Simultaneous Determination of the Rates of the TCA Cycle, Glucose Utilization, α-Ketoglutarate/Glutamate Exchange, and Glutamine Synthesis in Human Brain by NMR

Graeme F. Mason, Rolf Gruetter, *Douglas L. Rothman, †Kevin L. Behar, Robert G. Shulman, and ‡Edward J. Novotny

Departments of Molecular Biophysics & Biochemistry, *Internal Medicine, †Neurology, and ‡Pediatrics, Yale University School of Medicine, New Haven, Connecticut, U.S.A.

Summary: 13C isotopic tracer data previously obtained by 13C nuclear magnetic resonance in the human brain in vivo were analyzed using a mathematical model to determine metabolic rates in a region of the human neocortex. The tricarboxylic acid (TCA) cycle rate was 0.73 ± 0.19 μmol min⁻¹ g⁻¹ (mean ± SD; n = 4). The standard deviation reflects primarily intersubject variation, since individual uncertainties were low. The rate of α-ketoglutarate/glutamate exchange was 57 ± 26 μmol min⁻¹ g⁻¹ (n = 3), which is much greater than the TCA cycle rate; the high rate suggests that α-ketoglutarate and glutamate are in rapid exchange and can be treated as a single combined kinetic pool. The rate of synthesis of glutamine from glutamate was 0.47 μmol min⁻¹ g⁻¹ (n = 4), with 95% confidence limits of 0.139 and 3.094 μmol min⁻¹ g⁻¹; individual uncertainties were biased heavily toward high synthesis rates. From the TCA cycle rate the brain oxygen consumption was estimated to be 2.14 ± 0.48 μmol min⁻¹ g⁻¹ (5.07 ± 1.14 ml 100 g⁻¹ min⁻¹; n = 4), and the rate of brain glucose consumption was calculated to be 0.37 ± 0.08 μmol min⁻¹ g⁻¹ (n = 4). The sensitivity of the model to the assumptions made was evaluated, and the calculated values were found to be unchanged as long as the assumptions remained near reported physiological values. Key Words: Brain metabolism—CMRglu—CMRO₂—Glutamine synthesis—13C Nuclear magnetic resonance—Tricarboxylic acid cycle.

The stable isotope 13C combined with nuclear magnetic resonance (NMR) spectroscopy allows the noninvasive, regional measurement of single and multiple metabolic rates to be made (Cohen et al., 1980; Fitzpatrick et al., 1990; Malloy et al., 1990; Mason et al., 1992a; Rothman et al., 1992) without the use of radioactive tracers. When 13C-labeled glucose is supplied to the brain, the 13C label enters several metabolites at multiple positions, and these isotopically labeled compounds become detectable and can be distinguished in vivo by 13C NMR spectroscopy (Behar et al., 1986; Beckmann et al., 1991; Gruetter et al., 1992a, 1994). The high acid; V₉, rate of acetyl CoA entry into the TCA cycle from β-hydroxybutyrate; V₈:₉: rate of unlabeled influx at or after lactate; V₉, rate of acetyl CoA entry into the TCA cycle from glycolysis; V₉, glucose/glutamate/glycoconjugate cycling rate; V₉, rate of glutamate C4 labeling; V₉, net rate of lactate and pyruvate efflux; V₉, net rate of flow through citrate synthase; V₉, α-ketoglutarate/glutamate exchange rate. (All concentrations have units of μmol g⁻¹ wet weight. All rates have units of μmol min⁻¹ g⁻¹ wet weight.)
chemical specificity of NMR permits the identification of 13C label in specific positions of given compounds and allows the calculation of multiple metabolic rates and substrate concentrations simultaneously when analyzed with mathematical models (Chance et al., 1983; Mason et al., 1992a). 13C isotopomer analysis allows the evaluation of relative metabolic rates (Cohen et al., 1979; Malloy et al., 1990a). Recent improvements in resolution (Gruetter et al., 1992b; Gruetter et al., 1994) now permit 13C isotopomer analysis in the human brain in vivo, presented here.

Radioisotope methods use the measurement of total radioactivity incorporated into a volume of tissue to determine rates of substrate consumption. The radioactivity derived from a specific substrate or its metabolites cannot be distinguished with these techniques, so these methods often require the use of metabolically inert substrate analogues, comparative studies with compounds radioisotopically labeled at different sites (Hawkins et al., 1985), and complex mathematical and statistical methods to determine specific metabolic rates (Rappoport, 1991). Despite these formidable technical difficulties, over the past two decades these techniques have become the best methods for measuring regional metabolic rates.

13C isotope flows in the rat brain have been measured by the 1H-observed/1C-editing (POCE) method in which 13C enrichments were detected from the coupled 1H resonances (Rothman et al., 1985; Fitzpatrick et al., 1990). These observations have been analyzed by a quantitative flow model in which the assumptions of concentrations and activities were validated by comparison with literature values. In this paper a similar modeling analysis was applied to the data of Gruetter et al. (1994) obtained from the human brain in vivo to determine the rates of the tricarboxylic acid (TCA) cycle (V_{tca}), the synthesis of glutamine from glutamate (V_{gln}), and the exchange of α-ketoglutarate (α-KG) and glutamate (V_x). From these rates the rates of glucose utilization (CMRgl) and oxygen utilization (CMRO$_2$) were derived. In the following sections we first present a description of the model and show how it was used for data analysis. Second, the results of the analysis are presented. Third, the effects of possible errors arising from the assumptions of the model are assessed to evaluate the sensitivity of the calculation of V_{tca} to possible errors in the input assumptions.

METABOLIC MODEL

The time courses of 13C fractional enrichment were modeled using mass and isotope balance equations written for individual carbon positions of metabolites as described by Mason et al. (1992a). The system of equations was adjusted to fit the 13C NMR data to determine the metabolic rates in the human brain. The model (Fig. 1) was simplified slightly from that used by Mason et al. (1992a) for the rat brain, because of the scarcity of data about some aspects of human brain metabolism (e.g., the concentrations of metabolic intermediates); the potential effects of these simplifications are evaluated under Results Section II. The differential equations that describe each of the metabolite carbon atom positions are given in Table I.

The model assumptions were analogous to those of Mason et al. (1992a) for the rat. (1) Metabolites in

![FIG. 1. Schematic representation of the model. Glucose in the plasma (G_0) and the brain (G_i) exchange via the Michaelis–Menten kinetic parameters K_m (4.9 mM) and V_{max} (3.6 × CMRgl). Carbon flows at the rate 2CMRgl (µmol min$^{-1}$ g$^{-1}$) through the glycolytic intermediates, assumed to have negligible concentrations, and arrives at pyruvate, pyruvate and lactate are assumed to be in isotopic equilibrium and are therefore added to form a single pool [L = 0.6 µmol g$^{-1}$ (Hanstock et al., 1988)]. There is an efflux of lactate V_{out} [0.12 µmol min$^{-1}$ g$^{-1}$ (calculated from Knudsen et al., 1991; Jehlin-Dannfält, 1977)]. Unlabeled carbon enters the acetyl CoA pool to be utilized at the rate V_{ac}. KG also enters the TCA cycle at this point and labels α-KG and glutamate [9.1 µmol g$^{-1}$ (Gruetter et al., 1994)] at carbon 4, and the 13C is exchanged between the mitochondrial and the cytosolic pools of each; these exchanges are reduced to a single exchange rate (V_e) between one group pool of glutamate (Glu$_4$) and a second group pool of α-ketoglutarate (α-KG$_4$ = 0.0183 × Glu$_4$ (Hawkins and Mans, 1983)]. Glutamine (4.1 µmol g$^{-1}$) is synthesized from glutamate at a rate V_{gln} (µmol min$^{-1}$ g$^{-1}$). The 13C label continues through the cycle to KG$_3$ and Glu$_3$, and on subsequent turns of the TCA cycle one-half of the label returns to KG$_3$ and Glu$_3$.]

TABLE 1. The differential equations that describe the model

\[
\begin{align*}
\frac{dG}{dt} &= V_{\text{gcm}} G(K_m + G) - V_{\text{gcm}} G(K_m + G) - \text{NMR}_{\text{g}} \\
\frac{dL}{dt} &= \frac{dG}{dt} - \frac{dG_{\text{rs}}}{dt} = \frac{dG_{\text{rs}}}{dt} = 0 \\
\frac{dG_{\text{rs}}}{dt} &= V_{\text{max}} G(K_m + G) - V_{\text{max}} G(K_m + G) - \text{NMR}_{\text{g}} \\
(G_i G_j G_k) & \\
\frac{dL}{dt} &= \text{CMR}_{\text{L}} (K_i G_j G_k) - (\text{CMR}_{\text{L}} + V_{\text{L}})(L K_i G_j G_k) \\
\frac{dK_i G_j G_k}{dt} &= (\text{CMR}_{\text{L}} - V_{\text{L}})(K_i G_j G_k) + (K_i G_j G_k) + V_{\text{L}} G_{\text{rs}}(G_i G_j G_k) \\
\frac{dG_{\text{rs}}}{dt} &= V_{\text{L}} G_{\text{rs}} G_{\text{rs}} G_{\text{rs}}(G_i G_j G_k) + V_{\text{L}} G_{\text{rs}} G_{\text{rs}} G_{\text{rs}}(G_i G_j G_k) \\
\frac{dG_{\text{rs}}}{dt} &= V_{\text{L}} G_{\text{rs}} G_{\text{rs}} G_{\text{rs}}(G_i G_j G_k) + V_{\text{L}} G_{\text{rs}} G_{\text{rs}} G_{\text{rs}}(G_i G_j G_k) \\
\frac{dG_{\text{rs}}}{dt} &= V_{\text{L}} G_{\text{rs}} G_{\text{rs}} G_{\text{rs}}(G_i G_j G_k) + V_{\text{L}} G_{\text{rs}} G_{\text{rs}} G_{\text{rs}}(G_i G_j G_k) \\
\frac{dG_{\text{rs}}}{dt} &= V_{\text{L}} G_{\text{rs}} G_{\text{rs}} G_{\text{rs}}(G_i G_j G_k) + V_{\text{L}} G_{\text{rs}} G_{\text{rs}} G_{\text{rs}}(G_i G_j G_k) \\
\end{align*}
\]

A superscript asterisk denotes molecules labeled with 13C at the carbon position denoted by the subscripted number.

Rapid chemical and isotopic exchange were represented by a single kinetic pool whose concentration equals the sum of its constituents. (2) Glucose provided the only 13C-labeled carbon substrate for the TCA cycle. (3) Gluconeogenesis was negligible in the human brain, as shown in the rat brain (Hawkins and Mans, 1983). (4) The subjects were sensorily-deprived to minimize chance stimulation and hence the system was in a metabolic steady state throughout the experiment. Previous 1H NMR measurements during glucose infusions in rats (Fitzpatrick et al., 1990) and humans (Rothman et al., 1992) have shown that the total concentrations of all detectable metabolites except glucose were constant. (5) Glutamate was the precursor for glutamine synthesis. (6) Glutamate was assumed to behave as a single kinetic pool, indistinguishable from a small pool and a large pool. (7) Isotopic exchange among the mitochondrional and cytosolic pools of α-KG and glutamate were represented as a single exchange reaction described by the rate V_x (Mason et al., 1992a). This was one of the three rates determined by fitting the data with the model. The other two were the TCA cycle rate and V_{gnh}.

Two of the assumptions differed from those made previously for the rat brain: (a) Glucose transport was limited by the blood–brain barrier and transport kinetics were described by the symmetric Michaelis–Menten model using kinetic constants determined in human brain by Gruetter et al. (1992a) using 13C NMR, whereas glucose transport was assumed to be infinitely fast in the rat brain. (b) Small pools of glycolytic and TCA cycle intermediates were neglected.

The values of V_{gcm}, V_x, and V_{gnh} were adjusted iteratively by computer to obtain the best fits to the data. Inputs for the modeling analysis are categorized either as data measured in the NMR experiment or as previously published data. Data from the NMR experiments (Gruetter et al., 1993) consisted of (a) the measured time courses of the plasma glucose concentration and its 13C fractional enrichment, (b) the time courses of the C4 and C3 enrichments of glutamate and the C4 label concentrations of glutamate and glutamine, (c) the total (12C + 13C) concentrations of glutamate and glutamine, (d) the steady-state fractional enrichment of glutamate C4, and (e) an upper limit of 0.1 μmol g$^{-1}$ for the concentration of α-KG because its NMR signal was too low to detect; Howse and Duffy (1975) reported a concentration of 0.1 μmol g$^{-1}$ for the rat brain and showed that aspartate aminotransferase was in thermodynamic equilibrium. Data from previously published measurements consisted of (a) blood–brain glucose transport kinetics (Gruetter et al., 1992a), (b) the concentration of brain lactate measured by 1H NMR (Hanstock et al., 1988), and (c) the rate of lactate efflux from the brain (Juhlin-Dannfelt, 1977; Knudsen et al., 1991).

METHODS

This section describes the stepwise procedure for fitting the model to the data to derive each parameter.

The present work is a detailed analysis of data obtained by Gruetter et al. (1994), who infused $[1,^{13}$C$]glucose into healthy adult volunteers over periods of 2–3 h. During the infusions, carbons 3 and 4 of glutamate and glutamine were labeled with 13C, and direct 13C detection with 1H decoupling was used to detect the glutamate and glutamine labeling time courses. At isotopic steady state, fractional 13C enrichments and concentrations were determined for glutamate and glutamine. The time courses of 13C glucose fractional enrichments were measured by gas chromatography–mass spectrometry and 1H NMR spectroscopy at 360 MHz (Behar et al., 1986; Mason et al., 1992b). More technical details of the data acquisition and analysis are described by Gruetter et al. (1994). The time courses of the glutamate C4, glutamate C3, and glutamine C4 concentrations and the C4 and C3 enrichments of glutamate were analyzed in the present work. The assumed metabolite concentrations and rates are given in the legend to Fig. 1. The modeling analysis was implemented on a 33-MHz 486 personal computer (Dell 433E, Austin, TX, U.S.A.) with Turbo Pascal 3.0 (Borland International, Inc., Scotts Valley, CA, U.S.A.), using a Runge–Kutta method to solve the differential equations and a modified simplex algorithm to iterate the parameters to find best fits as reported previously (Mason et al., 1992a). The 200 min of experimental data were divided into 1,000–32,000 intervals for the numerical integration of the differential equations.

A three-step procedure was used to determine the values of $V_{\text{gnh}}, V_{\text{tn}},$ and V_x. (1) The NMR-measured time courses of glutamine C4 and glutamate C4 were compared to determine the value of V_{gnh}. (2) The time course of glutamate C4 was analyzed with respect to the plasma glucose concentration and 13C enrichment time courses to determine the rate of glutamate C4 turnover (V_{tn}). (3) The time courses of glutamate C4 and glutamate C3 en-
enrichment were compared to determine V_x and V_{tca}. These three steps are described in detail in the following.

The numerical method used to determine uncertainties in iterated parameters was described by Mason et al. (1992a). The method translated the signal-to-noise ratios of the data into standard deviations about the expected value for the parameters iterated. The same method is also applied here to determine 95% confidence intervals for the nonnormally distributed parameter V_{gln}.

Determination of the rate V_{gln}

In a single-compartment model, glutamine is formed from glutamate and is consistent with Fig. 1. On this basis the glutamate C4 time course was used as the input function for the analysis of the glutamine C4 time course. The expression for $d\text{Gln}_4^*/dt$ in line 7 in Table 1 was fitted to the glutamine C4 time courses from Gruetter et al. (1994) to determine the value of V_{gln}.

Based on enzymatic and isotopic data, glutamine is believed to be synthesized from a small pool of glutamate exclusively in a second compartment (for review see Cooper and Plum, 1987). Since in vivo glutamate C4 was observed to be labeled almost as rapidly as glutamate C4 (Gruetter et al., 1994), a two-compartment analysis must permit either (1) rapid transport and uptake of labeled glutamate and conversion to glutamine, which is mathematically identical to the one-compartment model, or (2) rapid labeling of glutamine from a small pool of glutamate labeled by $[1-\text{C}]$glucose, which yields the same TCA cycle rate as the model in Fig. 1 (this is demonstrated under Discussion).

Determination of V_{gt}

Gruetter et al. (1994) observed a small decrease in the steady-state fractional enrichments of glutamate C4 compared to the theoretical value (one-half of the plasma glycose $1-\text{C}$ enrichment). This dilution was explained by the pentose phosphate shunt flux and the influx of unlabeled substrates from the blood, as discussed later. The dilution is described in the model by a rate of isotopic dilution V_{dil}. The reported dilution cannot be caused by metabolically inactive pools, since the isotope incorporation analysis used by Gruetter et al. (1994) measures the enrichments of pools of metabolites that are labeled by glucose. However, the agreement of the concentrations of glutamate and glutamine with previously reported values indicates that essentially all of these two pools turn over rapidly and are metabolically active. To determine V_{dil}, relative to V_{gt}, the steady-state fractional enrichments of glutamate C4 and $[1-\text{C}]$glucose were compared. For a given plasma $[1-\text{C}]$glucose enrichment G_o^*/G_o, the steady-state glutamate C4 enrichment expected would be $\frac{G_o^*}{G_o}$ if V_{dil} were zero, so

$$V_{\text{dil}}/V_{\text{gt}} = 1 - (\text{Glu}_4^*/\text{Glu})/(\frac{G_o^*}{G_o})$$

(1)

Equation 1 was used to calculate the value of $V_{\text{dil}}/V_{\text{gt}}$, and the simplified model in Fig. 2 was fitted to the glutamate C4 time course for each subject by iteration of the value of V_{gt}.

Determination of V_{tca} and V_x from glutamate C4 and glutamate C3 data

As described by Mason et al. (1992a), the ratio V_x/V_{tca} can be evaluated by comparison of the glutamate C4 and glutamate C3 labeling time courses. The relationship between V_{gt} and the metabolic rates V_x and V_{tca} is

$$V_{\text{tca}} = V_{\text{gt}} \left(\frac{1 + (V_x/V_{\text{tca}})}{V_{\text{tca}}} \right)$$

(2)

To determine the values of V_{tca} and V_x/V_{tca} from V_{gt}, the ratio V_x/V_{tca} was iterated to fit the model to the glutamate C3 enrichment data. The value of V_{tca} was calculated for each subject with Eq. 2, using the individual's values of V_{gt} and V_x/V_{tca}. The value of V_x was then calculated from V_{tca} and V_x/V_{tca}.

RESULTS, SECTION I

Glutamine synthesis

Given a concentration of glutamine of $4.1 \pm 0.3 \mu\text{mol g}^{-1}$ [mean \pm SD, $n = 4$ (Gruetter et al., 1994)], the average value of V_{gln} for the four subjects was 0.47 $\mu\text{mol min}^{-1} \text{g}^{-1}$ (95% confidence interval = 0.139–3.094 $\mu\text{mol min}^{-1} \text{g}^{-1}$; Table 2 and Fig. 3). The individual distributions of V_{gln} determined from the scatter analysis were not normal and spread toward high numbers, because high values of V_{gln} yielded fits that were similar in quality. For example, the goodness of fit using a value of $V_{\text{gln}} = 0.1 \mu\text{mol min}^{-1} \text{g}^{-1}$ was similar to the good-

![Diagram](image.png)

FIG. 2. Schematic representation of the model used to calculate the rate of glutamate turnover (V_{gt}). The TCA cycle rate and the α-KG/glutamate exchange rate were combined and replaced with V_{gt}. C3-labeled products were irrelevant for the calculation of V_{gt} and are not shown in this schematic.
TABLE 2. The V_{gln} and V_{gl} for each of the four volunteers

<table>
<thead>
<tr>
<th>i</th>
<th>V_{gln} (µmol min(^{-1}) g(^{-1}))</th>
<th>V_{gl} (µmol min(^{-1}) g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.582 (0.172–3.272)</td>
<td>0.906 ± 0.226</td>
</tr>
<tr>
<td>2</td>
<td>0.742 (0.185–6.381)</td>
<td>0.515 ± 0.029</td>
</tr>
<tr>
<td>3</td>
<td>0.402 (0.144–2.173)</td>
<td>0.819 ± 0.056</td>
</tr>
<tr>
<td>4</td>
<td>0.139 (0.053–0.349)</td>
<td>0.628 ± 0.055</td>
</tr>
<tr>
<td>Mean</td>
<td>0.466 (0.139–3.094)</td>
<td>0.718 ± 0.178</td>
</tr>
</tbody>
</table>

To determine V_{gln}, the model was fit to the glutamine C4 time courses using the glutamate C4 time course as input functions. The 95% confidence limits for V_{gln} given in parentheses, were calculated from the signal-to-noise ratios of the glutamine C4 NMR time courses. The model was then fitted to the glutamate C4 time courses (Gruetter et al., 1994) to obtain V_{gl}. The uncertainties in V_{gl} for each volunteer are standard deviations calculated from the scatter of the data about the calculated best fit of the model to the glutamate C4 data. The bottom of column 2 shows the mean value of V_{gln} with average 95% confidence limits, and the bottom of column 3 shows the mean value of V_{gl} ± SD for the four volunteers.

Glutamate C4 and glutamate C3 time course comparison

Fits to data from the same experiment as the data in Fig. 3 are shown in Fig. 4A and B, and the results for all four subjects are given in Table 3. The calculation yielded values of $V_{\text{tca}} = 0.729 ± 0.185$ µmol min\(^{-1}\) g\(^{-1}\) (mean ± SD; $n = 4$) and $V_{x} = 57 ± 26$ µmol min\(^{-1}\) g\(^{-1}\) ($n = 3$). Since $V_{x}/V_{\text{tca}} > 1$, the glutamate effectively acts as a label trap and the rate of glutamate C4 label formation is equivalent to the value of V_{tca}. This validation was previously obtained for $N_{2}O$-anesthetized rats (Mason et al., 1992a). The individual experimental uncertainty in V_{tca} due to noise in the NMR data was only 6–9% for subjects 2–4. The uncertainty for subject 1 was higher (24%) because fewer glutamate C4 data were acquired near steady state.

The value of V_{tca} is influenced by the rate of interconversion of glutamate and glutamine through

![FIG. 3. Fit of the model to the time course of glutamine C4. The fit shows bumps and waves that reflect the behavior of the glutamate C4 time course that was used as input.](image-url)

![FIG. 4. Fits of the model to the time courses of (A) glutamate C4 and (B) glutamate C3 in the same subject as in Fig. 3. The fits to glutamate C4 and glutamate C3 are smoother than the fit to glutamine C4 (Fig. 3). Bumps and waves in the input function (plasma glucose) were smoothed by intervening metabolite pools; the smoothing was a consequence of the damping nature of the first-order kinetic equations in Table 1.](image-url)
TABLE 3. Determination of V_s/N_{ica} and V_{ica}

<table>
<thead>
<tr>
<th>i</th>
<th>V_s/N_{ica} (μmol min$^{-1}$ g$^{-1}$)</th>
<th>V_{ica} (μmol min$^{-1}$ g$^{-1}$)</th>
<th>V_s (μmol min$^{-1}$ g$^{-1}$)</th>
<th>CMR$_{gl}$ (μmol min$^{-1}$ g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>0.926 ± 0.231</td>
<td>42</td>
<td>0.458 ± 0.116</td>
</tr>
<tr>
<td>2</td>
<td>522 ± 0.029</td>
<td>0.522 ± 0.029</td>
<td>41</td>
<td>0.284 ± 0.015</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>0.836 ± 0.057</td>
<td>87</td>
<td>0.419 ± 0.029</td>
</tr>
<tr>
<td>4</td>
<td>136</td>
<td>0.633 ± 0.056</td>
<td>87</td>
<td>0.332 ± 0.028</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>77 ± 51</td>
<td>0.729 ± 0.185</td>
<td>57 ± 26</td>
<td>0.373 ± 0.079</td>
</tr>
</tbody>
</table>

The model in Fig. 1 was fitted to the glutamate C3 time courses to obtain the values for V_s/N_{ica} using the values of V_{ica}, glutamate, V_s, and glutamine determined for each subject. The individual uncertainties are standard deviations calculated from the scatter of the data about the calculated best fit of the model in Fig. 1 to the glutamate C3 time course. The value of V_{ica} for subject 2 was calculated using the average V_s/N_{ica} value from subjects 1, 3, and 4. CMR$_{gl}$ was calculated from the relationship between glycolysis and the TCA cycle rate, shown in Fig. 1 and described under Discussion.

the combined actions of glutamine synthetase and glutaminase (V_{gln}), because this interconversion forces some of the label that passes through glutamate to spend time in the glutamine pool. If V_{gln} were very fast, then the 13C would label both glutamate and glutamine as if they were a single metabolic pool. If V_{gln} were very slow, then glutamine would have a negligible influence on the glutamate C4 time course. Since the glutamate C4 time course lags the glutamate C4 time course slightly but significantly, we know that neither extreme is the case. Because the value of V_{gln} (0.47 μmol min$^{-1}$ g$^{-1}$) had a broad distribution biased toward high values (95% confidence interval = 0.139–3.094 μmol min$^{-1}$ g$^{-1}$; Table 2), the effects of a range of values of V_{gln} upon the determination of V_{ica} and the concentration of glutamate were evaluated (Table 4). It was found that once the value of V_{gln} was 0.20 μmol min$^{-1}$ g$^{-1}$ or higher, the deviation of V_{ica} from 0.718 μmol min$^{-1}$ g$^{-1}$ was ~8% or less (an amount equal to or less than the experimental uncertainty).

RESULTS, SECTION II

The model included a number of parameters whose values were assumed. In this section, the sensitivity of the calculated values of V_{ica} to these parameters is investigated. The parameters are quantities whose values have been assumed based on previously published studies. The conclusion of the testing was that the effects of all of these assumptions on the determination of V_{ica} are small and do not significantly affect the rates derived using the model within and, in some cases, beyond the extremes of previously reported values. The following assumptions were evaluated: (a) brain glucose transport, (b) neglect of glycolytic and TCA cycle intermediates, (c) assumption of a very fast lactate/pyruvate exchange, (d) net flux of lactate, pyruvate, and ketone bodies, (e) pyruvate carboxylase rate, and (f) recycling of 13C label to glucose positions other than C1. In addition, the range of TCA cycle rates that could be measured precisely was determined from simulations, and the method was found to retain its precision over a broader range than is expected to occur in vivo.

A numerical approach was unnecessary for some assumptions, but for most the numerical evaluations were performed. The numerical evaluation was designed to answer the question, “What value of V_{ica} would be derived using the model with all its assumptions if a given test parameter were varied within or in some cases beyond the extremes of previously reported values?” The algorithm of the test had two steps. (1) The value of V_{ica} equal to the average from the four subjects (0.729 μmol min$^{-1}$ g$^{-1}$) was used to simulate a noiseless glutamate C4 labeling time course for each value of the assumed parameter over the test range. Simulated time courses were used instead of actual data because small sensitivities would be hidden by the effects of noise in the data. (2) The original assumptions were used to calculate best fit values of V_{ica} from the simulated time courses.

Brain glucose transport

The time required for brain glucose to reach isotopic equilibrium with plasma glucose can be de-
scribed by the term $\Delta t_{0.5}$, which is the difference between the times required for the [1-13C]glucose infusion to raise the plasma and brain glucose fractional 1-13C enrichments to one-half of their steady-state levels. The primary effects of glucose transport on the calculation of V_{tca} are described by the parameter $\Delta t_{0.5}$. Glucose transport kinetic constants of 4.9 mM for K_m and 3.6 for V_{\max}/CMR_{gl} determined by 13C NMR (Gruetter et al., 1992a) with a TCA cycle rate $V_{\text{tca}} = 0.729 \mu$mol min$^{-1}$ g$^{-1}$ led to a value of 1.50 min for $\Delta t_{0.5}$ during a typical [1-13C]glucose infusion protocol. The glucose transport kinetics of Vyska et al. (1985) and Feinendegen et al. (1986) measured using positron emission tomography (PET) in humans yielded similar $\Delta t_{0.5}$ values (1.55 and 1.45 min, respectively). The smallest value of $\Delta t_{0.5}$ assumed in the test was 0.5 min, which corresponded to infinitely fast blood–brain glucose transport. The largest value of $\Delta t_{0.5}$ assumed in the test was 2.6 min, which corresponded to unidirectional flow at the rate CMR_{gl} (0.37 μmol min$^{-1}$ g$^{-1}$; see Discussion) through a brain glucose pool of 1.0 μmol g$^{-1}$ (Gruetter et al., 1992a); since at the beginning of the [1-13C]glucose infusion the brain glucose pool increases in concentration as well as in isotopic enrichment, the true value of $\Delta t_{0.5}$ must be lower than 2.6 min.

Time courses of glutamate C4 labeling were simulated using a range of $\Delta t_{0.5}$ values between the two extremes. The simulated time courses were then used as input for the model’s fitting procedure, and values of V_{tca} were calculated. For $\Delta t_{0.5}$ of 0.5 min, the value of V_{tca} would be overestimated by 8.8%. If $\Delta t_{0.5}$ were 1.0 or 2.0 min, the error in V_{tca} would lie between -4.5 and -5%. Since most data indicate that $\Delta t_{0.5}$ lies within 30 s of the present model’s value of 1.5 min (calculated from Vyska et al., 1985; Feinendegen et al., 1986; Gruetter et al., 1992a), very little error in V_{tca} is introduced by deviations from the values of the glucose transport kinetic constants.

Neglect of glycolytic and TCA cycle intermediates

The glycolytic intermediates were assumed to be low in concentration relative to the carbon flux and therefore to have such short isotopic equilibration times that they could be neglected. To evaluate the effect of this assumption on the calculation of V_{tca}, glutamate C4 labeling time courses were simulated for a range of concentrations. The simulated labeling time courses were then used as input for the model’s fitting procedure. Since little information on glycolytic intermediates in the human brain is available, the upper extreme for testing was 0.28 μmol g$^{-1}$, which is the sum of the concentrations in the rat brain (Hawkins and Mans, 1983). The concentrations of brain metabolites are usually higher in the rat (Hawkins and Mans, 1983; Petroff et al., 1989), so the values from the rat probably represent an extreme case for this test. The value of V_{tca} derived from the simulated time courses neglecting intermediates was within 2.5% of the value of V_{tca} calculated at the upper test extreme.

Variations in the concentrations of TCA cycle intermediates that follow α-KG have only a slight impact on the value of V_{tca} (Mason et al., 1992a), which yields a negligible effect on the value of V_{tca}.

Exchange between lactate and pyruvate

The concentration of lactate is much higher than the concentrations of the glycolytic intermediates. If lactate and pyruvate are in fast exchange, as assumed in the model, the 13C labels the lactate pool before the TCA cycle intermediates and glutamate; since the concentration of lactate is appreciable [0.6 μmol g$^{-1}$ (Hanstock et al., 1988)], fast exchange will delay the arrival of the label in glutamate, forcing the model calculation to compensate with a higher value of V_{tca} than would be the case for slow lactate/pyruvate exchange. The delay is analogous to the lag between glutamate C4 and glutamate C3 labeling, which was caused by rapid exchange of α-KG and glutamate.

To test the sensitivity of the calculation of V_{tca} to the value of V_{ldh}, glutamate C4 time courses were simulated using a range of values of the ratio $V_{\text{ldh}}/V_{\text{tca}}$ from a minimum of 0.0 to a maximum of infinity, which was the value used for the data analysis. For testing it was assumed that the lactate:pyruvate ratio in the human brain is the same as in the rat brain (15:1 (Hawkins and Mans, 1983)). When $V_{\text{ldh}}/V_{\text{tca}} = 0$, V_{tca} was 4.7% higher than for a ratio of infinity; when $V_{\text{ldh}}/V_{\text{tca}} > 2$, the error in the derived value of V_{tca} was less than 0.01%. Since $V_{\text{ldh}}/V_{\text{tca}}$ has been reported to be ~100 in the rat brain (Lowry and Passonneau, 1964; Balázs, 1970), the assumption of fast exchange between pyruvate and lactate is expected to have no significant effect on the calculation of V_{tca} determined from the data.

Net blood–brain exchange of lactate, pyruvate, and ketone bodies

Deviations of the net flux of these metabolites can change the relationship of CMR of and V_{tca} that was assumed in the model. Arterial-difference measurements in humans have yielded net lactate and pyruvate efflux values totaling 9–10% of CMR of (Gottstein et al., 1963; Juhlin-Dannfelt, 1977) and net ketone body influx values of 9.8% of CMR of (Juhlin-Dannfelt, 1977). The net carbon flux expected from these values of lactate efflux and ke-
tissue body influx would therefore compensate each other closely, with a net influx of 0.8% of CMR_gl.

The model was tested for net carbon transfer rates ranging from influx of 10% of V_tca to efflux of 20% of V_tca, with errors in V_tca ranging from over-estimation of 0.1% to underestimation of 6.0%. The test showed that the value of V_tca has negligible sensitivities to changes in the net fluxes of lactate, pyruvate, and ketone bodies.

Pyruvate carboxylase rate

Pyruvate carboxylase exerts its effect on the calculation of V_tca in two ways. One affects the values of V_tca and glutamate by altering the relationship between V_tca and CMR_gl, and the other affects the V_c/V_tca determination.

The alteration of the V_tca/CMR_gl relationship is mathematically the same as discussed for net carbon fluxes into and out of the TCA cycle. In the rat brain the pyruvate carboxylase rate (V_PC) has been reported to be 10% of V_tca (Berl et al., 1962), and the testing of net carbon transfer showed that fluxes of 20% of CMR_gl (~10% of V_tca) have a negligible impact on the determination of V_tca and glutamate.

The second effect of pyruvate carboxylase occurs because the path leads to the formation of glutamate C3 instead of glutamate C4. This causes the glutamate C3 time course to rise more rapidly than would be expected if V_PC were zero. The calculation of V_c/V_tca depends on the lag of glutamate C3 behind glutamate C4, and a smaller lag leads to the calculation of a lower value of V_c. Therefore, if pyruvate carboxylase activity is appreciable, the model actually underestimates the a-KG/glutamate exchange rate. Since the value of V_c is already very large, the C3 labeling aspect of the assumption of a higher value for V_PC would have a negligible effect on the calculation of V_tca.

13C recycling

The recycling of isotopically labeled carbon atoms in glucose due to systemic metabolism and re-synthesis by the liver can result in a redistribution of the isotope in the glucose molecule (Katz and Rognstad, 1976). Recycling of 13C from C1 to C6 of glucose would contribute to the labeling of glutamate C4, so C1–C6 recycling has the same effects as increasing the glucose 1,13C fractional enrichment. If significant glucose C6 labeling were neglected, the value of glutamate determined by Gruetter et al. (1994) would be an overestimate and would cause V_tca to be overestimated as well, since the determination of V_tca depends on the quantification of glutamate.

The fractional 13C labeling of C2–C6 of plasma glucose as measured in pentacetate derivatives by gas chromatographic mass spectrometry (Shulman et al., 1990) was less than 0.5% in all subjects, including subject 4, whose [1,13C]glucose infusion was of the longest duration (3.5 h). Even if all of the recycled 13C went to C6, there would be no detectable effect on the calculation of glutamate or V_tca.

Precision as a function of the value of V_tca

Fast and slow extremes of V_tca change the amount of data that can be acquired before the glutamate C4 reaches an isotopic steady state and can therefore affect the precision of the determination of V_tca. We tested the model to determine where the limits of precision are for slow and fast extremes of V_tca. For low values of V_tca, the 13C labeling time courses take longer to reach a steady state, which allows more time to acquire NMR data and thereby improves precision. However, if the value of V_tca falls enough that the Glu C4 and C3 do not reach isotopic steady state for accurate measurement of the glutamate C4 steady-state labeling, fractional enrichment, and pool size, the measurement of the glutamate pool size will be more uncertain and the accuracy of the calculation of V_tca will decrease. Simulations show that for a glutamate concentration of 9.1 μmol g⁻¹ and an experimental duration of 180 min, the TCA cycle must operate at least as fast as 0.05 μmol min⁻¹ g⁻¹, or 7% of its normal value, for the glutamate C4 and C3 labeling to reach 95% of an isotopic steady state. As an approximation, the minimum measurable value of V_tca is directly proportional to the concentration of glutamate.

For high values of V_tca, the glutamate C4 reaches an isotopic steady state quickly, which leaves less time to acquire NMR data during non-steady-state conditions and decreases the accuracy of the determination of V_tca. To determine the range of precise determination of V_tca, simulated data were generated with various rates of V_tca, using the same noise levels that were achieved in the actual studies. The precision of the calculated value of V_tca was better than 9% for values of V_tca of up to three times the average value of V_tca determined in this study, or 2.25 μmol min⁻¹ g⁻¹. These calculations demonstrate that V_tca can be precisely determined for rates well beyond those expected in the human brain in vivo.

DISCUSSION

We have analyzed the data of Gruetter et al. (1993) with a metabolic model and have determined the V_tca, CMR_gl, V_gln, and V_c/V_tca. Individual uncertain-
ties were calculated from the signal-to-noise ratios and, for \(V_{tca} \), were much smaller than the uncertainties for the group, so the NMR measurements were sensitive enough to detect intersubject variations in the value of \(V_{tca} \).

The sensitivities of the model to the assumptions used in its formation were evaluated within limits provided in the literature. Errors that would be introduced by changes in the values of parameters in the model (e.g., slower exchange between pyruvate and lactate) were evaluated and found to have negligible effects on the calculation of the TCA cycle rate. In other words, errors caused by deviations from the assumptions in the model were smaller than the individual uncertainties caused by noise in the data. By this method the model was found to be very robust.

CMR_{gl}

The CMR_{gl} was calculated from the \(V_{tca} \) for each subject using mass balance at the \(\alpha \)-KG pool in Fig. 1, so that \(CMR_{gl} = \frac{1/2}{4} (V_{tca} - V_{dil} - V_{con}) \). The results yielded a mean value of CMR_{gl} = 0.37 ± 0.08 \(\mu \)mol min\(^{-1} \) g\(^{-1} \) (mean ± SD, \(n = 4 \); Table 3). This rate lies in the ranges of previously reported values of 0.40 determined by PET for the occipital cortex (Heiss et al., 1984; Tyler et al., 1988) and 0.33 \(\mu \)mol min\(^{-1} \) g\(^{-1} \) globally in the gray matter (Phelps et al., 1979) using fluorodeoxyglucose and 0.23 to 0.39 \(\mu \)mol min\(^{-1} \) g\(^{-1} \) determined with arterial-venous difference and blood flow measurements (Gottstein et al., 1963).

Our value of CMR_{gl} was determined from a 144-cm\(^3\) volume of predominantly gray matter in the occipital region of the brain. Heiss et al. (1984) reported values of CMR_{gl} in occipital gray and white matter of 0.401 and 0.17 \(\mu \)mol min\(^{-1} \) g\(^{-1} \), respectively, which lead to an estimate that the present data arise from ~90% gray matter.

Sources of isotopic dilution

While glucose is the primary source of carbon for the TCA cycle, and the majority of that carbon arrives via glycolysis, other substrates and pathways contribute predominantly unlabeled carbon to the TCA cycle. These alternate pathways are important both because of the dilution effects they introduce at glutamate C4 and because of potential effects on the proportionality between \(V_{tca} \) and CMR_{O2}. First we address the issue of label dilution.

As stated earlier, the measured fractional enrichment of glutamate C4 was less than would be the case if glucose were the only substrate for the synthesis of glutamate. There was a 14.3 ± 3.3% dilution of glutamate C4 (mean ± SD), and this dilution presumably included contributions from the pentose phosphate shunt, degradation of proteins, and influx of unlabeled lactate, pyruvate, and ketone bodies from the blood. The rate of protein degradation is negligible in rats [0.3% of \(V_{tca} \) (calculated from Berl et al., 1961)] and is probably slower in humans. Knudsen et al. (1991) reported a value of 0.08 ± 0.03 \(\mu \)mol min\(^{-1} \) g\(^{-1} \) (\(n = 18 \)) for the unidirectional influx of lactate in humans, which corresponds to a contribution of 10 ± 3% to the carbon flux into the TCA cycle. The pentose phosphate shunt causes label dilution by cleavage of the \(^{13} \)C isotope from [\(^{13} \)C]glucose and is reported to operate at 1–3% of CMR_{gl} in the rat brain (Gaitonde et al., 1983; Hawkins et al., 1985), which, for our results, means a dilution rate of 0.0037–0.0111 \(\mu \)mol min\(^{-1} \) g\(^{-1} \).

No information about the unidirectional uptake of pyruvate in the human brain was available, but in the rat brain pyruvate transport is much slower than lactate transport (Partridge and Oldendorf, 1977) and is expected to have a negligible contribution to unidirectional uptake in the human brain.

No information about the unidirectional uptake of ketone bodies in the human brain was available, but if one assumes that brain ketone body production is negligible, then the rate of ketone body consumption is equal to the rate of net flux. The net rates of acetooacetate and \(\beta \)-hydroxybutyrate influx, calculated from the arterial-difference measurements of Juhlín-Dannfelt (1977), are 0.86 ± 0.29 and 4.00 ± 1.57% of CMR_{gl}, respectively (\(n = 7 \)), which correspond to influx rates of 0.0032 ± 0.0013 and 0.0148 ± 0.0066 \(\mu \)mol min\(^{-1} \) g\(^{-1} \). Since each unit of ketone body produces 2 units of acetyl CoA, the total rate of isotopic dilution due to ketone bodies is 0.036 ± 0.013 \(\mu \)mol min\(^{-1} \) g\(^{-1} \).

The total dilution expected from all sources is then 0.13 ± 0.033 \(\mu \)mol min\(^{-1} \) g\(^{-1} \), which is 17.8 ± 4.5% of \(V_{tca} \). This predicted percentage of dilution is close to the measured value of 14.3 ± 3.3% (\(n = 4 \)) determined from the measurements (Gruetter et al., 1994). It therefore seems likely that the pentose phosphate shunt and lactate and ketone body influx are responsible for the dilution of glutamate C4 fractional enrichment, with the lactate influx as the dominant factor.

CMR_{O2}

If glucose were the only substrate for oxidative metabolism, the values of \(V_{tca} \) and CMR_{O2} would be directly proportional. However, ketone bodies yield different amounts of reducing power and thereby alter the proportionality. The value of the TCA cycle flux (\(V_{tca} \)) determined with NMR is equivalent to the rate of entry of acetyl coenzyme A
(acetyl CoA) into the TCA cycle according to the relationship

\[V_{\text{tca}} = V_g + V_\beta + V_{ac} \]

where \(V_g \), \(V_\beta \), and \(V_{ac} \) are the rates of acetyl CoA entry from glycolysis, \(\beta \)-hydroxybutyrate, and acetocacetate, respectively. Since each source of acetyl CoA generates different amounts of NADH and FAD, which are the compounds that link the TCA cycle to oxidative metabolism, the rate of oxygen consumption is different for each source. The CMRO\(_2\) is given by the relationship

\[\text{CMRO}_2 = 3V_g + 2.25V_\beta + 2V_{ac} \]

\(V_g \) is assumed to be the difference between twice CMR\(_{gl} \) and the rate of net lactate efflux \([0.04 \, \mu\text{mol min}^{-1} \, \text{g}^{-1}] \) (Knuedsen et al., 1991), so \(V_g = 0.70 \pm 0.16 \, \mu\text{mol min}^{-1} \, \text{g}^{-1} \) (n = 4). When the three rates of acetyl CoA formation are inserted, Eq. 4 yields a value of 2.14 ± 0.48 \(\mu\text{mol min}^{-1} \, \text{g}^{-1} \) for CMRO\(_2\) \((5.07 \pm 1.14 \, \text{ml} \, 100 \, \text{g}^{-1} \, \text{min}^{-1} \) at 37°C; n = 4), which is only 8% higher than \(6 \times \text{CMR}_{gl} \) (Table 5) and approaches closely the stoichiometric relation

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \]

The present value of CMRO\(_2\) agrees with previously published results from PET: LeBrun-Grandié et al. (1983), using PET, measured values of 5.41 ± 1.30 and 1.90 ± 0.44 ml 100 g\(^{-1}\) min\(^{-1}\) (n = 19) for CMRO\(_2\) in 4-cm\(^3\) volumes of the occipitoparietal cortex and white matter, respectively. If it is assumed that the value of CMRO\(_2\) for the occipitoparietal cortex is purely a measurement in gray matter, then the NMR measurements of Gruetter et al. (1994) correspond to a tissue volume that consists of ~90% gray matter and ~10% white matter, which agrees closely with the previous calculation for CMR\(_{gl}\).

The method is predicted to detect changes in oxygen consumption with a sensitivity similar to the 6–9% uncertainty of individual measurements of \(V_{\text{tca}} \), including cases of broad changes in CMRO\(_2\). As explained under Results, the limits of precise measurement of \(V_{\text{tca}} \) lie between 7 and 300% of the normal value (0.05–2.25 \(\mu\text{mol min}^{-1} \, \text{g}^{-1} \)). If no changes in relative substrate utilization occurred at these extremes, the values would represent respective rates of oxygen utilization of 0.16–6.4 \(\mu\text{mol min}^{-1} \, \text{g}^{-1} \) (0.38–15 ml 100 g\(^{-1}\) min\(^{-1}\)), which lie well beyond values of CMRO\(_2\) expected in the human brain in vivo.

Changes in CMRO\(_2\) can occur coincidentally with changes in relative substrate utilization, so we have determined the effect of substrate alterations on the determination of CMRO\(_2\) from \(V_{\text{tca}} \). If changes occur in CMRO\(_2\) without alterations in the proportions of carbon substrates, the values of CMRO\(_2\) will change exactly in proportion to \(V_{\text{tca}} \). In some cases, however, the substrates utilized may change. For example, in diabetes ~50% of CMRO\(_2\) can arise from ketone body utilization (Ruderman et al., 1974). If the utilization rates of \(\beta \)-hydroxybutyrate and acetocacetate are maintained relative to one another, Eqs. 3 and 4 indicate that such a fraction would represent 57% of \(V_{\text{tca}} \) and would cause the measured enrichment of Glu C4 to be 13% instead of the present 27%. Since the measured enrichment represents only the glutamate that is actively turning over, the investigators would correctly ascribe the observed dilution to the utilization of unlabeled substrates, and the calculation of \(V_{\text{tca}} \) and CMRO\(_2\) would be correct. If, instead, the dilution arose entirely from unlabeled lactate utilization, the dilution would correspond to the unlikely lactate utilization rate of three times CMR\(_{gl}\) but would yield an underestimate of only 16% in CMRO\(_2\). In summary, cases of altered substrate utilization can be detected and quantified by measurement of the fractional Glu C4 enrichment and can be ascribed to the oxidation of acetate units via acetyl CoA with insignificant effects on the accuracy of the CMRO\(_2\) determination.

Exchange between α-KG and glutamate

The exchanges among the mitochondrial and cytosolic pools of α-KG and glutamate were mathematically equivalent to a single exchange between two pools described by \(V_x \) (Mason et al., 1992a). One pool was the sum of the mitochondrial and cytosolic α-KG pools and the other was the sum of the mitochondrial and cytosolic glutamate pools. It was important to establish whether \(V_x \) is fast or slow relative to the \(V_{\text{tca}} \) since the exchange moves the isotopic label from the TCA cycle to glutamate and thereby enables the isotopic labeling of glutamate to be used as a measure of \(V_{\text{tca}} \). Comparison of the glutamate C4 and glutamate C3 time courses yielded a value of 57 ± 26 for \(V_x \) (n = 3), which is 72 times faster than \(V_{\text{tca}} \). The high exchange rate is consistent with results in the rat brain (Balázs and Haslam, 1965; Balázs, 1970; Cooper and Meister,
The fast exchange rate is also consistent with the almost instantaneous equilibration of [\(^{13}\)N]ammonia into glutamate and aspartate in the rat liver in vivo (Cooper et al., 1987). The high rate of \(\alpha\)-KG/glutamate exchange means that glutamate is an excellent label trap and can be used for metabolic rate measurements in the human brain in vivo.

Glutamine synthesis

The rate of glutamine synthesis (\(V_{\text{glu}}\)) was 0.47 \(\mu\text{mol min}^{-1} \text{g}^{-1}\), with a 95% confidence interval of 0.139–3.094 \(\mu\text{mol min}^{-1} \text{g}^{-1}\). The value of \(V_{\text{glu}}\) was slightly less than the TCA cycle rate. The rate is higher than the value of 0.06–0.08 \(\mu\text{mol min}^{-1} \text{g}^{-1}\) (Kanamori et al., 1993; Kanamori and Ross, 1993) for the anesthetized rat brain but lower than the maximum activity of 0.7 \(\mu\text{mol min}^{-1} \text{g}^{-1}\) in the rat brain (Hawkins and Mans, 1983); the higher rate observed in the conscious human may be due to the effects of depolarization on glutamine synthesis. No measurements of glutamine synthesis rates in the human brain were available for comparison to the value determined by the model. Analysis of the sensitivity of the calculation of \(V_{\text{tca}}\) showed that although the uncertainty in \(V_{\text{glu}}\) was high, the value of \(V_{\text{glu}}\) was high enough to accommodate a broad range of uncertainty with little effect on the value of \(V_{\text{tca}}\).

Compartmentation of the TCA cycle

Evidence exists that supports a model with two metabolic compartments of glutamate in the brain (for review see Cooper and Plum, 1987). One compartment contains a large pool of glutamate, and the other a small pool. Intracysternal injection of [\(^{14}\)C]glutamate and [\(^{14}\)C]glutamine into anesthetized monkeys showed that glutamine was more highly labeled than glutamate, which means that a small pool of glutamate must supply label to glutamine in the anesthetized monkey. Cooper et al. (1979, 1988) infused \(^{13}\)NH\(_4\)+ into conscious rats and found that the \(\alpha\)-amino nitrogen of glutamine was more rapidly labeled than that of glutamate. Different isotopomer labeling patterns have been observed in the brains of anesthetized rats following [\(1,2\)\(^{13}\)C]acetate (Cerdan et al., 1990). Also in anesthetized rats, brain glutamate and glutamine were both labeled and their C4 fractional enrichments differed from each other after infusions of either \([U-^{13}\text{C}]\beta\)-hydroxybutyrate or \([1,2-^{13}\text{C}]\text{glucose}\) (Künnecke et al., 1993). [\(1,3\)\(^{13}\text{C}]\text{Glucose perfusions of guinea pig brain slices caused labeling of glutamate and GABA without labeling of glutamine (Badar-Goffer et al., 1990), while in the presence of depolarizing levels of KCl low fractions of glutamine were labeled (Badar-Goffer et al., 1992). All of the studies used brain slices or anesthetized animals. Since glutamine labeling increased with depolarization in brain slices, increased still more in intact anesthetized animals, and was the same as glutamate labeling in conscious humans, a certain degree of normal physiological activity may be necessary for complete labeling of the glutamine pool.

Mathematical models have been used to study cerebral metabolic compartmentation by analyzing radiolabeling data obtained in rats and mice (Garfinkel, 1966; Van den Berg and Garfinkel, 1971). While the present data do not distinguish metabolic compartments, the potential effects of compartmentation upon the interpretation of the data can be evaluated. The time course of \(^{13}\)C-labeled glutamate probably reflects the large glutamate pool, since in the rat brain the small pool is only 2–11% of the total glutamate concentration (Berl et al., 1961; Cooper et al., 1988), with a turnover time of \(\sim\)1 min (Berl et al., 1961).

The time course of glutamine C4 slightly lags that of glutamate C4, so the data are consistent with three two-compartment possibilities: Glutamine is formed rapidly from (1) a large glutamate pool, (2) a small glutamate pool that is labeled rapidly, or (3) both glutamate compartments (Fig. 5). Since the data are consistent with all three extremes, the present data cannot distinguish among them. An exchange analysis similar to that in the appendix of Mason et al. (1992a) shows that for the rapid labeling of glutamine observed here, the value of \(V_{\text{tca}}\).
derived from the present data varies negligibly among the three cases. The observed time course of glutamine C4 closely follows that of glutamate C4, so glutamine turns over almost as if it were part of the large pool of glutamate; the [1-13C]glucose labels both pools approximately as if they composed a single pool. The data do not allow us to assign either the large or the small pool of glutamate as the precursor of glutamine. The sum of the rates of flow from [1-13C]glucose into glutamate C4 and from the small pool of glutamate C4 into glutamine C4 must therefore be independent of the mechanism of label exchange between glutamine and the large pool of glutamate and can be represented mathematically as a single exchange reaction. A two-compartment analysis of these NMR data yields a combined pool value of V_{tca} that is the sum of the rates of glutamate C4 labeling by [1-13C]glucose and glutamine C4 labeling by the small glutamate pool. Since the small-pool V_{tca} must be at least as fast as the rate of glutamine C4 labeling by the small pool, the combined pool value of V_{tca} would be a minimum estimate. However, if glutamine labeling is slow or reduced in the system studied (e.g., brain slices or anesthetized brains), compartmentation may play an important role in the analysis of glutamate C4 time courses.

Since the values of CMR$_{gl}$ and CMR$_{O2}$ determined from our single-compartment analysis are in close agreement with previous measurements, the small pool of glutamate probably contributes negligibly to the total V_{tca} in the human brain under the present conditions. The large pool is thought to represent neuronal glutamate metabolism (Van den Berg et al., 1970), so a similar 13C NMR study of white matter might yield further information about compartmentation.

The values of CMR$_{gl}$ and CMR$_{O2}$ determined from our single-compartment analysis are in close agreement with previous measurements by PET and arterial–venous differences. The same analysis has been made in the past for rat brain data (Mason et al., 1992a), in which the 13C turnover was measured by a POCE method (Rothman et al., 1985; Fitzpatrick et al., 1990). The POCE method has been applied to human brain studies (Rothman et al., 1992), and most recently it has been possible to obtain high-quality data from ~6 cm3 of the brain, in contrast to the 144 cm3 needed for 13C measurements. Spectral resolution of the 13C data has made it possible to validate the model and this method of data analysis. The present analysis can therefore be used confidently for interpreting human POCE data, which have a spatial resolution similar to that of measurements using PET.

SUMMARY AND CONCLUSION

A mathematical model of human brain metabolism was used to analyze the 13C isotopic labeling data of Gruetter et al. (1994), who infused [1-13C]glucose and used 13C NMR to observe the time courses of glutamate C4, glutamate C3, and glutamine C4. The model was fitted to the NMR data using the plasma glucose concentrations and 13C fractional glucose enrichment time courses as input functions, and several metabolic rates were calculated. V_{gl} was determined to be 0.47 μmol min$^{-1}$ g$^{-1}$, with 95% confidence intervals of 0.139–3.094 μmol min$^{-1}$ g$^{-1}$. V_{tca} was 0.73 ± 0.19 μmol min$^{-1}$ g$^{-1}$ (n = 4). The individual uncertainties for V_{tca} were much less than the intersubject variations, demonstrating that the 13C NMR method is sensitive enough to measure intersubject variations. V_x was 57 ± 26 μmol min$^{-1}$ g$^{-1}$ (n = 3), which is 72 times faster than V_{tca}. CMR$_{gl}$ was 0.37 ± 0.08 μmol min$^{-1}$ g$^{-1}$ (n = 4), and CMR$_{O2}$ was 2.14 ± 0.48 μmol min$^{-1}$ g$^{-1}$ (5.07 ± 1.14 ml min$^{-1}$ 100 g$^{-1}$; n = 4), which both agree with values previously reported for the occipital cortex. The glutamate data and the derived values apply predominantly to a large, presumably neuronal, pool of glutamate, and the glutamine data are compatible with either a one-compartment or a two-compartment analysis, providing that the model permits the rapid, complete labeling of glutamine that is observed in vivo.

Acknowledgment: This work was supported by NIH Grants NS28790, RR06022, DK34576, DK27121, and NS26419 and by a grant from the Juvenile Diabetes Foundation to E. J. Novotny.

REFERENCES

Badar-Goffer RS, Bachelard HS, Morris PG (1990) Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy: a technique for investigating metabolic compartmentation in the brain. Biochem J 266:133–139

Cohen SM, Ogawa S, Shulman RG (1979) 13C NMR studies of gluconeogenesis in rat liver cells: utilization of labeled glyceraldehyde-3-phosphate by cells from euthyroid and hyperthyroid rats. Proc Natl Acad Sci USA 76:1603-1607
Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV (1992a) Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci USA 89:1109-1112 (Erratum, 89:12,208
Rothman DL, Behar KL, Hetherington HP, den Hollander JA, Bendall MR, Petroff OAC, Shulman RG (1985) 1H-observed/13C-decoupled spectroscopic measurement of lactate and
glutamate in the rat brain in vivo. *Proc Natl Acad Sci USA* 82:1633–1637

Rothman DL, Novotny EJ, Shulman GI, Howseman AM, Petroff OAC, Mason GF, Nixon T, Hanstock CC, Prichard JW, Shulman RG (1992) \(^{1}H-[\text{13}C]\) NMR measurements of \([\text{1}\text{H}–\text{13}C]\)-glutamate turnover in human brain. *Proc Natl Acad Sci USA* 89:9603–9606

