K ¼
XNel

e¼1

Z
Xe

BT
e DBe dX ð21Þ

where Ne and Be are, respectively, the interpolation matrices of dis-
placement and strain, D is the elastic matrix and Nel is the number
of manifold elements involved in the NMM model.

2.3.2. Integration and time step
As stated previously, the NMM can be treated as a FEM where

the integration domain of the element is irregular. For this reason,
Eqs. (19)–(21) can be integrated through the simplex integration
technique or the simplex gauss integration method [26,28]. The
time integration is achieved using the explicit center difference
method as follows:

€ut ¼ ðFt � KutÞM�1
lump ð22Þ

_utþDt=2 ¼ _ut�Dt=2 þ €utDt ð23Þ
utþDt ¼ ut þ _utþDt=2Dt ð24Þ

where Dt is the time step. The mass matrix is assembled in a
lumped form to allow the calculations to be performed element
Fig. 12. Two coupled models for the uniaxial loading of a plate with a circular hole.
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by element. The main advantage of the explicit NMM is that the glo-
bal stiffness matrix does not need to be assembled during the calcu-
lations. However, this solution scheme is conditionally stable. As in
the DLSM, in order to keep the computation stable, the time step
has to be chosen according to following equation:

Dtn 6 min
li

Cp

� �
ð25Þ

where Cp is the P-wave velocity of the model and li is the ith man-
ifold element length of the model.

2.3.3. Damping
In order to obtain static solutions in the explicit NMM, a local

damping scheme is used to overcome the difficulties of the veloc-
ity-proportional damping. The local damping is simply written asX

FðtÞi ¼
X

FðtÞi � a
X

FðtÞi

��� ���sgn _uðt�Dt=2Þ
i

� �
ð26Þ
Fig. 13. The simulation results for the uniaxial loading of a plate with a circular hol
where a is a damping constant which is dimensionless and
independent of mechanical properties and boundary conditions.
For the dynamic case, the damping term will be switched off
(a = 0).
3. The coupled model

The basic unit in the DLSM is the particle and that of the NMM
model is the polyhedral manifold element. Contact detection be-
tween these two 3D objects is difficult to implement and is typi-
cally handled using complex 3D geometric calculation. On the
other hand, direct coupling of these two models can cause a sud-
den vibration at their interface, leading to generation of spurious
solutions. In order to tackle these problems, a method for coupling
of the NMM with DLSM is proposed; this method is termed the
Particle based Manifold Method (PMM), where the physical do-
main of the manifold element is replaced by the particle based
e problem by the coupled DLSM (contour map of displacement in y-direction).
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DLSM model and the DOFs of the model are defined in the physical
covers as in the standard NMM. The PMM element is a mixture of
the DLSM and manifold elements. By using this element, only
sphere-to-sphere contact detection and treatment are required in
the coupled model, which is much easier to detect and implement.
The PMM model also provides a cushion layer in the coupled mod-
el, which naturally bridges the DLSM model and the NMM model.
In the following section, the PMM element, the coupled solution
procedure and the automatic releasing technique developed for
the coupled Distinct Lattice Spring Model (coupled DLSM) will be
presented.

3.1. Particle based Manifold Method (PMM)

First, the basic idea for the PMM will be introduced. The PMM
model is realized by replacing the physical domain of the manifold
element by the particle based DLSM model (see Fig. 7). The 3D
PMM element used in coupled DLSM is illustrated in Fig. 7. The
eight-node FEM element is used as the mathematical element
and DLSM model is used as the physical domain.

Since the explicit integration method and lumped mass matrix
are used in m-DLSM, the mass matrix of the PMM element is taken
as 1/8 of the DLSM model included in the element:

MPME
i ¼ diag

1
8

Xmi

j¼1

mp
ij

 !
ð27Þ

where MPME
i is the mass matrix of the PMM element, mi is the num-

ber of particles included in the PMM element and mp
ij is the mass of

the particle. The stiffness matrix of the PMM element has to be ob-
tained in a distinct way as the deformation energy of the DLSM
model is stored on the network of bonds between particles. The
integration domain of the PMM element is neither 2D nor 3D;
due to the discrete natural property of the lattice network, the inte-
gration is realized through a summation operation as

KPME
i ¼

Xni

j¼1

Kb
ij ð28Þ

where KPME
i is the stiffness matrix of the PMM element, ni is the

number of bonds included in the PMM element and Kb
ij is the stiff-

ness matrix contributed by each lattice bond (a pair of normal and
shear springs).
Fig. 14. The coupled DLSM models for wav

Table 2
Displacements in the y-direction of the plane predicted by different models.

Point A Point B

DLSM & PMM & NMM (mm) 9.58e�4 9.60e�4
PMM & NMM (mm) 9.50e�4 9.52e�4
Percentage difference (%) 0.84 0.83
The stiffness of the bond in local coordinates is

Kbond
ij ¼

kn 0 0 0
0 ks 0 0
0 0 ks 0
0 0 0 ks

0
BBB@

1
CCCA ð29Þ

and the bond deformation is represented as

ubond ¼ un;us
x;u

s
y;u

s
z

� �
ð30Þ

It should be mentioned that the shear spring in the DLSM model is a
vector spring whose deformation is represented by a vector with
three variables. The strain state of the PMM element is given as

e ¼ ðexx eyy ezz exy eyz exzÞT ¼ B�uME ð31Þ

where uME is the node displacement of the PMM element, B⁄ = [Bi] is
the strain interpolation matrix of the mathematical element, which
can be obtained as

Bi ¼

Ni;x 0 0
0 Ni;y 0
0 0 Ni;z

1
2 Ni;y

1
2 Ni;x 0

0 1
2 Ni;z

1
2 Ni;y

1
2 Ni;z 0 1

2 Ni;x

0
BBBBBBB@

1
CCCCCCCA

ð32Þ

where Ni,x,Ni,y and Ni,z are derivatives of the shape functions. The
shape functions Ni and their corresponding derivatives are provided
in Appendix B.

The bond deformation vector can then be represented by

ubond ¼ L4�6e ð33Þ

where L4�6 is a transformation matrix. Based on Eq. (7), L4�6 is ob-
tained as

L4�6 ¼ T4�3Q 3�6 ¼ lij

nx ny nz

1� n2
x �nxny �nxnz

�nynx 1� n2
y �nynz

�nznx nzny 1� n2
z

0
BBBB@

1
CCCCA

�
nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx

0
B@

1
CA ð34Þ
e propagation through an elastic bar.

Point C Point D Point E Point F

9.62e�4 9.60e�4 9.60e�4 9.58e�4
9.53e�4 9.53e�4 9.52e�4 9.50e�4
0.94 0.73 0.83 0.84



Fig. 15. Wave propagation through an elastic bar simulated using coupled DLSM (contour map of velocity in z direction).
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where lij is the length of the bond and (nx, ny, nz) is the normal vec-
tor of the bond, it is defined as

n ¼ ðnx;ny;nzÞ ¼
x2 � x1

l
;
y2 � y1

l
;
z2 � z1

l

� �
ð35Þ

where (x1, y1, z1) and (x2, y2, z2) are the coordinates for two particles.
Now, the strain energy of the bond can be written as

Pb ¼
1
2

Kbond
ij ðLB�uMEÞ

� �T
ðLB�uMEÞ ð36Þ

Finally, the contribution of each bond to the stiffness matrix is ob-
tained from the energy minimization principle as



Fig. 16. Simulation results of the wave propagation using the coupled DLSM.
Fig. 18. PMM releasing process for the coupled DLSM.
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Kb
ij ¼

@2Pb

@ui@uj

" #
¼ ðLB�ÞT Kbond

ij LB� ð37Þ
3.2. Scheme of the coupling procedure

Fig. 8 shows the work flow of the coupled calculation cycle in
the m-DLSM. The DLSM and NMM computations are performed
in parallel and interactions between the two models are captured
through the PMM. Information exchange occurs only at the begin-
ning and the end of each cycle. The mapping of unbalanced forces
from particles to PMM elements is realized using

FME
i ¼ NijF

LS
ij ð38Þ
Fig. 17. The coupled model for a solid specimen with a side notch.
where FME
i (a vector of 24 components) is the force transferred to

each node of the ith PMM element, Nij is an interpolation matrix
at the particle j and FLS

ij is the calculated unbalance force on the par-
ticle j due to its bond connections with the DLSM particles. Nij is gi-
ven as
½Nij�T ¼
N1ðxjÞ 0 0 � � � N8ðxjÞ 0 0

0 N1ðxjÞ 0 � � � 0 N8ðxjÞ 0
0 0 N1ðxjÞ � � � 0 0 N8ðxjÞ

2
64

3
75
After obtaining the unbalanced forces on the particles and manifold
nodes, new positions of these particles and manifold nodes are ob-
tained using Newton’s second law. Then, the displacement of the
NMM model is mapped to the particles which are located in the
PMM model. The mapping operation is given as
uLS
ij ¼ ½Nij�T uME

i ð39Þ
where uLS
ij is the mapped displacement from the PMM model to the

linked particle and uME
i is displacement vector of the PMM element.

The interaction between the PMM and the DLSM is achieved
through the interaction of the DLSM particle with the PMM particle
while the interaction between the PMM and the NMM is realized by
sharing common manifold nodes. The PMM model is used as the
mid-scale layer to attain coupling of the DLSM and the NMM.

The time step is selected as the minimum value of the time step
used for the NMM and the DLSM models. In practical applications,
the time step of the DLSM model is typically selected since the size
of the DLSM particles is always smaller than the NMM element
size.



Fig. 19. Contour map of the y-direction displacement at the different steps.
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3.3. Releasing PMM element into DLSM

In this section, we will discuss the technique of automatically
releasing the PMM element into the DLSM during numerical simu-
lations. The release of particles is treated as a pre-failure process in
the m-DLSM. A reduced macroscopic strength criterion is used as
the releasing criterion. When the state of the PMM element satis-
fies this criterion, the PMM element is transformed into the DLSM
model. In this paper, a simple maximum strain-based criterion is
used as the releasing rule. The PMM element will be released into
the DLSM model when strain state of the PMM element satisfies

e1 > ce�t ð40Þ

where e1 is the maximum main strain of the PMM element, e�t is the
ultimate strain of the model and c is a reduction factor which is ta-
ken as 0.8. When the PMM element is released, it will be removed
from the calculation cycle and newly released particles will take
part in the subsequent calculation cycle of the DLSM model. The
failure in the DLSM is realized: when the normal or shear displace-
ment of the bond exceeds a prescribed value. In this case, the bond
between to particles is broken and a contact bond with zero
strength is established.
4. Examples

4.1. Simple tensional test

In this section, the pure tensile loading of a bar measuring
10 mm � 10 mm � 20 mm is simulated. The purpose is to test
the influence of the different coupling techniques on the simula-
tion results and to validate the correctness of the proposed meth-
od. Four coupled DLSM models are shown in Fig. 9. The applied
boundary force is 1 MPa and the elastic properties of the model
are as follows: elastic modulus 12.5 GPa and Poisson’s ratio 0.3.
The first model is a full DLSM model (see Fig. 9a) which is made
up of 1 mm diameter particles; the second is made up of the DLSM
model and the PMM models with an element length of 5 mm
(Fig. 9b). The third model uses the NMM & DLSM (see Fig. 9c),
and the final model is a three layer model that includes the
NMM, PMM & DLSM models (shown in Fig. 9d). The simulation re-
sults in terms of contour maps of displacement in the z-direction
(loaded direction) are shown in Fig. 10.

From Fig. 10 it can be seen that the DLSM & NMM without
appropriate coupling cannot predict the displacement pattern cor-
rectly (see Fig. 10c). The results are improved when DLSM & NMM
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models are coupled using the proposed PMM model. A comparison
of the displacements in the z-direction at the top surface of the
model are compared with the analytical solution. The expected dis-
placement in the z direction of the top surface is given as

u� ¼ ð1� m2ÞPL�

E
ð41Þ

where u⁄ is the expected displacement and L⁄ is the effective length
of the model which is defined as the distance from the fixed bound-
ary to the loading point. Notice that for particle based models, due
to the size of the particles and the fact that we can only apply the
boundary conditions at the center of the particles, therefore, the
effective length for different coupled models may not be identical
depending on the configuration of the particle based component
of the model. The effective length and the predicted displacement
in z-direction for the different coupled DLSM models are listed in
Table 1, which shows that the appropriateness of the proposed cou-
pling procedure.

To further verity the application of model proposed, the prob-
lem of a cantilever beam is simulated using the DLSM & PMM &
NMM coupled model (Fig. 9d). The left end of the beam is fixed
and the right end is subjected to a traction force of 1 MPa. The par-
ticle size is taken as 0.25 mm in diameter and the mesh size of the
NMM model is 1.0 mm � 1.0 mm � 1.0 mm. The problem is also
simulated using a FEM model with a resolution of 10 � 10 � 40
using 4000 8-node elements, as a reference solution. Two section
lines, Line I ((2.375, 2.375, 10.125)–(2.375, 2.375, 19.875)) and Line
II ((7.375, 7.375, 10.125)–(7.375, 7.375, 19.875)), are selected for
recording of the displacements predicted by the coupled DLSM
model. A full comparison with the displacement field of the FEM
is given in Fig. 11. It can be seen that the displacement field pre-
dicted by coupled DLSM is almost identical to that of FEM model.
The maximum error for the displacement in the y-direction, along
these two lines, is less than 2.00%.
Fig. 20. The computational model of blasting wave propagation through rock
cavern.
4.2. Uniaxial loading of a plate with a circular hole

A square plate containing a central circular hole is selected as
another example to demonstrate the ability of coupled DLSM to
model static elastic problems. The dimension of the plate is
100 mm � 200 mm � 10 mm and a circular hole with radius of
20 mm is located at the center of the plate. The two coupled DLSM
models used are shown in Fig. 12, the DLSM & PMM & NMM model
(Fig. 12a) and PMM & NMM model (Fig. 12b). The applied bound-
ary force at the top of the plane is 1 MPa and the bottom boundary
is fixed during calculation. Material properties of the model are the
elastic modulus,12.5 Gpa, and the Poisson’s ratio, 0.30.
Fig. 21. The coupled model for the blast w
Contour maps of the displacement in the y-direction for these
two models are shown in Fig. 13. The same distributions are ob-
tained for different coupled models, showing that the PMM model
can reproduce the DLSM results with a substantially reduced com-
putational effort. The displacements in the y-direction at detection
points, A (0.5, 100.5, 5.5), B (10.5, 100.5, 5.5), C (20.5, 100.5, 5.5), D
(79.5, 100.5, 5.5), E (89.5, 100.5, 5.5) and F (99.5, 100.5, 5.5), were
recorded and are listed in Table 2.

4.3. Wave propagation through an elastic bar

This example is used to show the ability of the coupled DLSM to
model wave propagation through an elastic bar. The two coupled
DLSM models are shown in Fig. 14. The model dimensions are
20 mm � 20 mm � 200 mm. The material parameters are: elastic
modulus 12.5 GPa, Poisson’s ratio 0.3 and density 2650 kg/m3. A
half-cycle sinusoidal velocity wave with 100 mm/s amplitude
and 50,000 Hz frequency is applied at the left boundary. The right
boundary of the bar is free while the other four side boundaries are
all fixed in their normal direction.

Fig. 15 show the contour maps of the particle velocity in the z-
direction for the full DLSM model and DLSM & PMM coupled mod-
el. The propagation and reflection of the wave can be observed
clearly for these two models. Four detection points, A (5.5, 5.5,
0.5), B (5.5, 5.5, 50.5), C (5.5, 5.5, 150.5) and D (5.5, 5.5, 199.5),
are placed in the bar to record the wave propagation through the
model. The recorded waves at these points for the different models
ave propagation through rock cavern.



Fig. 22. Triangle pressure wave to represent blasting loading.

Fig. 23. The velocity histories predicted by coupled DLSM and field test.
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are shown in Fig. 16. The DLSM & PMM model produces slightly
different wave forms at some detection points since the PMM ele-
ment size is larger than the particle size of the DLSM which causes
some high frequency parts of the wave to be filtered out in the cou-
pled DLSM & PMM model. Even so, both the wave form and the
amplitude are in good agreement between two models. This exam-
ple shows that coupled DLSM can accurately predict the dynamic
loads transmitted through an elastic body.
Fig. 24. Computational model for a tunnel under blast loading.
4.4. Progressive failure of a solid specimen with a side notch

A solid specimen with a side notch, as shown in Fig. 17, is sim-
ulated using the m-DLSM. The mechanical properties of the mate-
rial are the elastic modulus 12.5 GPa, Poisson’s ratio 0.3 and
density 2650 kg/m3. The particle size of the DLSM model is taken
as 1 mm and the manifold element length is taken as 5 mm. The
solid specimen is 100 mm � 200 mm � 5 mm and the notch is
20 mm � 5 mm � 5 mm. The ultimate strain for the PMM element
is taken as 4 � 10�4 and the reduction factor for the releasing cri-
teria is taken as 0.8. The ultimate deformation of the lattice bond in
the DLSM is given as 5 � 10�4mm. The applied force on the top
boundary is taken as 1 MPa while the bottom boundary is fixed.

During computation, the PMM elements near the notch are first
transformed into the DLSM model. The DLSM is then further
broken down and finally forms a fracture. Fig. 18 shows the process
of PMM elements releasing/converting into DLSM particles.
Contour maps of the y-displacement for the six stages are pre-
sented in Fig. 19. With regard to the failure patterns obtained,
the simulation gives a realistic description of the fracturing process
of the notched solid specimen under tensile loading, which is only
Fig. 25. The coupled model for the blast
a simple example to show the ability of the proposed method to
model crack propagation.
wave propagation through a tunnel.



Fig. 26. The failure process of a tunnel under blast loading (Model III) (contour map of velocity in x-direction).
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4.5. Dynamic failure of a tunnel under blasting loading

4.5.1. Blasting wave propagation through rock cavern
In this section, the blasting induced wave propagation through

rock cavern is simulated by coupled DLSM and compared with the
field test data provided in [31,32]. The computational model with
dimension of 80 m � 60 m � 5 m is constructed, where an explo-
sion chamber of 4 m � 2 m is excavated (seen in Fig. 20). The cou-
pled DLSM is shown in Fig. 21, the particle size used is 0.25 m in
diameter and the mesh size of the NMM model is given as
1.00 m � 1.00 m � 1.00 m. A plane strain analysis is performed.
The mechanical properties assumed for the rock material are: the
elastic modulus = 74.0GPa, the Poisson’s ratio = 0.25 and the den-
sity = 2650 kg/m3, which are typical of the material parameters
for Bukit Timah granite [31]. A triangular over-pressure history
with two phases (see Fig. 22) is used to represent the blasting wave
of effective TNT charge weight of 606 kg with a loading density of
10 kg/m3. The maximum over-pressure Pmax is equal to 30.23 MPa,
the duration of rise phase t1 and the total duration t2 are 0.5 and
2.5 ms, respectively. These parameters of triangular over-pressure
history are calculated using the empirical equations provided in
[33]. The velocity history predicted by coupled DLSM model is
compared with the test data at 8 m above the detonation point
(see Fig. 23). The agreement of DLSM modeling and field test is
similar with the results of FEM reported in [33].
4.6. Dynamic failure of a tunnel under blasting loading

Here, the blast wave propagation through a rock mass and the
influence of discontinuities on the failure pattern of a tunnel is
simulated using the m-DLSM, which is a problem of tremendous
concern in rock engineering [34,35]. Fig. 24 shows the computa-
Fig. 27. Failure modes of different models under blasting loads.
tional model and boundary conditions of the problem analysed.
The model is 50 m � 50 m � 2 m and with a particle size of
0.125 m. For the DLSM model, more than two million particles
are needed to build the computational model; that is more than
ten millions of pieces of bond information needs to be stored,
which is computationally prohibitive for a normal PC. However,
only about half a million particles are used in the coupled DLSM
model (see Fig. 25). A blasting load is applied at the left of the
boundary from 20 m to 24 m vertically to simulate an explosion
chamber of 4 m � 2 m. The blast wave is inputted as a triangular
over-pressure history with two phases exactly as in the previous
section. The material properties of the rock are: elastic modulus
74 GPa, Poisson’s ratio 0.2 and density 2650 kg/m3. The ultimate
bond deformation is 2.5e�6 m. A discontinuity is represented by
setting a material layer with a weaker elastic modulus, where
the weakness ratio is taken as 1.0 (Model I), 0.5 (Model II),
0.1(Model III) and 0.01 (Model IV). The modeling results of Model
III are shown in Fig. 26, where the left hand side of the tunnel is
broken under blast loading.

The failure patterns of coupled DLSM models with different
stiffnesses of discontinuity are shown in Fig. 27. The failure pattern
of the tunnel is influenced by the stiffness of the discontinuity.
When the stiffness is decreased, the degree of damage first in-
creases and then decreases. This is an interesting result and shows
that the damage of a tunnel under dynamic loading can be reduced
through pre-setting some weak discontinuity/cavern. If the discon-
tinuity is weak enough spalling happens further away from the
tunnel (see Fig. 27d). This example clearly shows that the coupled
DLSM can be used to solve previously inaccessible problems using
DLSM in a normal PC. However, more complex constitutive model-
ing for bond springs in DLSM and more advanced representation
techniques of discontinuities are needed to further apply the cou-
pled DLSM to real engineering problems.

5. Conclusions

This paper presents a coupled lattice spring model, in which the
DLSM is coupled with the NMM. A three layer structure is used to
combine DLSM and NMM, using the PMM to bridge the DLSM and
NMM. PMM simplifies contact detection between the particles in
DLSM model and the NMM model and also serves as a cushioning
layer which can reduce the spurious wave reflection between the
micro and macro models. The proposed coupled model can be used
to model dynamic fracturing and wave propagation problems. A
few examples are provided to validate the correctness of the pro-
posed coupling method. The examples given highlight the poten-
tial of the coupled DLSM in solving problems previously
inaccessible for DLSM using a normal PC.
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Appendix A

In this appendix, Eq. (7) used for evaluating the deformation of
shear springs in DLSM is derived. Consider a cubical unit volume
containing a bond connecting two particles as shown in Fig. A1.

The complete 1st order displacement function of the cube is
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Assuming the center of the cube is at (xc, yc, zc), then its displace-
ment is represented by
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Subtracting (A.2) from (A.1) gives
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Equation (A.3) can be further written as
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From (A.4), we have
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Fig. A1. Illustration of the deformation of a cubic
Using the above relations, Eq. (A.4) can be transformed into
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Denoting the coordinates of the two particles in the cube as (x1, y1,
z1) and (x2, y2, z2) and the displacement of particles as (u1, v1, w1)
and (u2, v2, w2), the relative displacement vector between the two
particles is
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and the normal unit vector is
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where l is the length of the bond. The relative normal displacement
vector is defined as
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By vector operation, the relative shear displacement vector is ob-
tained as
unit with a bond connecting two particles.
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Now, applying the equation (A.5), the relative displacement vector
can be represented as
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With the above equation, it is straightforward to show that the rel-
ative normal displacement vector is only dependant on the corre-
sponding strain term because of the following equivalence
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However, for the relative shear displacement vector, if we directly
substitute (A.10) into (A.9), the term due to rotation will not vanish.
It is known that rigid rotation of the cube should not produce strain
energy. Therefore, in DLSM, the rotation related term is removed
from the calculation of the relative shear displacement vector,
namely, the relative displacement vector in (A.9) is not calculated
using (A.10) or (A.6), but by
Table B1
Shape functions and their derivatives at different nodes of the 8-noded 3D FEM
element.

i Niðx; y; zÞ ¼ 1� ðx�xiÞðy�yiÞðz�ziÞ
L3 Ni;xðx; y; zÞ ¼ � ðy�yiÞðz�ziÞ

L3

Ni;yðx; y; zÞ ¼ � ðx�xiÞðz�ziÞ
L3 Ni;zðx; y; zÞ ¼ � ðx�xiÞðy�yiÞ

L3

j Njðx; y; zÞ ¼ 1þ ðx�xjÞðy�yjÞðz�zjÞ
L3 Nj;xðx; y; zÞ ¼

ðy�yjÞðz�zjÞ
L3

Ni;yðx; y; zÞ ¼ � ðx�xiÞðz�ziÞ
L3 Ni;zðx; y; zÞ ¼ � ðx�xiÞðy�yiÞ

L3

k Nkðx; y; zÞ ¼ 1� ðx�xkÞðy�ykÞðz�zkÞ
L3 Nk;xðx; y; zÞ ¼ � ðy�ykÞðz�zkÞ

L3

Nk;yðx; y; zÞ ¼ � ðx�xkÞðz�zkÞ
L3 Nk;zðx; y; zÞ ¼ � ðx�xkÞðy�ykÞ

L3

l Nlðx; y; zÞ ¼ 1þ ðx�xl Þðy�yl Þðz�zlÞ
L3 Nl;xðx; y; zÞ ¼ ðy�ylÞðz�zlÞ

L3

Nl;yðx; y; zÞ ¼ ðx�xlÞðz�zlÞ
L3 Nl;zðx; y; zÞ ¼ ðx�xl Þðy�yl Þ

L3

m Nmðx; y; zÞ ¼ 1þ ðx�xmÞðy�ymÞðz�zmÞ
L3 Nm;xðx; y; zÞ ¼ ðy�ymÞðz�zmÞ

L3

Nm;yðx; y; zÞ ¼ ðx�xmÞðz�zmÞ
L3 Nm;zðx; y; zÞ ¼ ðx�xmÞðy�ymÞ

L3

n Nnðx; y; zÞ ¼ 1� ðx�xnÞðy�ynÞðz�znÞ
L3 Nn;xðx; y; zÞ ¼ � ðy�ynÞðz�znÞ

L3

Nn;yðx; y; zÞ ¼ � ðx�xnÞðz�znÞ
L3 Nn;zðx; y; zÞ ¼ � ðx�xnÞðy�ynÞ

L3

o Noðx; y; zÞ ¼ 1þ ðx�xoÞðy�yoÞðz�zoÞ
L3 No;xðx; y; zÞ ¼ ðy�yoÞðz�zoÞ

L3

No;yðx; y; zÞ ¼ ðx�xoÞðz�zoÞ
L3 No;zðx; y; zÞ ¼ ðx�xoÞðy�yoÞ

L3

p Npðx; y; zÞ ¼ 1� ðx�xpÞðy�ypÞðz�zpÞ
L3 Np;xðx; y; zÞ ¼ �

ðy�ypÞðz�zpÞ
L3

Np;yðx; y; zÞ ¼ � ðx�xpÞðz�zpÞ
L3 Np;zðx; y; zÞ ¼ �

ðx�xpÞðy�ypÞ
L3

Note: L is the length of the cubic element.
û12x

û12y

û12z

0
B@

1
CA ¼ x2 � x1 0 0

0 y2 � y1 0
0 0 z2 � z1

0
B@

1
CA exx

eyy

ezz

0
B@

1
CA

þ
0 z2 � z1 y2 � y1

z2 � z1 0 x2 � x1

y2 � y1 x2 � x1 0

0
B@

1
CA eyz

ezx

exy

0
B@

1
CA

¼
exx exy ezx

exy eyy eyz

ezx eyz ezz

0
B@

1
CA x2 � x1

y2 � y1

z2 � z1

0
B@

1
CA ðA:11Þ

Writing (A.11) in the vector form, we obtain

ûij ¼ ½e� � nl ðA:12Þ

Finally, the relative shear displacement vector (the vector form of
(A.9)) can be written as

ûs
ij ¼ ½e� � nl� ðð½e� � nlÞ � nÞn ðA:13Þ

which is Eq. (7) used the text.
Appendix B

Shape functions used in m-DLSM (see Table B1).
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