Magnetic resonance studies of brain function and neurochemistry

In the short time since its introduction, magnetic resonance imaging (MRI) has rapidly evolved to become an indispensable tool for clinical diagnosis and biomedical research. Recently, this methodology has been successfully used for the acquisition of functional, physiological, and biochemical information in intact systems, particularly in the human body. The ability to map areas of altered neuronal activity in the brain, often referred to as functional magnetic resonance imaging (fMRI), is probably one of the most significant recent achievements that rely on this methodology. This development has permitted the examination of functional specialization in human and animal brains with unprecedented spatial resolution, as demonstrated by mapping at the level of orientation and ocular dominance columns in the visual cortex. These functional imaging studies are complemented by the ability to study neurochemistry using magnetic resonance spectroscopy, allowing the determination of metabolic processes that support neurotransmission and neurotransmission rates themselves.

Published in:
Annual Review of Biomedical Engineering, 2, 2000, 633-660

 Record created 2012-05-27, last modified 2018-03-17

Publisher's version:
Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)