
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-Ph. Thiran, président du jury
Prof. H. Bourlard, Dr S. Marcel, directeurs de thèse

Prof. T. Cootes, rapporteur
Prof. J. Kittler, rapporteur
Dr V. Lepetit, rapporteur

Multivariate Boosting with Look-Up Tables for Face
Processing

THÈSE NO 5374 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 22 juin 2012

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE L'IDIAP

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2012

PAR

Cosmin Atanasoaei

2

i

Abstract

This thesis proposes a novel unified boosting framework. We apply this framework to the sev-

eral face processing tasks, face detection, facial feature localisation, and pose classification, and use

the same boosting algorithm and the same pool of features (local binary features). This is in con-

trast with the standard approaches that make use of a variety of features and models, for example

AdaBoost, cascades of boosted classifiers and Active Appearance Models.

The unified boosting framework covers multivariate classification and regression problems and

it is achieved by interpreting boosting as optimization in the functional space of the weak learners.

Thus a wide range of smooth loss functions can be optimized with the same algorithm. There

are two general optimization strategies we propose that extend recent works on TaylorBoost and

Variational AdaBoost. The first proposition is an empirical expectation formulation that minimizes

the average loss and the second is a variational formulation that includes an additional penalty for

large variations between predictions.

These two boosting formulations are used to train real-time models using local binary features.

This is achieved using look-up-tables as weak learners and multi-block Local Binary Patterns as

features. The resulting boosting algorithms are simple, efficient and easily scalable with the avail-

able resources. Furthermore, we introduce a novel coarse-to-fine feature selection method to handle

high resolution models and a bootstrapping algorithm to sample representative training data from

very large pools of data.

The proposed approach is evaluated for several face processing tasks. These tasks include

frontal face detection (binary classification), facial feature localization (multivariate regression)

and pose estimation (multivariate classification). Several studies are performed to assess differ-

ent optimization algorithms, bootstrapping parametrizations and feature sharing methods (for the

multivariate case). The results show good performance for all of these tasks.

In addition to this, two other contributions are presented. First, we propose a context-based

model for removing the false alarms generated by a given generic face detector. Second, we propose

a new face detector that predicts the Jaccard distance between the current location and the ground

truth. This allows us to formulate the face detection problem as a regression task.

Keywords: Boosting, look-up tables, multi-block Local Binary Patterns, bootstrapping, coarse-

to-fine feature selection, face detection, facial feature localization, pose estimation.

ii

Résumé

Dans cette thèse, nous proposons une nouvelle approche pour le traitement du visage impliquant

l’apprentisage par dopage (“boosting”) de motifs binaires locaux (LBP). L’approche proposée aborde

certaines sous-tâches spécifiques en traitement des visages avec un algorithme de “boosting” et un

jeux de caractéristiques identiques. Ceci est en contraste avec les approches standard qui utilisent

une variété de fonctionnalités et de modèles, comme par exemple AdaBoost, des cascades et des

modèles d’apparence actifs (Active Shape Models).

Nous proposons un cadre unifié pour l’apprentissage par “boosting”. Ce cadre unifié couvre la

classification multivariée et les problèmes de régression, et ceci est réalisé en interprétant le “boos-

ting” comme une optimisation dans l’espace fonctionel d’algorithmes d’apprentissage faible (“weak

learner”). Ainsi, un large éventail de fonctions de coût lisses (“smooth loss functions”) peuvent être

optimisées avec le même algorithme. Il existe deux stratégies d’optimisation générale que nous pro-

posons qui s’étendent des travaux récents sur TaylorBoost et AdaBoost Variationnel. La première

proposition est une formulation empiriques de l’espérance qui minimise la moyenne du coût, et

la seconde est une formulation variationnelle qui comprend une pénalité supplémentaire pour de

grandes variations entre les prédictions.

Ces deux formulations sont utilisés pour entrainer des modèles temps-réel en utilisant les mo-

tifs binaires locaux (LBP). Ceci est réalisé en utilisant des tables de correspondance (look-up tables

ou LUT) comme d’algorithmes d’apprentissage faibles et des motifs binaires locaux multi-blocs

comme caractéristiques. Les algorithmes de “boosting” obtenus sont simples, efficaces et facile-

ment évolutif (“scalable”) avec les ressources disponibles. En outre, nous introduisons une nou-

velle méthode de sélection des caractéristiques dites “coarse-to-fine” pour gérer les modèles à haute

résolution et un algorithme d’amorçage (“bootstrapping”) pour échantillonner des données d’entrai-

nement représentative dans de très grandes quantités de données.

L’approche proposée est évaluée pour plusieurs tâches de traitement du visage. Ces tâches in-

cluent la détection de visage de face (classification binaire), la localisation de caractéristiques fa-

ciales sur le visage (régression multivariée) et estimation de la pose (classification multivariée). Plu-

sieurs études sont effectuées pour évaluer différents algorithmes d’optimisation, les paramétrages

de l’algorithme d’amorçage (“bootstrapping”), et les méthodes de partage des caractéristiques (pour

le cas multivarié). Les résultats montrent une bonne performance pour toutes ces tâches.

iii

En plus de cela, deux autres contributions sont présentées. Tout d’abord, nous proposons un

modèle basé sur le contexte pour éliminer les fausses alarmes générées par un détecteur de visage

générique donné. Deuxièmement, nous proposons un nouveau détecteur de visage qui prédit la

distance de Jaccard entre l’emplacement actuel et la vérité terrain (“ground truth”). Cela permet de

formuler le problème de détection de visage comme une tâche de régression.

Mots-clés : Apprentisage par dopage (“boosting”), tables de correspondances (“look-up tables”),

motifs binaires locaux multi-blocs, algorithmes d’amorçage (“bootstrapping”), détection de visage,

localisation de caractéristiques faciales, estimation de la pose.

iv

Acknowledgements

It is a good morning exercise for a research scientist

to discard a pet hypothesis every day before breakfast.

It keeps him young.

- Konrand Lorenz, 1903-1989

This PhD was an unforgettable experience. There are several people who guide me through this

experience. Firstly, Sébastien and Chris, my supervisor and co-supervisor, have greatly contributed

with their constant help and fruitful discussions to polish, improve and crystallize my ideas into

this thesis. I would also like to thank Hervé, my thesis director, and to all the jury members - Prof.

Tim Cootes, Prof. Joseph Kittler, Dr. Vincent Lepetit and Prof. Jean-Philippe Thiran.

Then there is the brainstorming group of Niklas, Hugo, Leo and Charles for innumerable discus-

sions and bashing of various crazy machine learning and computer vision ideas. A special thanks

to Francesco for smoothing my baby steps into machine learning. Nonetheless I would like to thank

to all my colleagues and friends from Idiap, especially for the fun mid-day baby-foot sessions and

the coffee/tea discussions.

The administrative and technical staff was always prompt to help me whenever needed. I would

like to thank for this to all colleagues from Idiap and EPFL, to Nadine, Sylvie, Corinne, Norbert,

Frank, Bastien and to all the system guys and the developers.

Last but not the least, I should mention the constant support and encouragement of Corina and

of my parents. I cannot thank them enough for all that they have done for me.

Contents

1 Introduction 13

1.1 Objective of the thesis . 13

1.2 Motivations . 14

1.3 Contributions . 15

1.4 Organization . 18

2 Related work 21

2.1 Boosting . 21

2.1.1 Introduction . 22

2.1.2 AdaBoost . 22

2.1.3 Boosting as functional gradient descent . 24

2.2 Local Binary Patterns . 27

2.3 Summary . 31

3 A unified framework for boosting look-up tables 33

3.1 Unified multivariate boosting framework . 33

3.1.1 Motivation . 34

3.1.2 TaylorBoost revised . 35

3.1.3 Multivariate TaylorBoost . 36

3.1.4 Overall loss functions . 40

3.2 Boosting look-up-tables . 45

3.2.1 Weak learner selection step . 47

1

2 CONTENTS

3.2.2 Line-search step . 48

3.2.3 MGradBoost for boosting look-up-tables . 49

3.3 Summary . 50

4 Efficient boosting 51

4.1 Coarse-to-fine multi-block feature selection . 51

4.2 Sampling and bootstrapping training data . 56

4.3 Summary . 59

5 Application to face detection 61

5.1 Background . 61

5.2 Experimental protocol . 63

5.2.1 Training and validation protocol . 63

5.2.2 Testing protocol . 66

5.3 Results and discussions . 66

5.3.1 Performance analysis . 66

5.3.2 Feature selection analysis . 69

5.4 Summary and concluding remarks . 71

6 Application to facial feature localization 75

6.1 Background . 75

6.2 Experimental protocol . 77

6.2.1 Training and validation protocol . 77

6.2.2 Testing protocol . 79

6.3 Results and discussions . 81

6.3.1 Coarse-to-fine feature selection . 81

6.3.2 Performance analysis . 83

6.3.3 Feature selection analysis . 85

6.4 Summary and concluding remarks . 86

7 Application to face pose classification 89

7.1 Background . 89

CONTENTS 3

7.2 Experimental protocol . 90

7.3 Results and discussions . 92

7.3.1 Performance analysis . 93

7.3.2 Feature selection analysis . 93

7.4 Summary and concluding remarks . 96

8 Conclusions and future work 97

8.1 Experimental findings . 97

8.2 Directions for future work . 99

Appendices 103

A Face detection using boosted Jaccard distance-based regression 103

A.1 Objectives and motivations . 103

A.2 Related work . 105

A.2.1 Boosting . 105

A.2.2 Face detection using sliding-windows (SScan) . 107

A.3 Proposed approach . 108

A.3.1 Features and weak learner . 108

A.3.2 Training . 110

A.3.3 Jaccard distance . 111

A.3.4 Face detection using Jaccard distance-based regression (JScan) 112

A.4 Experiments and results . 114

A.4.1 Experimental setup . 114

A.4.2 Results . 115

A.5 Conclusions . 119

B Context-based modelling 123

B.1 Objectives and motivations . 123

B.2 Context-based modelling for face detection . 125

B.2.1 Sampling . 126

B.2.2 Feature vectors . 126

4 CONTENTS

B.2.3 Classifier . 127

B.3 Experiments . 129

B.3.1 Experimental protocol . 130

B.3.2 Results and discussions . 130

B.4 Conclusions . 136

Curriculum Vitae 143

List of Figures

2.1 Illustration of the MB-LBP feature map feature maps for the original image (a). The

multi-block patterns have cells of size 1 × 1 (b), 2 × 2 (c), 3 × 3 (d), 4 × 4 (e), 5 × 5 (f),

6× 6 (g), 7× 7 (h) and 8× 8 (i) respectively. 28

2.2 Various multi-block patterns of different cell sizes and at different locations illus-

trated on a generic 16× 16 pixel grid. 29

2.3 (a) Pixel indexing used for computing LBP and MCT patterns. (b, c, d, e, f) Illustration

of the pixel (block) comparisons to obtain LBP, tLBP, dLBP, mLBP and MCT patterns

respectively. The arrows denote the direction of the comparison. The grey cells are

compared with the average within the 3×3 region, while the white cells are compared

with the cell indicated by the arrow direction. 30

4.1 Illustration of the proposed coarse-to-fine feature projection. (a) The coarse original

multi-block pattern (MBc). (b) The projected multi-block pattern to twice the reso-

lution (MBh). (c) The set of additional patterns, constructed by varying the cell size

independently for each axis (MBh). The center of the patterns is displayed with a red

cross, while the upscaled pattern is contoured with a dashed red line. 55

4.2 Illustration of the proposed coarse-to-fine feature selection algorithm. The algorithm

maintains a set of features that is initialized with the exhaustive set at the coarsest

model resolution. Then iteratively, the feature set is pruned by boosting and projected

to twice the model resolution. 56

5

6 LIST OF FIGURES

5.1 Illustration of two typical images to evaluate face detection models. The ground truth

face locations are overimposed with green rectangles. 62

5.2 Illustration of typical training face images from the XM2VTS (a, b), BANCA (c, d) and

CMU-PIE (e, f) datasets. The ground truth face locations are overimposed with green

rectangles. 64

5.3 Illustration of splitting of a 1024 look-up-tables model using 3 levels. The sub-window

is rejected as false alarms if the current cumulated level score is negative. If all

the levels are passed, the final score is finally thresholded with an optimized value

T . The sub-window rejection paths are represented with red, while the sub-window

acceptance paths are represented with blue. 67

5.4 The face detection FROC curves for the MIT+CMU (a) and the BIOID dataset (b)

using the EPT-BOOT model and different number of levels. 68

5.5 The face detection FROC curves for the MIT+CMU (a) and the BIOID dataset (b)

using the EPT-BOOT and the EPT-SHOT models with 10 levels. 69

5.6 The face detection FROC curves for the MIT+CMU (a) and the BIOID dataset (b)

using the EPT-BOOT and the VAR-BOOT models with 10 levels. 70

5.7 Illustration of some face detection results on the MIT+CMU dataset. The ground

truth face locations are represented with green and the detections with blue. 72

6.1 Illustration of two typical images to evaluate facial feature localization models. The

ground truth face locations are overimposed with green rectangles, while the ground

truth facial features are displayed with blue crosses. 76

6.2 (a-e) Illustration of the five frontal and quasi-frontal face poses from the CMU Mul-

tiPIE dataset used for training the facial feature localization models. (f) Enlarged

frontal pose to better illustrate the 16 annotated facial features displayed with blue

crosses. 78

6.3 The cumulated error distribution for the XM2VTS (a, b) and the BIOID (c, d) datasets

using the LEyes setting. The models were trained either using shared (a, c) or inde-

pendent (b, d) features between outputs. 82

LIST OF FIGURES 7

6.4 The cumulated error distribution for the XM2VTS (a, b) and the BIOID (c, d) datasets

using the LEyes setting. The models were trained either using shared (a, c) or inde-

pendent (b, d) features between outputs. 84

6.5 The cumulated error distribution for the XM2VTS (a) and the BIOID (b) datasets

using the LMulti setting. The models were trained either using shared or independent

features between outputs. 84

6.6 Illustration of some facial feature localization results on the BioID dataset using the

LMulti setting. The face detections are represented with blue boxes and the predicted

facial feature points with red crosses. 87

7.1 Illustration of the 13 face poses to classify: from right profile (a) to left profile (m).

We include the pose annotation from the CMU MultiPIE dataset and in brackets the

degree of out-of-plane rotation. 90

7.2 The confusion matrix for the INDEP-EPT-BOOT models on the CMU MultiPIE test

dataset. The poses are arranged from right to left profile, such that the frontal pose

is in the middle. 92

7.3 Illustration of some face pose classification results on the CMU MultiPIE test dataset:

from right profile (a) to left profile (m). The face bounding box is represented with the

blue rectangle. The classified poses are displayed in angles with green if correct and

with red if incorect respectively. 94

7.4 Illustration of some face pose classification results on the CMU MultiPIE test dataset:

from right profile (a) to left profile (m). The face bounding box is represented with the

blue rectangle. The classified poses are displayed in angles with green if correct and

with red if incorect respectively. 95

A.1 (a) Multi-block MCT feature for image representation. (b) Examples of some patterns

that can be obtained by varying the parameters w and h. 109

A.2 The logarithmic evolution of the training loss for the face classifier (red) and the Jac-

card distance-based regressor (blue). 116

8 LIST OF FIGURES

A.3 The logarithmic ROC curves for the BioID dataset using JScan (blue) and SScan with

coarse (magenta) and fine (red) search parametrization. All models were trained us-

ing 200 boosting rounds. 116

A.4 The logarithmic ROC curves for the BioID dataset using various number of boosting

rounds. The results for JScan are plotted with blue, while for SScan with coarse and

fine search parametrization with magenta and red, respectively. 117

A.5 Examples of sub-windows (x) processed by the JScan method on the BioID dataset.

The number on the left of the caption (y) is the Jaccard distance and the number on

the right f(x) is the estimated one. 119

A.6 Illustration of the detection process with the JScan method for two images (left and

right column respectively). On the first row we display the centres of the initialized

detections, while on the second and third rows the refined detections in the first and

the second step respectively. 120

B.1 Typical face detections using the multiscale approach and the boosted cascade classi-

fier described in (Froba and Ernst, 2004) (without clustering multiple detections nor

removing false alarms). 124

B.2 Distributions of various features using the full (right column) versus axis (left col-

umn) sampling on XM2VTS training dataset. Cumulative histogram of counts for

two axes (y, scale) using axis sampling (a) and full sampling (b). Cloud of points of

score standard deviation for 3 axes (x, y, scale) using axis sampling (c) and full sam-

pling (d). The ground truth is represented with green, the positive class with blue

and the negative with red. 132

B.3 Context-based model’s weighted error rate (WER) for the test sets of XM2VTS (a) and

MIT+CMU (b). The default threshold point of the face classifier is represented with

dashed red vertical line. 133

B.4 The normalized FA (b) on the XM2VTS scenario. The default threshold point is rep-

resented with dashed red vertical line. 134

B.5 Normalized FA (top row) and normalized TAR (bottom row) plots on XM2VTS (a, c)

and MIT+CMU (b, d) scenarios. 135

List of Tables

2.1 The LBP(8,1), the transition LBP (tLBP), the direction LBP (dLBP), the modified LBP

(mLBP) and the MCT (multi-block) operators. The centered pixel is denoted as pc.

The LBP, mLBP, tLBP and dLBP feature set (denoted as EMB-LBP) shall be used

throughout this thesis. 30

4.1 The number of extended multi-block Local Binary Patterns (EMB-LBP) generated for

various model sizes. The feature redundancy increases fast with the model resolution. 52

5.1 The upper half defines the common parameters for all models, while the lower half

defines the parameters used for training the face models that we evaluate. 65

5.2 The number of look-up-table evaluations (and multi-block feature computations) per

sub-window for different number of levels using the EPT-BOOT model. 67

5.3 The number of boosting rounds and the optimal regularization factor λ for each boot-

strapping step when training the VAR-BOOT model. 70

6.1 The protocol to split the CMU MultiPIE dataset into training, validation and testing

datasets. 78

6.2 The upper half defines the common parameters for all models, while the lower half

defines the parameters used for training the facial feature localization models to eval-

uate. 80

6.3 The number of features to boost for the exhaustive case (EXH) and the coarse-to-fine

feature selection case (CTF). The last row presents the training speed-up using CTF

compared to EXH. 83

9

10 LIST OF TABLES

6.4 The percentage of samples having the localization error smaller than the given

threshold for various models evaluated on the BIOID dataset and the LEyes setting. . 83

6.5 The percentage of samples having the localization error smaller than the given

threshold for various models evaluated on the BIOID dataset and the LMulti setting. 83

7.1 The upper half defines the common parameters for all models, while the lower half

defines the parameters used for training the facial feature localization models to eval-

uate. 91

7.2 The pose classification average error rate for the boosted models on the CMU Multi-

PIE test dataset. 92

A.1 Various loss functions for classification (l1, l2) and regression (l3, l4). 107

A.2 The number of processed sub-windows (in thousands) for the BioID dataset using

various number of boosting rounds. The JScan speed-up factor is computed relative

to SScan (coarse). 118

Glossary and acronyms

LUT Look-Up Table

MB Multi-Block

LBP Local Binary Pattern

MCT Modified Census Transform

MB-LBP Multi-Block Local Binary Pattern

MB-MCT Multi-Block Modified Census Transform

EMB-LBP Extended set of Multi-Block Local Binary Pattern

CTFFS Coarse-To-Fine Feature Selection

SHARED Model trained using Shared feature selection

INDEP Model trained using Independent feature selection

BOOT Bootstrapped model

SHOT Boosted model without bootstrapping

EPT Model trained using the Expectation loss formulation

VAR Model trained using the Variational loss formulation

11

12 LIST OF TABLES

Chapter 1

Introduction

Face processing is a mature research field, being under active research for two decades. Great

progress has been made, such that successful applications exist on computers or mobile devices. For

example, face detection is implemented in video cameras and automatic biometric authentication,

surveillance, tracking and security systems have been already deployed successfully. This thesis

proposes a novel approach to further improve such systems.

1.1 Objective of the thesis

A typical face processing system usually consists of an ad-hoc mix of features and machine learning

algorithms. For example, most successful face detectors use Haar (Viola and Jones, 2001) or Local

Binary Patterns (Zhang et al., 2007) as features and boosted cascades trained using a variety of

methods. By contrast, facial feature localization is usually performed using Active Shape Models

and Active Appearence Models (Cristinacce and Cootes, 2006, 2007, 2008). The list of successful

techniques is definitely not exhausted.

Most of the enumerated methods run in real-time and are robust to some degree of pose and

illumination variation. The computational efficiency becomes hard to achieve when several such

methods are combined to address specific face processing problems. This is because different classes

of features and machine learning algorithms usually require different pre-processing steps which

are time consuming.

13

14 CHAPTER 1. INTRODUCTION

The objective of this thesis is to address the computational efficiency problem of face processing.

We propose a unified boosting framework to address several face processing tasks. The boosting

framework can be used: i) for multivariate classification and regression tasks, and ii) can efficiently

use large amounts of training data and high resolution models. In particular, we present experi-

mental results for these face processing tasks: frontal face detection, facial feature localization and

pose estimation.

1.2 Motivations

We propose to extend recent work on boosting in two ways. First, we propose a unified boosting

framework that can be applied to multivariate classification and regression tasks. Second, we

propose an efficient method to sample from large pools of samples and an efficient method to select

relevant features for high resolution models.

The first proposal consists of a novel multivariate boosting method for classification and regres-

sion problems. Our approach extends recent boosting algorithms such as AnyBoost (Mason et al.,

1999b), TaylorBoost (Masnadi-Shirazi, 2010), Empirical Bernstein Boosting (Shivaswamy and Je-

bara, 2010) and Variational AdaBoost (Shivaswamy and Jebara, 2011). Similarly, we interpret

boosting as a gradient descent algorithm in the functional space of weak learners. Thus a large set

of smooth loss functions can be efficiently optimized.

The second proposal consists of a generic method to boost high resolution models using very

large pools of samples. First, we introduce a novel coarse-to-fine feature selection method to effi-

ciently select generic multi-block patterns (Zhang et al., 2007; Trefny and Matas, 2010). This is

particularly useful for high resolution models, when the number of available features is of the order

of millions. Second, we present a method to sample representative training data from very large

pools of samples, for example of the order of billions. This is achieved in two ways: by uniformly

sampling to obtain balanced data and by bootstrapping the training data with the missed predicted

samples.

In this work we concentrate on boosting features that result in look-up tables (LUTs). As such,

we detail several simple methods of boosting LUTs as weak learners. The optimization algorithm

is proven to be scalable with the available computational resources at training time, with respect

1.3. CONTRIBUTIONS 15

to the number of samples (via bootstrapping) and features (via feature selection). At test time,

we achieve real-time performance on several face processing tasks, such as: frontal face detection,

facial feature localization and pose estimation. This is a step towards a simpler and more homoge-

neous face processing system.

1.3 Contributions

The major contributions of this thesis are as follows.

1. We proposed a unified boosting framework to solve multivariate regression and clas-

sification problems. The fundamental idea of this approach is to interpret boosting as a

gradient descent method in the functional space of the weak learners. This way a wide range

of smooth loss functions can be iteratively optimized. The extension to multivariate classifi-

cation and regression problems becomes natural.

We present a generic boosting framework that requires very few assertions on the loss func-

tion to optimize. The assumptions are that the loss function must be smooth and its gradients

computable at each boosting round, with respect to the weak learner’s parameters. Using this

we formulate two boosting algorithms - the expectation and the variational. The expectation

algorithm optimizes the empirical average loss over the samples, while the variational al-

gorithm regularizes the average loss with the empirical variance of the same loss. The latter

algorithm penalizes models that have high error variance, for example that perform well for

some subset of samples and significantly worse for others.

2. We present an efficient implementation of our unified boosting framework for boosting LUTs.

We focus on boosting LUTs because the resulting algorithm is efficient and scalable with

the available computational resourses. Also, LUTs are the most efficient weak learners at

test time, although they are non-linear and have a significant number of parameters. Fea-

ture selection is performed while boosting, because each boosted LUT is associated with a

single feature. We also study two feature sharing methods for the multivariate case. De-

tailed complexity analysis is provided to assert the efficiency of the LUT boosting algorithm.

Furthermore, boosting shared features for different outputs is shown to be of equivalent com-

16 CHAPTER 1. INTRODUCTION

plexity as boosting independent features.

3. Another contribution related to the proposed boosting algorithm consists of a generic

method for efficiently boosting high resolution models using large pools of sam-

ples. This is particularly useful for face processing tasks when either the number of features

is unmanageable because we have high resolution models, or because the number of samples

to process is very large as we have to simulate minor mis-alignments for each training sample.

For the first issue we propose a coarse-to-fine approach and for the second we propose to use

bootstrapping.

The key idea of the proposed coarse-to-fine multi-block feature selection is to process a small

subset of all available features. The algorithm is initialized with the boosted features using

a coarse resolution model. Then this subset is iteratively projected and boosted to higher

resolutions. Each iteration refines the scale and the size of the current set of features.

The fundamental idea of bootstrapping is to increase the number of training samples at each

iteration with the missed predicted samples. At each step, the model is evaluated efficiently

on a large pool of samples and an error is computed for each sample. Next, a small fixed

number of samples are randomly selected proportionally with this error. The selected samples

are also constrained to be balanced: for example, to contain the same number of positive and

negative samples for binary classification problems.

4. The proposed boosted models are evaluated on several face processing tasks. In particular

we present real-time frontal face detection, facial feature localization and pose estimation

systems. These systems are extensively evaluated using different boosting configurations.

To speed-up face detection, we propose to split the boosted model at run-time into levels. The

number of levels influences the evaluation speed; the more, the faster the face detector. This

way the background locations are discarded quickly, while the computation is concentrated

on the most promising locations. This idea is similar to the successful boosted cascades. The

difference is that our models are significantly easier to train than cascades, while experimen-

tally performing as fast at test time. We also show experimentally that the proposed models

are robust to the number of splits.

The facial feature localization system makes use of boosted regression models that predict

1.3. CONTRIBUTIONS 17

the location of several facial features of interest (such as the eyes, nose tip or mouth corners).

We use the proposed coarse-to-fine feature selection algorithm to efficiently train these high

resolution models. The localization performance is increased by integrating their responses in

a local neighbourhood. We propose and evaluate several integration methods.

The pose estimation system classifies a face detection into 13 different out-of-plane poses. We

train and evaluate a multivariate classification model to distinguish between these 13 poses.

Apart from these primary contributions, there are some secondary contributions of this thesis

which are related to the main work. These are as follows.

1. Firstly, we proposed a method to remove false alarms generated by a generic face

detector. We define the context of a detection as the collection of nearby responses, defined in

a tri-dimensional grid of location and scale. Several features are extracted from this collection

of responses which are then used to train a linear classifier to distinguish between the context

of a false alarm and of a true detection. For example, initial experiments have shown that false

alarms have contexts with higher variance of responses and with lower number of accepted

responses (above a given threshold) than for the true detections.

Several variations of the proposed system were compared with the given face detector on

multiple challenging image datasets. The experimental results have shown that it greatly

reduces the number of false alarms, while keeping the detection rate at the same level.

2. Secondly, we proposed a novel face detection method that uses the Jaccard similarity index

to guide the detection. A boosted regression model was trained to predict the Jaccard

similarity index (normalized intersection area) between the current location and the true face

location. Ideally, the model will predict 1 for locations close to the face and 0 for background

locations. This information is used to guide the detection in two steps. The first is to coarsely

initialize a set of potential locations and the second to refine the most promising locations -

the ones with high scores.

The advantage of such a method is to greatly speed-up the detection. The initial experiments

have shown that it is significantly faster than sliding-window approaches. However, the pre-

dictions of the Jaccard similarity index are not accurate enough to reach state-of-the-art per-

formance in face detection.

18 CHAPTER 1. INTRODUCTION

Related publications:

1. Cosmin Atanasoaei, Christopher McCool and Sébastien Marcel, “A principled approach to

remove false alarms by modelling the context of a face detector”, in proceedings of the British

Machine Vision Conference (BMVC), 2010

2. Sébastien Marcel, Christopher McCool, Cosmin Atanasoaei, Flavio Tarsetti, J. Pesán, P. Mate-

jka, J. Cernocky, M. Helistekangas, and M. Turtinen, “MOBIO: Mobile biometric face and

speaker authentication”, in proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2010

3. J. Parris, M. Wilber, B. Helfin, H. Rara, A. El-barkouky, A. Farag, J. Movellan, M. Santana,

J. Lorenzo, M.N. Teli, S. Marcel, C. Atanasoaei, and T. Boult, “Face and eye detection on hard

datasets”, in the IEEE IAPR International Joint Conference on Biometrics (IJCB), 2011

Related technical reports:

1. Cosmin Atanasoaei, Christopher McCool and Sébastien Marcel, “On Improving Face Detection

Performance by Modelling Contextual Information”, Idiap Research Report Idiap-RR-43-2010,

Idiap Research Institute, December 2010

2. Cosmin Atanasoaei, Christopher McCool and Sébastien Marcel, “Face detection using boosted

Jaccard distance-based regression”, Idiap Research Report Idiap-RR-02-2012, Idiap Research

Institute, January 2012

1.4 Organization

The structure of this thesis is as follows.

· Chapter 2 provides a brief overview of the related work to boosting and local binary features.

First, we provide an overview of boosting and how it can be viewed as functional gradient

descent. Then we describe local binary features including the extended set of local binary

patterns.

1.4. ORGANIZATION 19

· Chapter 3 details the proposed boosting approach of look-up-tables. First, we introduce the

multivariate boosting framework and a bootstrapping algorithm. Second, we detail the opti-

mization algorithms for boosting look-up-tables as weak learners.

· Chapter 4 describes the proposed coarse-to-fine feature selection and the bootstrapping algo-

rithms to boost high resolution models using large pools of data.

· Chapter 5 describes the application of the proposed approach to the task of face detection, a bi-

nary classification problem. Different features, boosting algorithms and evaluation speeding-

up methods are compared with baseline approaches.

· Chapter 6 describes the application of the proposed approach to the task of facial feature local-

ization, a multivariate regression problem. The experiments evaluate and compare different

features, feature sharing methods and boosting algorithms.

· Chapter 7 describes the application of the proposed approach to the task of face pose classifi-

cation, a multivariate classification problem. The experiments evaluate and compare different

features, feature sharing methods and boosting algorithms.

· Chapter 8 concludes the thesis with a brief summary of the important contributions made and

outlines the potential directions for future work.

· In the Appendices, we describe some of the secondary contributions of this thesis. These

include the work on face detection using the predicted Jaccard distance between the current

sub-window and the ground truth (Appendix A) and the work on the context-based model for

removing false alarms (Appendix B).

20 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

Most computer vision applications require two key components. The first component is the feature

extraction that maps the visual input signal (the pixel values) to a feature space. The features are

usually designed to suppress irrelevant characteristics of the input signal, while enhancing the im-

portant characteristics for the task at hand. For example, some features are design to be invariant

(or robust) to translation and rotation, illumination variation or to pose variation. The second com-

ponent is the modeling which consists of training and evaluating a model using machine learning

and statistical algorithms. There can also be some post-processing steps which are specific to the

application.

This chapter provides an introduction to boosting - as a particular machine learning algorithm,

and to local binary patterns - as particular features. These two concepts are the building blocks

of the proposed approach.

2.1 Boosting

Boosting (Schapire, 2002) is a greedy algorithm for building a strong learner as a linear combina-

tion of weak learners or hypotheses. This process is done in iterations called boosting rounds:

at each iteration a single new weak learner is chosen and added to the combination. The weak

learners can be interpreted as rules of thumb, usually easy and efficient to construct. They are

not accurate enough to solve the task at hand, but it is assumed that a more accurate model can

21

22 CHAPTER 2. RELATED WORK

be built by combining such simple rules. Boosting thus provides an efficient method for building

strong learners from many weak learners.

There are several methods to select a new weak learner at each round. This section details some

of the most successful boosting methods. Their common idea is that each weak learner is trained

to correct the mistakes made by, so as to complement, the previous ones and to focus on the most

challenging samples.

2.1.1 Introduction

Let Ω be the input signal space and {(xn, yn)n=1:N} ∈ (Ω × R)N a set of N training samples. The

goal is to build a functional f : Ω → R to map the samples xn to their targets yn. We refer to this

functional as the strong learner or the model.

Let L(f) be the criteria (loss function) to choose the strong learner f . Usually, the criteria is a

cumulative loss function of the form: L(f) =
∑
n
l(yn, f(xn)). The base loss l(y, f) is a function that

measures the goodness of the prediction f in matching the target y: l(y, f) : R × R → R. Clearly

the loss must be chosen appropriately to the specific problem to solve. For example, the binary

classification task requires the two classes to be separated as far as possible: l(y, f) = l(−yf), while

the regression tasks need predictions as close as possible to the target: l(y, f) = 1
2 (y − f)2.

Each boosting round r (1 ≤ r ≤ R) selects a new weak learner gr : Ω → R. This is added to

the previously selected weak learners to obtain a better approximation of f : f =
∑
s≤r

gs. In the most

general case the new weak learner is selected to minimize the current cumulative loss:

gr = arg min
g∈χ

L(f + g). (2.1)

where χ represent the functional space of the weak learners. Finally, the prediction consists of

evaluating the functional f on an unseen sample x ∈ Ω.

2.1.2 AdaBoost

AdaBoost (Freund, 1995) is the first boosting algorithm that combined weak learners slightly better

than random into arbitrarily accurate strong learners. The algorithm was originally proposed for

binary classification, with weak learners restricted to the functional space of g : Ω→ {−1,+1}. The

2.1. BOOSTING 23

targets are also restricted to yn ∈ {−1,+1}. This version is sometimes called Discrete AdaBoost

(Friedman et al., 2000), because the weak learners are discrete.

Algorithm 1 The boosting algorithm AdaBoost.
1: Given: {(xn, yn)n=1:N} ∈ (Ω×R)N , where yn ∈ {−1,+1}
2: Initialize distribution: D1(n) = 1/N
3: for r = 1 to r ≤ R do
4: Train weak learner: gr : Ω→ {−1,+1} using distribution Dr (Eq. 2.1)
5: Choose: αr = 1

2 log(1−εr
εr

) > 0
6: where εr =

∑
n
Dr(n) 1(gr(xn) 6= yn)

7: Update: Dr+1(n) = Dr(n) exp(−αryngr(xn))
Zr

8: where Zr is chosen such that Dr+1 remains a distribution
9: end for

10: return f = sign(
∑
r≤R αrgr)

AdaBoost is detailed in Algorithm 1. The algorithm maintains and updates a normalization

distribution Dr that associates a weight to each sample, proportional to its importance for the

boosting round r. Initially, each sample has the same weight. The new learner gr is selected to

minimize the weighted mis-classification error
∑
n
Dr(n) 1(gr(xn) 6= yn), where 1 is the Kronecker

delta function. Then it is scaled with αr, which corresponds to the optimal line-search step in the

direction of gr, while minimizing the exponential loss L(f) =
∑
n

exp(−ynf(xn)). More details are

provided in the next section.

Once gr is selected, the weights are updated based on its performance. If the weak learner

classifies correctly a particular sample n, then the edge must be positive (yngr(xn) > 0) and its

weight Dr+1(n) is decreased for the next round. Otherwise, the weight is increased. Thus, the new

weak learners are trained to correct mistakes made by the current model. Each boosting round

concentrates the weight distribution D to increasingly harder samples.

The AdaBoost algorithm is clearly independent of the weak learner’s type. Boosted weak learn-

ers are usually decision stumps (Viola and Jones, 2001) or decision trees (Friedman et al., 2000).

The boosted models can also be further combined in so called cascades. The most famous example

of such a cascade was proposed by Viola and Jones (Viola and Jones, 2001, 2002). Their system was

the first real-time face detector. The speed was achieved by combining two key ideas. The first idea

is to use Haar-like features, that can be computed at any location and scale in constant time using

integral images. The second idea is to classify a sample using a cascade of boosted decision stumps

24 CHAPTER 2. RELATED WORK

of increasing complexity. The evaluation is performed by pruning the response of each boosted

classifier, also called a stage, with a threshold. If the response is above the threshold, then the

sample is rejected as background; otherwise, the sample is evaluated at the next (more complex)

stage. Thus background samples, which account for the vast majority of evaluations, are quickly

evaluated and rejected and the system spends more computation only near the face regions.

There are several extensions proposed to the AdaBoost algorithm, mostly using different loss

functions. The original paper from (Freund, 1995) proposed three other boosting algorithms to solve

multi-class classification (AdaBoost.M1, AdaBoost.M2) and regression (AdaBoost.R) problems.

These algorithms are motivated from the perspective of achieving arbitrarily small training errors

in logarithmic number of rounds. However, the theoretical results are valid for just some particular

loss functions and weak learners. This limits the applicability of these boosting algorithms.

Other extensions to AdaBoost consist for example of pruning the weak learners that achieve high

error rates, such as FloatBoost (Li et al., 2002), and of balancing the testing time and accuracy, such

as WaldBoost (Sochman and Matas, 2005).

2.1.3 Boosting as functional gradient descent

A general motivation for boosting was proposed by several researchers (Friedman et al., 2000; Fried-

man, 2001; Duffy and Helmbold, 2002; Mason et al., 1999b). The key idea is to consider boosting

as a greedy gradient descent performed in the functional space of the weak learners. Each boosting

round is thus a gradient step towards minimizing a loss, usually convex, that matches the predic-

tions of the strong learner f(x) with the targets y. There are two steps performed at each boosting

round:

1. The selection of the new weak learner (gr) that locally decreases the loss the fastest:

gr = arg min
g

L(f + εg), (2.2)

given a small variation ε. This corresponds to optimizing a local Taylor expansion of the

loss (in the functional space of weak learners). The first order approximation gives gradient

descent-like algorithms, while second order approximation gives Newton step-like algorithms.

2.1. BOOSTING 25

2. The scaling of the selected weak learner gr with the factor αr. The strong learner is then

updated as: f ← f + αrgr. The scaling factor is required because the weak learner is only a

local approximation of the loss. There are multiple possibilities to choose αr, with the most

commonly used being the line-search method:

αr = arg min
α

L(f + αgr). (2.3)

However, fixed or decreasing steps are also a valid option. In these cases, the scaling factor

can be interpreted as learning rate.

Formulating boosting as greedy gradient descent has the advantage that it can be used to solve

both classification and regression problems in addition to univariate and multivariate problems.

Most boosting algorithms can be derived from this interpretation (Masnadi-Shirazi, 2010). For ex-

ample AdaBoost (Freund, 1995), Gentle AdaBoost (Friedman et al., 2000) or LogitBoost (Friedman

et al., 2000) are instances that use particular loss functions or weak learners.

It is important to state that the weak learner and the scaling factor can be computed simul-

taneously or analytically in some cases (e.g. for AdaBoost), but this is not possible without prior

knowledge on the loss and the weak learner type. There has also been work where each boosting

round is complemented with an additional step that jointly re-optimized all the weak learners. This

implies that previous weak learners (relative to the current round) are not fixed anymore. Most rel-

evant to this idea is the ShareBoost algorithm (Shalev-Shwartz et al., 2011). There is some other

related work on regularizing the loss (Xiang et al., 2009; Culp et al., 2010; Shivaswamy and Jebara,

2010, 2011), boosting structured weak learners (Fei and Huan, 2010) and decision trees (Friedman,

2001), and optimally sharing features for multi-class problems (Torralba et al., 2007).

Next we detail several important boosting algorithms relevant to, and that inspired, our pro-

posed framework. All these algorithms are related to one another and use the two gradient steps

describe above.

1. GradientBoost chooses the optimal weak learner as the one that aligns the best with the

26 CHAPTER 2. RELATED WORK

local loss gradient (Friedman, 2001). The selection step is:

gr = arg min
g,ε

∑
n

[
∂l(yn, p)

∂p
|p=f(xn) −εg(xn)

]2
, (2.4)

and the scaling step consists of line-search. The original paper describes several applications

to different loss functions and makes use of decision trees as weak learners. The authors also

introduce a shrinkage factor ν ∈ (0, 1]. This changes the update of the strong learner to:

f ← f + ναrgr. The shrinkage factor controls the rate of the loss decrease and thus the speed

of learning and implicitly of over-fitting. Thus shrinkage acts as a regularization method.

2. AnyBoost selects the optimal weak learner to point in the direction of the steepest descent

(Mason et al., 2000). The optimal direction is given by the negative functional loss gradient.

Generally, the space of weak learners χ may not contain one pointing exactly in the optimal

direction. Thus a relaxation is needed that simply aligns the best new weak learner to the

functional gradient:

gr = arg max
g

− 〈OL(f), g〉. (2.5)

Here O is the gradient operator and 〈·, ·〉 is the scalar product operator. No restriction is

enforced on the scaling factor. The authors use a small constant, but they also suggest line-

search as an alternative. The boosting rounds are stopped earlier if no weak learner can be

found to point in the downhill direction of the loss function. Clearly, the AnyBoost formulation

is closely related to GradientBoost as both algorithms use the same basic idea.

3. More recently, the TaylorBoost algorithm was introduced (Masnadi-Shirazi, 2010). Each

boosting round is explicitly interpreted as optimizing the loss using a local Taylor expansion

of order one or two. Let δL(f, g) = 〈OL(f), g〉 and δ2L(f, g) = 〈O2L(f), g2〉 be the local variation

of L, at point f along direction g. Then the selection step is shown to reduce to:

gr = arg min
g

〈OL(f), g〉 (GradBoost), (2.6)

2.2. LOCAL BINARY PATTERNS 27

gr = arg min
g

− 〈OL(f), g〉2

〈O2L(f), g2〉
(QuadBoost). (2.7)

The first order algorithm, named GradBoost, reduces to AnyBoost and GradientBoost. The

authors show that AdaBoost is a particular instance of GradBoost. The second order algo-

rithm, named QuadBoost, is a generalization of Newton step-based boosting algorithms such

as LogitBoost. Both GradBoost and QuadBoost perform a line-search as the scaling step.

2.2 Local Binary Patterns

In this thesis we shall exclusively use local binary patterns (LBP) and their variations for all face

processing tasks. This is because they are efficient to compute and have been proven to perform well

for various challenging computer vision applications due to their robustness to illumination varia-

tion. Originally proposed for texture classification, the LBP family of features has successfully been

applied to other problems such as face and object detection (Froba and Ernst, 2004; Zhang et al.,

2007; Trefny and Matas, 2010), facial feature localization (Keomany, 2006) and face recognition

(Liao et al., 2007; Tan and Triggs, 2010).

The family of LBP consists of features computed in a local, usually circular, neighborhood. The

feature value is a binary code, where each bit is set depending on the comparison result between

neighboring pixel values and the center pixel value (Ojala and Pietikainen, 2002).

Originally the LBP codes were proposed for 3× 3 regions and thus had 28 distinct binary values.

They were limited to small regions and could only capture local micro-textures. Thus the LBP was

extended to LBP(P,R) where P is the number of points evenly spaced at radius R (expressed in

pixels) from the center pixel. Some of the neighboring points require interpolation (usually linear)

because their coordinates may not fall on pixel locations. The number of distinct values is increased

to 2P , because there are P comparisons with the center pixel value. Using this formulation an

extended LBP was proposed which captures information at multiple scales by varying the radius R

and from multiple resolutions by varying the number of sampling points P . An exhaustive survey

on some other LBP extensions was recently published (Huang et al., 2011).

More closely related to our work are the multi-block (MB) (Zhang et al., 2007; Trefny and

28 CHAPTER 2. RELATED WORK

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.1. Illustration of the MB-LBP feature map feature maps for the original image (a). The multi-block patterns have
cells of size 1× 1 (b), 2× 2 (c), 3× 3 (d), 4× 4 (e), 5× 5 (f), 6× 6 (g), 7× 7 (h) and 8× 8 (i) respectively.

Matas, 2010) extensions of LBP and the Modified Census Transform (MCT) (Froba and Ernst,

2004). The MB idea is similar to the LBP(P,R) extended set in that it captures information from

multiple scales, but the neighboring is composed of 3 × 3 adjacent rectangular regions centered at

the pixel of interest (see Fig. 2.3 (a)). The MCT codes are computed similarly to the LBP, with the

difference that the average pixel values are used for comparison instead of the center pixel value in

the LBP. Additionally, the MCT codes have an extra bit obtained by comparing the center pixel with

the average. Typical MB-LBP feature maps are illustrated in Fig. 2.1. The coloring of the feature

maps cannot be interpreted as pixel intensities; the coloring in this images is obtained by scaling

the decimal value of the binary codes to the [0, 256) range. It can be noticed that the coarseness of

the local texture information is directly proportional with the size the cells: the smaller the multi-

block cell, the finer the texture. However, the finest multi-block features are also less robust to

noise or to various artifacts.

More formally, the MB features are parametrized by the top-left coordinate (x, y) in the patch to

process and the size cx× cy of the rectangular cells of the 3× 3 neighbourhood. Various patterns at

2.2. LOCAL BINARY PATTERNS 29

(a) (b) (c) (d)

Figure 2.2. Various multi-block patterns of different cell sizes and at different locations illustrated on a generic 16 × 16
pixel grid.

multiple scales and aspect ratios can be obtained by varying these parameters (see Fig. 2.2 (b, c, d)).

The richness of these patterns results in MB-LBP features outperforming both Haar-like features

and LBP codes for the face detection task (Zhang et al., 2007).

Multi-block features can be generated for both LBP and MCT and their extensions. To do this

we define pi as the average pixel intensity in the cell i using the indexing presented in Fig. 2.3 (a).

We refer to the centered pixel p8 as pc. Let p̄ = 1
9

∑
i=0:8

pi be the average pixel intensity in the 3 × 3

region. Then the LBP and the MCT codes are computed as presented in Table 2.1.

Recently, the transition LBP (tLBP) and the direction codes LBP (dLBP) have been proposed

(Trefny and Matas, 2010) as extensions to the LBP. Considering the center pixel (region) as the ori-

gin, then the tLBP feature encodes circular transitions, while the dLBP feature encodes transitions

across all four major directions. The combination of multi-block LBP, tLBP, dLBP and modified

LBP (mLBP) encoding is denoted as extended set of local binary patterns (EMB-LBP) (Trefny

and Matas, 2010). These LBP variations are illustrated in Fig. 2.3 and defined in Table 2.1.

The EMB-LBP features retain the robustness to illumination variation of the original LBP. The

mLBP are more robust to random noise than the LBP, because they are computed by comparing

the cells against the average intensity p̄. The multi-block binary patterns are efficient to compute

for any position and scale using the integral image (Viola and Jones, 2001). Furthermore, it can be

argued that they are more efficient than the related LBP(P,R) because no interpolation is needed.

Overall most of the LBP-like features are efficient enough for real-time applications.

In this thesis we shall exclusively use the EMB-LBP features, motivated by both their computa-

tional efficiency and superior performance (compared with MB-LBP features) on the face detection

and the gender recognition tasks (Trefny and Matas, 2010).

30 CHAPTER 2. RELATED WORK

(a) (b) (c)

(d) (e) (f)

Figure 2.3. (a) Pixel indexing used for computing LBP and MCT patterns. (b, c, d, e, f) Illustration of the pixel (block)
comparisons to obtain LBP, tLBP, dLBP, mLBP and MCT patterns respectively. The arrows denote the direction of the
comparison. The grey cells are compared with the average within the 3×3 region, while the white cells are compared
with the cell indicated by the arrow direction.

Name Operator Range

LBP
∑
i=0:7

1(pi ≥ pc) · 2i [0, 256)

tLBP
∑
i=0:7

1(pi ≥ p(i+1) mod 8) · 2i [0, 256)

dLBP
∑
i=0:3

1((pi − pc)(pi+4 − pc) ≥ 0) · 22i + 1(|pi − pc| ≥ |pi+4 − pc|) · 22i+1 [0, 256)

mLBP
∑
i=0:7

1(pi ≥ p̄) · 2i [0, 256)

MCT
∑
i=0:8

1(pi ≥ p̄) · 2i [0, 512)

Table 2.1. The LBP(8,1), the transition LBP (tLBP), the direction LBP (dLBP), the modified LBP (mLBP) and the MCT (multi-
block) operators. The centered pixel is denoted as pc. The LBP, mLBP, tLBP and dLBP feature set (denoted as EMB-LBP)
shall be used throughout this thesis.

2.3. SUMMARY 31

2.3 Summary

In this chapter, we have introduced boosting and local binary patterns, as the machine learning and

the features used throughout this work. More specifically, the TaylorBoost algorithm and the MB-

LBP features are the building blocks of the proposed framework. Let us summarize some important

aspects that our work relies on:

1. TaylorBoost is a generic algorithm to combine weak learners (hypothesis) into strong learn-

ers, that achieve arbitrary accuracy on training samples. The implication is that it optimizes

any smooth convex loss with any type of weak learner. Thus it can be used for a wide range of

applications, both regression and classification. It is also efficient because the strong learner

is constructed in a greedy fashion, by choosing one weak learner at each boosting round.

2. LBP features are robust to illumination variation and to random noise in the pixel values.

On the other hand, the MB-LBP features integrates information from multiple scales. Both

types of features are also localized and efficient to compute at any location and scale. These

attributes makes them appropriate for real-time vision applications.

The next chapter presents the proposed framework that extends and combines these ideas.

Firstly, we shall extend TaylorBoost to multivariate problems. The new algorithm is detailed for

generic empirical expectation (cumulative) losses and variational losses. The variational formu-

lation thus generalizes recent work on Expectation Bernstein Boosting (EBBoost) and Variational

AdaBoost (VadaBoost). Second, we detail the proposed boosting algorithms to look-up-tables as

weak learners. The optimization procedure is analyzed in terms of complexity and efficiency.

32 CHAPTER 2. RELATED WORK

Chapter 3

A unified framework for boosting

look-up tables

This chapter details the main contributions of this thesis which is to generalize and combine recent

work on boosting. First, we introduce a generalization of the TaylorBoost algorithm to multivari-

ate regression and classification problems. The multivariate TaylorBoost is analyzed for both ex-

pectation and variational loss formulations, the latter formulation being recently proposed by the

EBBoost and VadaBoost algorithms (Shivaswamy and Jebara, 2010, 2011). Second, we detail the

proposed boosting algorithms to LUTs as weak learners. We show that LUTs are efficient to boost

(train) and to evaluate at test time.

3.1 Unified multivariate boosting framework

This section introduces a general boosting framework to learn multivariate classification and re-

gression models. Besides some important advantages detailed below, this framework also extends

and connects recent work on boosting, more precisely the TaylorBoost, EBBoost and VadaBoost

algorithms.

33

34 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

3.1.1 Motivation

A general (unified) boosting framework ideally makes as few assumptions as possible on the loss

function to optimize and the type of weak learners. The loss function is usually restricted to be

analytic, smooth, convex and differentiable up to second order. This functional space contains a

wide range of loss functions, that can be used to solve both univariate and multivariate classification

and regression problems. An equally important property of such a boosting algorithm is to be

computationally efficient. This implies that the weak learner selection step is efficient, because it

is the most expensive step in boosting.

There are several advantages of the proposed boosting framework.

1. It is a unified learning algorithm that simplifies and enforces the comparison of different weak

learners (and implicitly different features) and loss functions.

2. Its modular approach makes it easy to change components and to create and to experiment

with new models.

3. Particular instances consist of well studied and successful boosting algorithms. Thus the

boosting framework is consistent with previously established results for particular tasks. But

its applicability can be extended to other tasks, for example multivariate regression problems.

The proposed approach extends previous work that proposed TaylorBoost (Masnadi-Shirazi,

2010). TaylorBoost optimizes efficiently any smooth loss function independent of the type of the

weak learner. However, it is restricted to single-output (univariate) weak learners and to expecta-

tion loss functions that sum the loss values of the training samples.

The proposed approach circumvents these two limitations. First, we extend the first and second

order TaylorBoost formulations, GradBoost and QuadBoost, to multiple-output (multivariate) weak

learners. Second, we analyze a different general variational loss formulation that complements the

original expectation formulation with the second order statistics of the loss value of the training

samples. The multivariate TaylorBoost algorithm with a multivariate variational loss is a general-

ization of previous works that proposed the EBBoost and the VadaBoost algorithms (Shivaswamy

and Jebara, 2010, 2011). The original work, on EBBoost and VadaBoost, discussed only the binary

classification case, while we show in this thesis that it is possible to optimize a more general class

3.1. UNIFIED MULTIVARIATE BOOSTING FRAMEWORK 35

of multivariate losses.

3.1.2 TaylorBoost revised

Here, we present the original TaylorBoost algorithm in detail and introduced earlier in Chapter

2. The weak learners g and the strong learner f are univariate. Each boosting round constructs

an improved model f with the goal of minimizing the loss L(f) that measures the goodness of the

predictions on the training samples. The loss L(f) is chosen to be differentiable up to the second

order.

The key idea is to choose the weak learners that locally decrease the loss the most. The loss

is thus approximated locally (at the current estimation of the strong learner) using the Taylor

expansion in the functional space of the weak learners:

L(f + εg) = L(f) + εδL(f, g) +
ε2

2
δ2L(f, g) + O(ε3), (3.1)

where ε is the small variation in the direction of the weak learner g. The derivative of the functional

L(f) along the direction g is:

δL(f, g) =
∂L(f + ξg)

∂ξ
|ξ=0, (3.2)

while similarly its curvature is defined as:

δ2L(f, g) =
∂2L(f + ξg)

∂ξ2
|ξ=0 . (3.3)

It is important to notice that this formulation makes no assumption on how the loss is decomposed

over the training samples {(xn, yn)n=1:N}. Clearly L(f) must be a composition of the loss values for

each sample l(yn, f(xn)). This is in the contrast with the original paper (Masnadi-Shirazi, 2010)

where the loss is the empirical expectation of the loss values over the training samples: L(f) =∑
n
l(yn, f(xn)).

Solving 3.1 for different orders of the loss approximation results in different boosting algorithms.

GradBoost uses the first order (gradient) approximation, while QuadBoost uses the second order

(quadratic) approximation. The two formulations are detailed in Algorithm 2. They differ only in

36 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

the weak learner selection step. GradBoost is a gradient descent method in the functional space

of the weak learners, while QuadBoost is a Newton method. It can be shown that previously pro-

posed boosting algorithms, like AdaBoost or LogitBoost, are particular instances of TaylorBoost

(Masnadi-Shirazi, 2010). In some cases, depending on the loss function, the scaling factor αr can be

determined analytically and no line-search iterations are required.

Algorithm 2 The boosting algorithm TaylorBoost.
1: Given weak and strong learners: g, f : Ω→ R

2: Given differentiable loss: L(f)
3: Initialize model: f = 0
4: for r = 1 to r ≤ R do
5: Select weak learner:
6: GradBoost: gr = arg min

g
δL(f, g)

7: QuadBoost: gr = arg min
g

− [δL(f,g)]2

δ2L(f,g)

8: Scale weak learner using line-search: αr = arg min
α

L(f + αgr)

9: Update strong learner: f ← f + αrgr
10: end for
11: return f

3.1.3 Multivariate TaylorBoost

TaylorBoost can be formulated as a multivariate optimization algorithm where the model predicts

O values at a time. In this case, the targets, the weak and the strong learners become vectors of

dimension O, while the base loss is changed similarly to compare multivariate targets and predic-

tions. Before detailing these modifications, we arbitrarily denote vectors with z to distinguish from

scalars z.

A specific output is referred with the index 1 ≤ o ≤ O. Thus, the target of the sample n be-

comes yn = (yo,n)1≤o≤O. Similarly, the weak and strong responses become g = (go)1≤o≤O and

f = (fo)1≤o≤O, respectively. The base loss changes to comparing vectors as: l(y, f) : RO ×RO → R.

In this section, we make no assumption on the specific form of the base loss, except that it must be

twice differentiable. Similarly, the overall loss L(f) is an unknown mixture of the base loss values

for the training samples.

The weak learners are scaled independently for each output when added to the strong learner.

Thus, the strong learner update is performed element-wise: (fo ← fo + αo,rgo,r)1≤o≤O. This can be

3.1. UNIFIED MULTIVARIATE BOOSTING FRAMEWORK 37

written more compactly using the Hadamard operator: f← f + αr • gr.

With these notations, we derive the multivariate TaylorBoost algorithm, denoted as MTaylor-

Boost. The weak learner is chosen to optimize the multivariate local Taylor expansion of the loss

with O dimensions:

L(f + ε • g) ≈ L(f) + εT δL(f,g) +
1

2
εT δ2L(f,g) ε, (3.4)

where the vector ε is a small variation along direction g. The gradient δL(f,g) is an O-dimensional

vector, while the Hessian δ2L(f) is an O ×O matrix. These functional derivatives are defined as:

δoL(f,g) =
∂L(f + (ξ 1−;o) • g)

∂ξ
|ξ=0, (3.5)

and:

δ2o1,o2L(f,g) =
∂2L(f + (ξ1 1−;o1) • g + (ξ2 1−;o2) • g)

∂ξ1∂ξ2
|ξ1=ξ2=0, (3.6)

respectively. The o component of the gradient quantifies the loss variation, at the limit, when the

output o of the strong learner f is translated along the direction of the weak learner g. Similarly,

the (o1, o2) measures the loss variation, at the limit, when the two outputs o1 and o2 are modified

simultaneously. The formulations make use of the notation 1−;o to denote a vector that has a unit

response for the dimension o and zero for the other dimensions. This corresponds to the Kronecker

delta function with two parameters:

1p;o = δp,o =


1, if p = o

0, if p 6= o.

(3.7)

Depending on the order of the loss approximation, we obtain multivariate versions of GradBoost

and QuadBoost denoted as MGradBoost and MQuadBoost respectively. These two multivariate

boosting algorithms reduce exactly to the associated TaylorBoost formulation of the same order for

single-output (univariate) problems. The only difference between MGradBoost and MQuadBoost is

the weak learner selection step, similar to the univariate case.

38 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

MGradBoost

The MGradBoost algorithm chooses the weak learner as:

(ε∗,gr) = arg min
ε,g

εT δL(f,g), (3.8)

to minimize the first order approximation of the loss. This an undefined optimization procedure,

because the step ε can be scaled to achieve arbitrarily low values. We thus fix the step to be unit for

each output. Then the optimization procedure becomes:

gr = arg min
g

∑
o

δoL(f,g). (3.9)

This formulation can be interpreted as choosing the weak learner that has the highest loss decrease,

summed over all the outputs. This is clearly a generalization of GradBoost (see Section 2), because

the sum is removed in the case of single output problems (O = 1).

MQuadBoost

The MQuadBoost algorithm chooses the weak learner to minimize the second order approximation

of the loss:

(ε∗,gr) = arg min
ε,g

εT δL(f,g) +
1

2
εT δ2L(f,g) ε. (3.10)

This optimization problem is simplified by eliminating the parameter ε. The optimal solution is

achieved when the derivative, with respect to ε, of the optimization criteria vanishes:

δL(f,g) + δ2L(f,g) ε∗ = 0. (3.11)

The optimal step is then:

ε∗ = −
[
δ2L(f,g)

]−1
δL(f,g). (3.12)

3.1. UNIFIED MULTIVARIATE BOOSTING FRAMEWORK 39

Then 3.10 reduces to an optimization problem with a single variable:

gr = arg min
g

− δL(f,g)T
[
δ2L(f,g)

]−1
δL(f,g). (3.13)

For the univariate case, the Hessian matrix reduces to the scalar δ2L(f, g), while the gradient is the

scalar δL(f, g). In this case equation 3.13 reduces exactly to the QuadBoost formulation. However,

in the general multivariate case the Hessian matrix can be inefficient to invert for each boosting

round, unless it can be performed analytically for some particular loss functions and weak learners.

MTaylorBoost

Both the first and second order weak learner selection procedures are followed by a multivariate

line-search step of the form:

αr = arg min
α

L(f + α • gr), (3.14)

where the vector αr adjusts each output of the selected weak learner to decrease the loss the most.

Then, the strong learner is updated to: f← f + αr • gr.

If no analytic solution can be computed for the optimal line-search steps, a gradient descent

method would be typically used. These methods compute at each iteration the gradient of the

criteria to optimize, with respect to its free parameters - α in our case. It can be shown that this

gradient is: δL(f + α • g,g). This gradient has the same formulation as the one used for the weak

learner selection step, but is evaluated at the current estimation of the scaling factor α. Thus, the

functional gradient formulation can be re-used once formulated.

Algorithm 3 summarizes the MTaylorBoost method. The algorithm is of little practical interest,

unless the loss functions and the weak learners are specified. The following section presents two

important overall loss functions and details the boosting steps for these losses. The next section

further details the boosting algorithm for LUTs as weak learners. Finally, we describe the binary

patterns used for boosting LUTs. Thus, we introduce an efficient boosting framework to be used for

a wide range of multivariate classification and regression problems.

40 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

Algorithm 3 The boosting algorithm MTaylorBoost.
1: Given weak and strong learners: g, f : Ω→ R

O

2: Given differentiable loss: L(f)
3: Initialize model: f = 0
4: for r = 1 to r ≤ R do
5: Select weak learner:
6: MGradBoost: gr = arg min

g

∑
o
δoL(f,g)

7: MQuadBoost: gr = arg min
g

− δL(f,g)T
[
δ2L(f,g)

]−1
δL(f,g)

8: Scale weak learner using line-search: αr = arg min
α

L(f + α • gr)

9: Update strong learner: f← f + αr • gr
10: end for
11: return f

3.1.4 Overall loss functions

This section describes in more detail the overall loss function L(f). We refer to this loss as an overall

loss because it mixes the loss values of the training samples. More formally, let l(y, f) : RO×RO → R

be an unspecified twice differentiable base loss function and {(xn,yn)n=1:N} ∈ (Ω×RO)N be a set

of training samples. The base loss l(yn, f(xn)) evaluated for a particular sample (xn,yn) measures

the error produced by predicting f(xn) instead of yn.

In the most general case, the overall loss combines the error distributions over all of the training

samples as:

L(f) = L ({l(yn, f(xn))}n=1:N) . (3.15)

We describe two overall losses that use first or second order statistics of the error distribution

over the training samples. The first order (expectation loss) aims at minimizing the average error

distribution, while the second order (variational loss) complements the expectation loss with a

regularization term proportional with the empirical variance of the error distribution. We detail

the multivariate derivatives for both losses in the form required by the MTaylorBoost algorithm.

To simplify the equations we introduce some useful notation. The loss values and first and

second order derivatives for a sample n using the predictions f are denoted as:

ln(f) = ln = l(yn, f(xn)), (3.16)

3.1. UNIFIED MULTIVARIATE BOOSTING FRAMEWORK 41

l′o,n(f) = l′o,n =
∂l(yn, f(xn) + (ξ 1−;o))

∂ξ
|ξ=0, (3.17)

l′′o1,o2,n(f) = l′′o1,o2,n =
∂2l(yn, f(xn) + (ξ1 1−;o1) + (ξ2 1−;o2))

∂ξ1∂ξ2
|ξ1=ξ2=0, (3.18)

respectively. We sometimes omit the predictions to unclutter equations, when it is clear from the

context that f is the strong learner from the previous round.

Let us denote the loss distribution as L = {(ln)n=1:N}. The empirical expectation and variance

of the L are denoted as:

Ê[L] =
1

N

∑
n

ln, (3.19)

and:

V̂[L] = Ê
[(
L− Ê[L]

)2]
. (3.20)

Expectation loss

The expectation loss is chosen to penalize strong learners that do not perform well on average.

This is probably the most widely used loss formulation by the machine learning community. More

formally, the expectation loss is defined as:

LE(f) =
∑
n

l(yn, f(xn))

=
∑
n

ln

∝ Ê[L]. (3.21)

The derivatives required by MTaylorBoost are computed by summing over the samples the

derivatives of the base loss. Following the chain rule, a component of the functional gradient is

decomposed as:

42 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

δoLE(f,g) =
∑
n

∂l(yn, f(xn) + (ξ 1−;o) • g(xn))

∂ξ
|ξ=0

=
∑
n

l′o,n go(xn). (3.22)

This is the scalar product of the loss gradients and the responses of the weak learner over the

training samples: δoLE(f,g) = 〈OoLE(f),go〉.

The same procedure is applied to a component of the functional Hessian to obtain:

δ2o1,o2LE(f,g) =
∑
n

∂2l(yn, f(xn) + (ξ1 1−;o1) • g(xn) + (ξ2 1−;o2) • g(xn))

∂ξ1∂ξ2
|ξ1=ξ2=0

=
∑
n

l′′o1,o2,n go1(xn) go2(xn). (3.23)

Similarly, this is the scalar product of the loss for the second order derivatives and the responses of

the weak learners over the training samples: δ2o1,o2LE(f,g) = 〈O2
o1,o2LE(f),go1 • go2〉.

It can be noticed that both derivatives are scalar products between constants, based on the

current strong learner, and the predictions of the new weak learner to add. This has practical

implications, because these constant terms (l′o,n and l′′o1,o2) can be buffered before selecting the weak

learner. Thus the optimization can be significantly sped up. However, this does not help for the

MQuadBoost algorithm.

The MQuadBoost algorithm requires the inversion of the Hessian matrix which is generally

expensive if the matrix presents no structure. Also, this algorithm depends on the unknown optimal

weak learner. If the base loss l has a diagonal Hessian matrix, then the algorithm simplifies to

a sum of independent QuadBoost problems which is more efficient to solve. More formally, the

selection of the optimal weak learner reduces to:

gr = arg min
g

−
∑
o

[δoLE(f,g)]2

δ2o,oLE(f,g)
. (3.24)

Variational loss

The motivation for using a variational loss is to penalize not only wrong predictions, but also large

variations of prediction accuracy. A smaller variation of the prediction errors, for the training

samples, is intuitively related to a higher confidence in predictions. Thus, it is expected that a

3.1. UNIFIED MULTIVARIATE BOOSTING FRAMEWORK 43

model trained with such a loss will generalize better on unseen data. This intuition is supported by

theoretical results that estimate the bounds of the generalization error. Some of these results are

described in recent work (Shivaswamy and Jebara, 2010, 2011).

More formally, the variational loss trades-off the empirical loss expectation with the empirical

loss variance:

LV (f) = β
(

Ê[L]
)2

+ γ V̂[L]. (3.25)

Following the work of (Shivaswamy and Jebara, 2010, 2011), this loss can be reformulated as:

LV (f) =

[∑
n

l(yn, f(xn))

]2
+ λ

∑
n>m

[l(yn, f(xn))− l(ym, f(xm))]
2

=

(∑
n

ln

)2

+ λ
∑
n>m

(ln − lm)
2
, (3.26)

with the trade-off parameter λ ≥ 0. Setting the trade-off parameter to zero, reverts the variational

formulation to the associated expectation formulation for the same base loss function. A sufficiently

large λ value may bias the model towards predictions that are almost constant for any sample, be-

cause constant distributions have minimum variance. In practice, the optimal trade-off parameter

is tuned on a distinct validation dataset.

There has been recent work on boosting that makes use of specific variational losses. The

EBBoost (Empirical Bernstein Boosting) (Shivaswamy and Jebara, 2010) and the VadaBost (Varia-

tional AdaBoost) (Shivaswamy and Jebara, 2011) were proposed to solve binary classification prob-

lems and they both make use of the exponential base loss: l(y, f) = exp(−yf). Both algorithms

are reduced to an AdaBoost formulation of the same complexity, but with slightly modified weight

distributions and scaling factors.

In this thesis, we use the more general variational loss of Eq. 3.26 within the MTaylorBoost

framework. We derive the gradient and the Hessian components similarly to the expectation loss

case using the chain rule. But first, we rewrite Eq. 3.26 to simplify this computation:

44 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

LV (f) =

(∑
n

ln

)2

+ λ
∑
n>m

(ln − lm)2

=
∑
n

l2n + 2
∑
n>m

lnlm + λ
∑
n>m

(l2n + l2m − 2lnlm)

=

[
λ
∑
n>m

(l2n + l2m) + λ
∑
n

l2n

]
+

[
(1− λ)

(∑
n

l2n + 2
∑
n>m

lnlm

)]

= λ
1

2

∑
n,m

(
l2n + l2m

)
+ (1− λ)

(∑
n

ln

)2

= λN

(∑
n

l2n

)
+ (1− λ)

(∑
n

ln

)2

. (3.27)

Then the gradient becomes:

δoLV (f,g) = 2
∑
n

[λNln + (1− λ)LE(f)] l′o,n go(xn). (3.28)

It can be noticed that the variational gradient is formulated similar to the expectation gradient as a

scalar product of some constants and the weak learner responses: δoLV (f,g) = 〈OoLV (f),go〉. Thus,

MGradBoost selects the optimal weak learner with the same complexity, the only difference being

the actual buffered constants.

A similar result can be obtained for the Hessian. For the variational loss the Hessian becomes:

δ2o1,o2LV (f,g) = 2
∑
n

[λNln + (1− λ)LE(f)] l′′o1,o2,n go1(xn) go2(xn)

+ 2
∑
n

[λNl′o1,nl
′
o2,n] go1(xn) go2(xn)

+ 2(1− λ)

[∑
n

l′o1,n go1(xn)

][∑
n

l′o2,n go2(xn)

]
. (3.29)

A diagonal Hessian for an expectation loss does not translate to a diagonal Hessian for the associ-

ated variational loss. This is because of the second order terms, that do not depend on the second

order derivative of the base loss. Thus, the MQuadBoost algorithm does not simplify for LV to a

sum of univariate algorithms, even if it simplifies for the associated LE . Usually an iterative opti-

mization procedure, with ε and g as parameters, must be used to select the optimal weak learner

for the MQuadBoost case. This is in constrast with the MGradBoost algorithm, where an analytical

3.2. BOOSTING LOOK-UP-TABLES 45

solution can be found. Thus the first order algorithm is much more efficient than the second order

one for a generic loss.

Expectation and Variational MGradBoost

We detail the weak selection and the line-search steps of MGradBoost. To simplify notations, we

denote L′o,n(f) as the gradient for the output o and the sample n using the f strong learner. This

gradient is reduced to:

L′E,o,n(f) = l′o,n(f), (3.30)

L′V,o,n(f) = 2 [λNln(f) + (1− λ)LE(f)] l′o,n(f), (3.31)

for the expectation and the variations formulations respectively. We have showed in the previous

section that the accumulated loss gradient is decomposed as the scalar product between some con-

stants (with respect to the weak learner) and the weak learner predictions, for both expectation and

variational formulations. Then the weak learner is selected using:

gr = arg min
g

∑
o,n

L′o,n(f) go(xn) (3.32)

Algorithm 4 details the first order weak learner selection step for the expectation and the vari-

ational loss formulations. It can be noticed that in both cases this reduces to optimizing a linear

equation between different constants (proportional with the loss gradients) and the same weak

learner predictions. Thus, both formulations have the same complexity for given weak learners.

3.2 Boosting look-up-tables

In this work we have chosen to boost LUTs, also named multi-branch decision trees (Zhang et al.,

2007). These weak learners present several advantages. First, the boosting algorithm MGradBoost

has a simple and efficient formulation for this type of weak learner for both expectation and vari-

ational losses. Second, the LUT can be used with a wide range of discrete positive features: both

codes (e.g. LBP, MCT (Froba and Ernst, 2004)) and features that lie in the Euclidean space (e.g.

greyscale, histograms). And finally, the LUT has been successfully boosted for state-of-the-art face

46 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

Algorithm 4 The boosting algorithm MGradBoost detailed for the expectation and the variational
loss formulations.

1: Given weak and strong learners: g, f : Ω→ R
O

2: Given differentiable loss: L(f)
3: Initialize model: f = 0
4: for r = 1 to r ≤ R do
5: Select weak learner: gr = arg min

g

∑
o,n

L′o,n(f) go(xn)

6: Expectation: L′o,n(f) = l′o,n(f)
7: Variational: L′o,n(f) = [λNln(f) + (1− λ)LE(f)] l′o,n(f)
8: Scale weak learner using line-search: αr = arg min

α
L(f + α • gr)

9: Update strong learner: f← f + αr • gr
10: end for
11: return f

detection (Froba and Ernst, 2004; Zhang et al., 2007). We consider that these weak learners can be

used for other tasks too, for example regression.

The LUT is parametrized by a feature index (a particular dimension in the feature space) and

a set of fixed outputs, one for each distinct feature value. More formally, the weak learner g is

computed for a sample x and a feature d with:

g(x) = g(x; d,a) = a[u = xd], (3.33)

where a is the LUT with U entries au. The feature value xd is used as an index u in the look-up

table. The number of entries U is actually the number of distinct values the features can have that

for simplicity we consider to be in the range [0, U).

The extension to the multivariate case is performed by concatenating LUTs for each output:

g(x) = g(x; d,A) = {Ao[u = xdo
]}1≤o≤O, (3.34)

where each output go has a different set of entries Ao of the same size U and possibly a different

feature do. We refer to Ao,u and Ao[u] as the oth output indexed by the feature value u in the LUT

entries Ao.

The goal of the boosting algorithm is to compute the optimum features d and the optimal entries

Ao,u. Boosting LUTs thus performs feature selection, because the selected weak learners are each

parametrized by a single feature for each output. We shall investigate two situations. The first

3.2. BOOSTING LOOK-UP-TABLES 47

consists of sharing a single feature (do = d) for all outputs, which we denote as MGradBoost-

Shared. The second consists of selecting the features independently for each output, which we

denote as MGradBoost-Indep. The sharing formulation results in fewer features to evaluate at

test time, thus it provides simpler and faster models. However, the shared models may not have

the representation power of the independent formulations.

3.2.1 Weak learner selection step

Here we detail the weak learner selection step of the MGradBoost algorithm for the two cases of

sharing features between outputs. This step reduces for MGradBoost-Shared to:

gr = arg min
g

∑
o,n

L′o,n(f) go(xn)

= arg min
d,A

∑
o,n

L′o,n(f) go(xn; d,A)

= arg min
d

∑
o

{
arg min

Ao

∑
n

L′o,n(f) go(xn; d,Ao)

}

= arg min
d

∑
o

arg min
Ao

∑
u

 ∑
n,xn,d=u

L′o,n(f)

Ao,u

 , (3.35)

and for MGradBoost-Indep to:

gr = arg min
g

∑
o,n

L′o,n(f) go(xn)

= arg min
d,A

∑
o,n

L′o,n(f) go(xn; d,A)

=
∑
o

arg min
do,Ao

∑
n

L′o,n(f) go(xn; do,Ao)

=
∑
o

arg min
do=d

arg min
Ao

∑
u

 ∑
n,xn,d=u

L′o,n(f)

Ao,u

 , (3.36)

respectively. We have used the fact that look-up-tables produce a constant output Ao,u for the

subset of the samples that have the fixed feature d with the value u. Thus each look-up-table entry

is selected independently of the others as:

48 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

Ao,u = − sgn

 ∑
n,xn,do=u

L′o,n(f)

 , (3.37)

for a fixed feature do attributed to the output o. The optimal entry value is proportional to the sum

of the loss gradients of the samples that fall in the associated bin u. This sum can be interpreted as

the cumulated mis-predictions that the entry should decrease. Replacing the optimal look-up-table

entry values in the initial equations, the optimal shared feature is:

d∗ = arg min
d

−
∑
o,u

∣∣∣∣∣∣
∑

n,xn,d=u

L′o,n(f)

∣∣∣∣∣∣ , (3.38)

while the optimal independent feature is:

d∗o = arg min
d

−
∑
u

∣∣∣∣∣∣
∑

n,xn,d=u

L′o,n(f)

∣∣∣∣∣∣ , (3.39)

for the output o. It can be noticed that the criteria to choose the optimal shared feature is a sum

over the criteria to choose the independent features. Once the feature(s) selection is performed, the

optimal look-up-table entries are computed using Eq. 3.37 to obtain A∗o,u. Finally, the optimal weak

learner is thus gr = g(; d∗,A∗).

3.2.2 Line-search step

The line-search step consists of computing the optimal scaling factors: αr = arg min
α

L(f + α •

gr). This optimization problem has O variables - one for each output, and it can be solved using

off-the-shelf optimization algorithms. Such an algorithm requires iteratively the gradient of the

optimization criteria in respect with each variable, until no improvement can be made. These

gradients can be computed at each iteration using the chain rule as:

∂L(f + (α + ξ 1−;o) • gr)
∂ξ

|ξ=0 = δoL(f + α • gr,gr)

=
∑
n

L′o,n(f + α • gr) go,r(xn) (3.40)

where α is the vector of current scaling factor. This is exactly the same formulation used for se-

lecting the optimal weak learner, but at the translated strong learner f + α • gr with the current

3.2. BOOSTING LOOK-UP-TABLES 49

scaling factors. It can be noticed that the constants in the cross product are now the weak learner

predictions go,r(xn) which do not depend on α. But the L′o,n(f+α•gr) terms need to be re-computed

at each iteration. The line-search was performed using the C-library libLBFGS that implements

the L-BFGS optimization algorithm (Nocedal and Jorge, 1989).

3.2.3 MGradBoost for boosting look-up-tables

We summarize the proposed boosting look-up-tables method in Algorithm 5. Each boosting round

consists of three major steps. First, feature selection is performed by computing d∗ or d∗o (step

6 or step 7). Given that D features are available, this step has the complexity O(D × O × N)

because it needs to sum the loss gradients for each sample and outputs. Second, the optimal entries

are computed using step 8 with the complexity O(D × O × N). Finally, line-search is performed

to compute the scaling factors using some iterative gradient descent algorithm. Each iteration

involves summing similar loss gradients with complexity O(D×O×N) (see Eq. 3.40). Overall, the

training complexity is thus O(R×D×O×N) depending linearly with the number of boosting

rounds, features, outputs and training samples.

Algorithm 5 The MGradBoost algorithm for boosting look-up-tables with shared features.
1: Given weak and strong learners: g, f : Ω→ R

O

2: Given differentiable loss: L(f)
3: Initialize model: f = 0
4: for r = 1 to r ≤ R do
5: Select weak learner: gr = g(; d∗,A∗), where:
6: MGradBoost-Shared: d∗ = arg min

d
−
∑
o,u
|
∑

n,xn,d=u
L′o,n(f)|

7: MGradBoost-Indep: d∗o = arg min
d

−
∑
u
|
∑

n,xn,d=u
L′o,n(f)|

8: Ao,u = − sgn[
∑

n,xn,d∗o=u
L′o,n(f)]

9: Scale weak learner using line-search: αr = arg min
α

L(f + α • gr)

10: Update strong learner: f← f + αr • gr
11: end for
12: return f

The evaluation of the boosted strong learner f on a sample x consists of summing the weak

learner responses for each output: fo(x) =
∑
r≤R

go,r(x; dr,Ar). The summation involves between R

(MGradBoost-Shared) and R×O (MGradBoost-Indep) feature computations and R×O elementary

LUT indexing operations and additions. Usually, the feature computation is the most time consum-

50 CHAPTER 3. A UNIFIED FRAMEWORK FOR BOOSTING LOOK-UP TABLES

ing operation at test time, while the memory access and the additions are almost negligible. Thus

we argue that LUTs are efficient to boost and to evaluate.

The analysis has shown that the feature selection is the most computationally intensive step.

However, this step is easily parallelized by noticing that the criteria for each feature can be com-

puted independently. The feature collection to evaluate can be thus split uniformly across multiple

processing units. This makes the boosting algorithm scalable with the available resources.

3.3 Summary

This chapter introduced a generic boosting framework for multivariate classification and regression

problems. The proposed MTaylorBoost algorithm is detailed for the expectation and the variational

loss formulations. We show that boosting LUTs is efficient and scalable for both loss formulations

and the first order MTaylorBoost algorithm. Overall, the proposed framework is geared towards

building efficient models suitable for a wide range of real-time applications. The next chapter

describes how to efficiently boost high resolution models using large pools of samples.

Chapter 4

Efficient boosting

This chapter presents the main contributions to boost models efficiently when the number of both

features and samples is very high. Our proposed approach addresses the case of high resolution

models and of very large training pools, that usually occur in face processing tasks. First, we

introduce a coarse-to-fine feature selection method for multi-block LBPs. This method reduces the

number of features of high resolution models to practical values by iteratively refining the boosted

features. Second, we present a generic bootstrapping algorithm to sample representative training

data from very large sample pools. This algorithm iteratively builds a better representation of the

available training data.

4.1 Coarse-to-fine multi-block feature selection

Multi-block Local Binary Patterns (MB-LBP) are widely used for face detection (Froba and Ernst,

2004; Zhang et al., 2007; Trefny and Matas, 2010). This is because these features are efficient to

compute, robust to illumination and to some degree to noise, while achieving good performance.

The models usually have fairly low resolution (e.g. of 24 × 24 pixels). The number of features in-

creases rapidly to millions for high resolution models, thus boosting such models proves unfeasible.

However, high resolution models are often required in high precision tasks, for example to precisely

locate particular facial features. To address this problem of efficiently boosting multi-block features

for high resolution models we propose a coarse-to-fine feature selection (CTFFS) procedure.

51

52 CHAPTER 4. EFFICIENT BOOSTING

Model size

20× 24 40× 48 80× 96

Number of features 19,100 355,700 6,112,700

Number of features / pixel 39.8 185.3 795.9

Table 4.1. The number of extended multi-block Local Binary Patterns (EMB-LBP) generated for various model sizes. The
feature redundancy increases fast with the model resolution.

Multi-block patterns

First, we define a multi-block pattern as consisting of two components.

1. A rectangular region where features are extracted from, defined by its top-left (t, l) coordin-

ates. This region is broken into nx × ny adjacent and rectangular cells (or blocks) of the same

size in pixels cx × cy. Then the size in pixels of region is nxcx × nycy. For example, the LBP

features are patterns of 3×3 cells each consisting of one pixel, while the MB-LBP features are

similarly patterns of 3× 3 cells of variable size.

2. An operator that uses the average pixel intensities in each block to compute a binary code.

Such operators are for example the LBP and the MCT encoding described in Table 2.1.

The multi-block feature pool consists of all the multi-block patterns that can be generated to

fit a given model size. This pool is constructed by varying independently the top-left coordinates

and the cell sizes and applying different encoding operators.

Let D(W,H) be the exhaustive set of multi-block features using models of the size W ×H pixels.

Then the following constraints must be satisfied: 0 ≤ l < W − cxnx and 0 ≤ t < H − cyny, for

a particular feature parametrized by (t, l, cx, cy, nx, ny). The number of valid features increases at

a cubic rate with the model size, because the multi-block features are collected from any location

and scale. Thus the size of the feature pool increases rapidly as we increase the size of the model,

a summary of this is provided in Table 4.1. It can also be noticed that the number of features

per pixel increases with the model resolution which indicates that the feature set consists of many

redundancies.

Boosting a model f results in a relatively small number of features selected to form weak learn-

ers, while many others are discarded. We shall denote with D(f) the selected (boosted) multi-block

4.1. COARSE-TO-FINE MULTI-BLOCK FEATURE SELECTION 53

features for the model f.

For example, boosting a high resolution 80× 96 pixel model requires processing approximatively

6.1 million EMB-LBP features at each round. This is unmanageable, even if the boosting algorithm

is itself scalable. However, boosting 20 × 24 models is fairly fast. This is because approximatively

20,000 features can be easily pre-computed and stored in memory for a large number of samples

(e.g. of the order of 100,000). Then, the boosting algorithm is performing simple indexing in the

data structures where the features are stored.

Coarse-to-fine multi-block feature selection

The proposed coarse-to-fine multi-block feature selection algorithm is based on a key assump-

tion. We assume that the boosted multi-block features are close in location and scale, when up-

scaled, to the optimal features selected for the model of twice the resolution. This is equivalent to

assuming that close multi-block features have similar performance. Intuitively, the set of all multi-

block patterns consists of many overlapping and redundant features and thus projecting them to a

lower resolution may not significantly degrade the performance of the boosted model.

We propose to identify the location and the scale of the multi-block features at the coarse reso-

lution and then to iteratively refine the size and the ellongation of the selected features at higher

resolutions. There are two distinguishable steps.

1. The initialization consists of exhaustively boosting features from a coarse enough scale such

that boosting is feasible. The selected features provide a rough approximation of the location

and scale of the optimal boosted features at the highest resolution.

2. The refinement iterations boost a relatively small collection of features at twice the resolu-

tion of the previous step. This collection of features is constructed using the selected features

at the previous step, projected to twice the resolution, and varying independently their size

with a fixed increment. This increment is halved at each refinement iteration to obtain better

approximations of the optimal features.

More precisely, let MBp = (t, l, cx, cy, nx, ny) ∈ D(f) be a set of boosted multi-block features at

the resolution of Wp ×Hp pixels for the projection p. This feature set is then projected to MBp+1 =

(2t, 2l, 2cx, 2cy, nx, ny) using the higher resolution model of size 2Wp × 2Hp pixels. We construct 9

54 CHAPTER 4. EFFICIENT BOOSTING

additionally higher resolution patterns centered on the set of patterns from MBp+1, with cell sizes

of {2cx − 1, 2cx, 2cx + 1} × {2cy − 1, 2cy, 2cy + 1}. This set of patterns, illustrated in Fig. 4.1 (b-j), is

denoted as MBp+1. We thus construct at the resolution 2Wp×2Hp up to 9 times more patterns than

the boosted ones at the resolution Wp × Hp. This procedure is referred to as feature projection.

Next the boosted projected features shall be considered as better approximations of the optimal

multi-block features. The state diagram is presented in Fig. 4.2.

We formalize the proposed coarse-to-fine feature selection method in Algorithm 6. The current

set of features is denoted with D. At first, D is initialized with the exhaustive set of multi-block

features for the coarsest resolution (step 2). Then, D is iteratively updated by projecting (at twice

the resolution) the selected features at the previous resolution (steps 5-6). Finally, a model of high

resolution W02P ×H02P is produced after P projection steps.

Algorithm 6 Coarse-to-fine multi-block feature selection.
1: Given: coarsest resolution W0 ×H0, projections P
2: Exhaustive features: D← D(W0, H0)
3: Boost model: f0 ← boost(D)
4: for p = 1 to p ≤ P do
5: Select features: D← D(fp−1)
6: Project features: D← project(D)
7: Boost model: fp ← boost(D)
8: end for
9: return fP of size W02P ×H02P pixels

The algorithm is expected to produce models of similar performance to the model trained with

the exhaustive set of features at the highest resolution W02P × H02P . However, the coarse-to-fine

feature selection is significantly faster. For example, let us consider the case of training a 80 × 96

model using 1024 weak learners and EMB-LBP features. The exhaustive pool of features consists

of |D(80, 96)| ≈ 6, 100, 000 features (see Table 4.1). However, if we use P = 2 projection iterations,

the model is first trained with |D(W0 = 20, H0 = 24)| ≈ 19, 100 features. Then, the selected 1024

features are projected twice to obtain roughly 9,000 features at resolution 40× 48 and 80× 96 pixels

respectively. Thus, the coarse-to-fine feature selection method process 37, 100 features in total,

which is approximatively 160 times faster than the exhaustive approach.

It is important to notice that the proposed feature selection algorithm is generic in nature.

Any multi-block features (e.g. MB-LBP, EMB-LBP, MCT) that respect the definition above can be

successfully processed.

4.1. COARSE-TO-FINE MULTI-BLOCK FEATURE SELECTION 55

(a) original

(b) projected pattern

(c) additional projected patterns

Figure 4.1. Illustration of the proposed coarse-to-fine feature projection. (a) The coarse original multi-block pattern
(MBc). (b) The projected multi-block pattern to twice the resolution (MBh). (c) The set of additional patterns, con-
structed by varying the cell size independently for each axis (MBh). The center of the patterns is displayed with a red
cross, while the upscaled pattern is contoured with a dashed red line.

56 CHAPTER 4. EFFICIENT BOOSTING

(a)

Figure 4.2. Illustration of the proposed coarse-to-fine feature selection algorithm. The algorithm maintains a set of
features that is initialized with the exhaustive set at the coarsest model resolution. Then iteratively, the feature set is
pruned by boosting and projected to twice the model resolution.

4.2 Sampling and bootstrapping training data

Another aspect of speeding-up the boosting algorithm is to sample a representative small dataset

when a large pool of training samples is available. The training pool consists of sub-windows

(patches) of fixed size in pixels (the model size), collected at different locations and scales of the

input images to achieve robustness to simple transformations of the input. In practice, this is per-

formed by scaling each input image to form a pyramid of images. Then, at each scale the samples

are collected by shifting the samples (translation) using a fixed step. This scanning process gener-

ates a large number of samples from a relatively small number of images (e.g. billions of samples

from a hundred 640× 480 images) if performed densely in location and scale.

It is not feasible to boost models using such large collections of training samples, even if the

number of features is small. The solution is to train a model using a relatively small and represen-

tative subset of all potential training samples. This section describes such a practical solution.

Let Z be a potentially very large set of training samples. Each sample has a type out of K total

types. For example, in the case of face detection there are two such types: the face samples and the

4.2. SAMPLING AND BOOTSTRAPPING TRAINING DATA 57

background. The sampling pool can thus be decomposed into distjoint sets: Z = ∪
k

Zk, of samples

having the same type k ∈ {1, ..,K}. We use the notation Zz ⊆ Z to denote the set of samples having

the same type as the sample z ∈ Z.

Let ε(z|f) be an error function that measures the accuracy of the prediction matching the target

for the sample z using the model f. Usually, this is non-continuous function that it is hard to opti-

mize. The optimization criteria is chosen instead to be the smooth and differentiable loss function

l. We use the error function to compute the probability of bootstrapping a given sample. The key

idea is to favor samples with large errors, thus forcing the model to learn these samples in the next

iteration. By iteratively adding the mis-predicted samples to the training data, the large training

pool is systematically explored and the model is trained with representative samples.

The goal of the sampling procedure is to select a small subset of samples, that respect the fol-

lowing two concepts.

1. The subset is balanced over the intrinsic type. This is especially useful when some types

of samples appear significantly more frequent than the others (Viola and Jones, 2002). For

example, in the case of face detection the number of background samples are of several or-

der of magnitude more frequent than the face samples. Training a model using uniformly

distributed data biases the model towards the most frequent type of samples, because their

contribution to the loss (both expectation and variational) is greater.

2. The subset is representative to ensure that sampling does not degrade the performance.

This is performed by iteratively bootstrapping the pool of samples. Bootstrapping is widely

used for building state-of-the-art cascade of face classifiers (Viola and Jones, 2001; Froba and

Ernst, 2004; Zhang et al., 2007). The training samples are augmented or replaced at each step

(stage of the cascade) with the ones mis-classified at the previous step. We generalize these

ideas to non-cascaded strong learners and to regression problems. Similarly, we augment at

each bootstrapping step the training samples with the ones having large errors, with high

probability. The number of boosting rounds is doubled at each step, because the training data

becomes more challenging.

We distinguish between uniform and error-based sampling methods. The uniform sampling

is a balanced method such that each type is approximatively equally distributed in the resulting

58 CHAPTER 4. EFFICIENT BOOSTING

data. Thus the probability of selecting a sample z is thus defined to be proportional to the number

of samples having that type:

pu(z ∈ Z|N) =
N

K

1

|Zz|
, (4.1)

where N is the number of samples to select. If the probability function is greater than unit, than

that sample can be selected multiple times. The set of selected samples is denoted as: {∼ pu(· |N)}.

The error-based sampling takes into consideration the error obtained with the current model

f, such that mis-predicted samples have thus higher chances of being selected:

pe(z ∈ Z|N, f) =
N

K

ε(z|f)∑
s∈Zz

ε(s|f) . (4.2)

The set of selected samples is denoted as: {∼ pe(· |N, f)}.

The proposed bootstrapping algorithm is presented in Algorithm 7. Let N t
b , N

v
b and Rb be the

number of the training samples, the validation samples and the boosting rounds respectively, at

the bootstrapping step b ≤ B. Ztb and Zvb are the training and the validation samples respectively.

Clearly N t
b = |Ztb| and Nv

b = |Zvb | respectively. We distinguish the particular case of B = 0, when no

bootstrapping steps are performed, as one-shot boosting.

There are two basic bootstrapping operations: sampling and training. It can be noticed that

the validation dataset is re-sampled at each bootstrapping step to reduce the biasing effect. The

number of validation samples is preserved at each step: Nv
b = |Zvb | = |Zv0 | = Nv

0 , while the number

of training samples increases linearly: N t
b = |Ztb| = (b+ 1)|Zt0| = (b+ 1)N t

0.

Algorithm 7 Bootstrapping training samples.
1: Given: N t

0 > 0, Nv
0 > 0, R0 > 0, B ≥ 0

2: Uniform sample training data: Zt0 ← {∼ pu(· |N t
0)}

3: Uniform sample validation data: Zv0 ← {∼ pu(· |Nv
0)}

4: Boost model: f← boost(Zt0, Z
v
0 , R0)

5: for b = 1 to b ≤ B do
6: Rb = 2Rb−1
7: N t

b = N t
b−1 +N t

0

8: Bootstrap training data: Ztb ← Ztb−1
⋃
{∼ pe(· |N t

b , f)}
9: Uniform sample validation data: Zvb ← {∼ pu(· |Nv

0)}
10: Boost model: f← boost(Ztb, Z

v
b , Rb)

11: end for
12: return f of up to R02B weak learners

4.3. SUMMARY 59

The number of boosting rounds increases exponentially, partially motivated by the design of the

cascades used for real-time face detection (Viola and Jones, 2001). The first stage of the cascades

usually consists of few weak learners, while the next stages rapidly reach hundreds or even thou-

sands of weak learners. However, we retrain at each bootstrapping step the strong learner with the

augmented training samples (which includes the selected samples at the previous step). This way

the model does not forget the previous samples, but trains with a better distribution of the training

samples over the input signal space.

4.3 Summary

This chapter introduced a generic method for boosting high resolution models using large pools of

samples. First, we have introduced the coarse-to-fine multi-block feature selection algorithm. The

algorithm iteratively projects the currently boosted features to higher resolutions, instead of pro-

cessing the exhaustive feature set. Thus, the computation is concentrated on refining a small frac-

tion of all possible features that are selected by boosting at coarser levels. Second, we detailed the

proposed sampling and bootstrapping method to build efficiently a representative training dataset

from a very large pool of samples. The next chapter describes the experimental results for the face

detection task.

60 CHAPTER 4. EFFICIENT BOOSTING

Chapter 5

Application to face detection

In this chapter we apply our boosting framework to the task of face detection. Face detection is a

binary classification task that consists of finding the position of all the faces, if any, in an image.

Two components are usually required: a classifier and a search algorithm. The search (or scanning)

algorithm forms sub-windows (or samples) at different locations and scales which are fed to the

classifier. The sub-windows labeled as positive samples are considered as final detections. Usually

a clustering algorithm (e.g. non-maxima suppression, averaging the overlapping regions, mean

shift) is run on these detections to reduce the number of multiple detections.

The face detections can then be further processed to accurately locate the facial features of

interest (e.g. eye centers, mouth corners, nose tip). The facial feature locations are then typically

used to geometrically normalize detections to improve face recognition or to initialize high level

systems (e.g. facial expression analysis). This means that efficiency is an important aspect of any

face detection system.

5.1 Background

Recently there has been a great interest in real-time face detection systems. Their speed depends

mostly on the speed of the classifier to evaluate a sub-window. These systems are usually built

using boosted classifiers (Viola and Jones, 2001; Zhang et al., 2007) because of their potential com-

putational efficiency while providing state-of-the-art performance. Another important factor is the

61

62 CHAPTER 5. APPLICATION TO FACE DETECTION

(a) (b)

Figure 5.1. Illustration of two typical images to evaluate face detection models. The ground truth face locations are
overimposed with green rectangles.

speed to compute the features. The fastest features are evaluated in constant complexity at any

location and scale, for example: Haar-like features (Viola and Jones, 2001) and MCT (Froba and

Ernst, 2004) or multi-block LBP codes (Zhang et al., 2007).

Typical images to process are illustrated in Fig. 5.1. The objective of a face detection systems is

to produce the correct number of face detections and each detection to match as close as possible the

associated ground truth location. The boosted model has a single output, which is ideally positive

for faces and negative for background samples. The detections are validated using the Jaccard

similarity index (Jaccard, 1901):

J(D,G) =
D ∩G
D ∪G

, (5.1)

which is proportional to the amount of the overlap between the detection D and the ground truth G.

If the overlap, expressed as a percentage, is greater than 50%, then D is considered as a detection,

otherwise, it is considered a false alarm (mistake).

Face detection models are evaluated using the free-response receiver operator curve

(FROC). This is computed by changing the detection threshold of the model. Each threshold value

produces two values that are plotted as a point on the curve. The first is the detection rate (DR). It

measures the percentage of the faces correctly detected, which is the number of ground truth face

locations that overlap more than 50% with at least a detection. The second is the number of false

5.2. EXPERIMENTAL PROTOCOL 63

alarms (FA) 1, which is the number of detections that does not overlap more than 50% with any

ground truth face location. The higher the resulting FROC, the better the model: it detects more

faces at the same number of false alarms.

5.2 Experimental protocol

The face detection task is addressed using a low-resolution model of 20 × 24 pixels. This is to cope

with small faces from benchmark face datasets and because it is of sufficient size to achieve good

performance. The model is vertically ellongated to cover facial features situated in the lower part

of the face (e.g. mouth corners).

5.2.1 Training and validation protocol

The training and validation face datasets consist of well-known collections of images. The face de-

tector was trained using approximately 10,000 face images from the XM2VTS (Messer et al., 1999),

BANCA (Bailly-Bailliére et al., 2003) and CMU-PIE (Sim and Baker, 2003) datasets for the posi-

tive samples. The background, or negative, samples consist of 1,500 images from the CALTECH-101

(Fergus and Perona, 2007) and the CALTECH (Weber) background datasets. Some typical training

face images are shown in Fig. 5.2.

We use the XM2VTS, CMU-PIE and CALTECH-101 as training datasets and BANCA and CAL-

TECH as validation datasets. From these images we build two large pools of 200 million and of 60

million training and validation samples respectively (a large part being background) using a fine

discretization of location and scale of two pixels. The training and the validation samples were

sampled from this pool. The positive samples consists of sub-windows covering at least 80% of the

ground truth face location, while the negative samples were collected only from images without no

faces.

The model was trained using R = 1024 boosting rounds and 7 bootstrapping steps (B = 7).

We sample 80,000 training samples and 80,000 validation samples (N t
0 = 10, 000, Nv

0 = 80, 000).

We have chosen the logistic loss l(y, f) = log(1 + exp(−yf)) to optimize with the expectation loss

formulation. Obviously, the model has one output (O = 1). The associated error function is
1In contrast, the receiver operator curve (ROC) measures the DR versus the false alarm rate (FAR) and it is sometimes

erroneously used to denote FROC face detection results (Viola and Jones, 2001).

64 CHAPTER 5. APPLICATION TO FACE DETECTION

(a) XM2VTS (b) XM2VTS

(c) BANCA (d) BANCA

(e) CMU-PIE (f) CMU-PIE

Figure 5.2. Illustration of typical training face images from the XM2VTS (a, b), BANCA (c, d) and CMU-PIE (e, f) datasets.
The ground truth face locations are overimposed with green rectangles.

5.2. EXPERIMENTAL PROTOCOL 65

Setup

Train + validation 80,000 + 80,000 samples

Resolution 20× 24 (P = 0)

Outputs O = 1

Features EMB-LBP

Rounds R = 1024

Loss function l(y, f) = log(1 + exp(−yf))

Error function ε(z|f) = ε({x, y}|f) = 1(yf(x) ≤ 0)

Model name Description

BOOT B = 7 bootstrapping steps

SHOT B = 0 bootstrapping steps

EPT Expectation loss formulation

VAR Variational loss formulation λ ∈ {0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}

Table 5.1. The upper half defines the common parameters for all models, while the lower half defines the parameters
used for training the face models that we evaluate.

ε(z|f) = ε({x, y}|f) = 1(yf(x) ≤ 0). The error function is used to bootstrap the mis-predicted

samples and to tune on the validation dataset the number of rounds and the regularization factor λ

of the variational loss formulation. The selected training samples are sampled to be balanced over

the two types (K = 2): positive - face and negative - background.

Multiple detections are integrated using non-maxima suppression. This is performed iteratively.

At each iteration, the detection with the highest score is kept, while all the detections that overlap

with it are removed. Finally, the detections are thresholded.

For these experiments we have trained several models to assess the impact of the proposed

bootstrapping method (BOOT vs. SHOT) and of the variational loss formulation (VAR vs. EPT).

The parameters of all the evaluated models are presented in Table 5.1.

66 CHAPTER 5. APPLICATION TO FACE DETECTION

5.2.2 Testing protocol

We present face detection results on two test datasets. The first is the MIT+CMU dataset (Rowley

et al., 1998) that contains 130 images, with multiple, sometimes very small, degraded faces or

without any faces, taken in different environments (indoor and outdoor). This is the most used

testing dataset for face detection and it is considered challenging. We have compared our model

with the state-of-the-art reported results of FCBoost (Saberian, 2010) and Viola and Jones (Viola

and Jones, 2001).

The second dataset - BioID (Jesorsky et al., 2001), contains 1520 images with a single face per

image. This dataset is considered less challenging and it is mainly used as benchmark for facial

feature localization. We have compared our model with the reported resuls of Froba and Ernst

(Froba and Ernst, 2004).

5.3 Results and discussions

In this section we examine several aspects of our proposed framework. First, we evaluate the benefit

of splitting the model into levels and we evaluate the effectiveness of performing bootstrapping, of

sharing features and of the variational loss formulation. Second, we analyze the selected EMB-LBP

features by our framework.

5.3.1 Performance analysis

We illustrate in Fig. 5.7 some typical face detection results for the MIT+CMU dataset.

Evaluating levels

The first set of experiments consist of evaluating the speed of the face detector. For this, we split

the boosted model into levels, similar to the stages of the boosted cascades (Viola and Jones, 2001).

Each level consists of twice the number of look-up-tables as the previous one. After each level, the

current sample score is thresholded with zero. If it is below then the sample is rejected as being

a false alarm and otherwise it is processed by the next levels (see Fig. 5.3). The default threshold

of zero could be further tuned similar to the cascade process described in (Viola and Jones, 2001)

5.3. RESULTS AND DISCUSSIONS 67

(a)

Figure 5.3. Illustration of splitting of a 1024 look-up-tables model using 3 levels. The sub-window is rejected as false alarms
if the current cumulated level score is negative. If all the levels are passed, the final score is finally thresholded with an
optimized value T . The sub-window rejection paths are represented with red, while the sub-window acceptance paths
are represented with blue.

DataSet Levels 4 Levels 6 Levels 8 Levels 10 FCBoost Viola&Jones

MIT+CMU 69.4 21.5 8.9 7.12 7.2 8
BioID 69.3 21.5 8.4 6.5 - -

Table 5.2. The number of look-up-table evaluations (and multi-block feature computations) per sub-window for different
number of levels using the EPT-BOOT model.

to achieve the maximum true rejection rate of the background samples while accepting an imposed

minimum rate of true acceptance. However, this is beyond the scope of this work and we simply

present results for the ad-hoc splitting into levels.

The number of levels, thus the number of splits of the strong learner, is directly proportional

to the speed of the detector. This is because a background sub-window (that account for the vast

majority of test samples) has a higher chance of being rejected after significantly fewer look-up-

table evaluations.

We have plotted the FROC curves obtained for various number of levels in Fig. 5.4. The average

number of LUT evaluations, and implicitly of multi-block features computed, per sub-window is

displayed in Table 5.2. It can be noticed that the performance is not very sensitive to the number

of levels, in the worse case the DR decreases by 2% with the same number of false alarms. The

proposed ad-hoc split of the strong learner achieves similar speed and performance as FCBoost

(Saberian, 2010), which is one of the fastest state-of-the-art face detectors. The authors report for

FCBoost 7.2 weak learner evaluations on average per sub-window, similar to the results we present

for 10 levels. The proposed boosted model is thus performing face detection in real-time, without

sacrificing performance at comparible performance with state-of-the-art systems.

We consider there are two key aspects that motivate empirically the proposed splitting of the

68 CHAPTER 5. APPLICATION TO FACE DETECTION

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160

D
R

FA

MIT+CMU

EPT-BOOT-levels4

EPT-BOOT-levels6

EPT-BOOT-levels8

EPT-BOOT-levels10

Viola

FCBoost

(a) MIT+CMU

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160

D
R

FA

BIOID

EPT-BOOT-levels4

EPT-BOOT-levels6

EPT-BOOT-levels8

EPT-BOOT-levels10

Froba

(b) BIOID

Figure 5.4. The face detection FROC curves for the MIT+CMU (a) and the BIOID dataset (b) using the EPT-BOOT model
and different number of levels.

strong learner in levels. The first is that the loss decreases faster in the first boosting rounds

and significantly slower afterwards. Thus, any starting sequence of weak learners is a good ap-

proximation of the overall model. Taking a decision earlier (in the number of weak learners) is

thus not degrading the performance too much. The second regards the sliding-window face (object)

detection approach. This method evaluates multiple overlapping sub-windows and thus builds a

redundant set of potential true detection for each face. The face is not detected only if all over-

lapping sub-windows are rejected by the classifier. This is unlikely to happen because there is an

in-built redundancy due to the fact that the scanning process will have many sub-windows which

overlap with the same face. The detector is thus robust to false rejection mistakes made earlier in

the levels, while the false alarms are efficiently pruned using non-maxima suppression.

Evaluating bootstrapping

Next, we examine the potential benefit of bootstrapping the training samples. The training data

consists of 80,000 samples selected uniformly and then refined using the error function out of a

pool of 200 million samples. The EPT-SHOT model samples the same amount of training data, but

uniformly at once without investigating the performance of the model accross the sample pool. As

illustrated in Fig. 5.5, the proposed bootstrapping method greatly improves the performance of the

detector by 5% DR on average for the same fixed number of false alarms.

5.3. RESULTS AND DISCUSSIONS 69

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160

D
R

FA

MIT+CMU

EPT-BOOT

EPT-SHOT

Viola

FCBoost

(a) MIT+CMU

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160

D
R

FA

BIOID

EPT-BOOT

EPT-SHOT

Froba

(b) BIOID

Figure 5.5. The face detection FROC curves for the MIT+CMU (a) and the BIOID dataset (b) using the EPT-BOOT and the
EPT-SHOT models with 10 levels.

Evaluating the loss formulation

The final set of experiments consists of evaluating the variational loss formulation compared to

the widely used expectation formulation. The variational model VAR-BOOT was trained simi-

larly to the EPT-BOOT model, with the difference that the regularization factor λ was tuned on

the validation dataset. We have tried the following values: λ ∈ {0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}

independently for each bootstrapping step.

The two models are compared in Fig. 5.6. There is a slight improvement of 1-2% DR at same

number of false alarms for the MIT+CMU dataset. The difference is higher, up to 3% DR, for the

BioID dataset in the region of few false alarms. However, the rather modest increase in performance

must take into account the training time that is increased by a factor of 8.

The optimal regularization factors at each bootstrapping step are presented in Table 5.3. The

model selects the value of 2 as the optimal parameter for most bootstrapping steps.

5.3.2 Feature selection analysis

Boosting is often used as feature selection, because the features associated with the selected weak

learners can be interpreted as the most useful features for some specific task. We have analyzed

the selected multi-block patterns to assess: the size (the (cx, cy) parameters) and the encoding type

(LBP, tLBP, dLBP, mLBP) of the selected features.

70 CHAPTER 5. APPLICATION TO FACE DETECTION

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160

D
R

FA

MIT+CMU

EPT-BOOT

VAR-BOOT

Viola

FCBoost

(a) MIT+CMU

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160

D
R

FA

BIOID

EPT-BOOT

VAR-BOOT

Froba

(b) BIOID

Figure 5.6. The face detection FROC curves for the MIT+CMU (a) and the BIOID dataset (b) using the EPT-BOOT and the
VAR-BOOT models with 10 levels.

Boosting rounds Optimal regularization factor

8 λ∗0 = 1.0
16 λ∗1 = 5.0
32 λ∗2 = 2.0
64 λ∗3 = 2.0
128 λ∗4 = 2.0
256 λ∗5 = 2.0
512 λ∗6 = 1.0
1024 λ∗7 = 2.0

Table 5.3. The number of boosting rounds and the optimal regularization factor λ for each bootstrapping step when
training the VAR-BOOT model.

5.4. SUMMARY AND CONCLUDING REMARKS 71

The EPT-BOOT model consists of multi-block patterns of 42 different cell sizes ((cx, cy) ∈

{1, 2, 3, 4, 5, 6}×{1, 2, 3, 4, 5, 6, 7}). However, the distribution of the cell sizes is very skewed, because

most of the them account for less than 3% of weak learners. The smaller patterns are selected more

frequently, which is not surprising considering the low resolution of the face model. The selected

features are most frequently of size: 3× 3 (23%), 6× 3 (9.8%), 3× 6 (7%), 6× 6 (5.4%), 6× 9 (4.7%),

9× 3 (4.5%), 9× 6 (3.5%), 9× 9 (3.2%) and 3× 9 (3%).

The analysis of the LBP encodings have shown that the dLBP feature is less informative than

all the other three as it is not selected at all. This matches the experimental findings previously

reported for face detection using EMB-LBP features (Trefny and Matas, 2010). However, the ratio

of the three selected encodings is significantly different. The LBP and mLBP encodings account for

just 4.5% and 18.7% respectively, while the tLBP encoding is used by 76.8% of the weak learners.

This contrasts with (Trefny and Matas, 2010), where the authors reported more balanced ratios of

30-40% approximately.

5.4 Summary and concluding remarks

This chapter studied the proposed boosting framework for the task of frontal face detection. We

have studied the performance impact of several aspects of the proposed model: the ad-hoc split-

ting of the model into levels to speed-up evaluation, the bootstrapping and the variational loss

formulation. Overall, we have obtained a real-time face detector with similar performance to the

state-of-the-art systems proposed in literature.

The experimental findings can be summarized as:

1. Splitting the boosted classifier into levels speeds-up significantly the evaluation, without de-

teriorating the performance. The fastest detector processes on average 7.12 look-up-tables for

each sub-window on the MIT+CMU dataset, at state-of-the-art performance. This is close to

the highest speeds reported in literature (Saberian, 2010; Viola and Jones, 2001). However,

the thresholds of each level were not tuned and set to zero by default which may not be the op-

timal compromise between performance and speed. It is surprising though that such a simple

splitting heuristic works as well as boosted cascades (Saberian, 2010).

2. The proposed bootstrapping method improves the detection rate by 5% on average at the

72 CHAPTER 5. APPLICATION TO FACE DETECTION

(a)

Figure 5.7. Illustration of some face detection results on the MIT+CMU dataset. The ground truth face locations are
represented with green and the detections with blue.

5.4. SUMMARY AND CONCLUDING REMARKS 73

same number of false alarms, for both test datasets, MIT+CMU and BioID, compared with the

one-shot model. The bootstrapped model builds iteratively a training dataset that uniformly

samples positive (face) and negative (background) samples and is representative for the large

sampling pool. In contrast, the one-shot model uniformly samples the training data once.

3. The variational loss formulation produces a modest increase in performance compared to the

expectation loss formulation. This may be because the training dataset is challenging and

boosting does not overfit, thus a regularized model presents no significant advantage. How-

ever, training a variational model is approximately 8 times more time consuming than an

expectation model, because the regularization factor λ needs to be tuned on the validation

dataset.

The next chapter describes the experimental results for the facial feature localization task.

74 CHAPTER 5. APPLICATION TO FACE DETECTION

Chapter 6

Application to facial feature

localization

In this chapter we apply our boosting framework to the task of facial feature localization. Face

detections are processed to accurately locate the facial features of interest (e.g. eye centers, mouth

corners, nose tip). Facial feature locations are typically used to geometrically normalize detections

to improve face recognition or to initialize high level systems (e.g. facial expression analysis). We

will show that this task can be cast as a multivariate regression task.

6.1 Background

Facial feature localization methods can be broadly classified into global and local methods. The

global methods process the face region as a whole and in a single step. For example, in Ever-

ingham and Zisserman (2006) the authors evaluate basic regression, Bayesian and classification

approaches. While in Cristinacce and Cootes (2003) the facial features are located using individual

AdaBoost classifiers and a shape constrain method to eliminate ambiguities. The local methods

iteratively refine the current location estimate using local appearance measurements and global

shape constraints. Active Shape Models (ASM) and Active Appearance Models (AAM) have been

widely used for localizing facial features or anatomical key features in medical images Cristinacce

and Cootes (2006, 2007, 2008). Other interesting recent work includes the boosted regression and

75

76 CHAPTER 6. APPLICATION TO FACIAL FEATURE LOCALIZATION

(a) (b)

Figure 6.1. Illustration of two typical images to evaluate facial feature localization models. The ground truth face
locations are overimposed with green rectangles, while the ground truth facial features are displayed with blue crosses.

graph models proposed in Valstar and Binefa (2010) and the cascaded pose regression model from

Doll and Pietro (2010).

The goal of facial feature localization models is to predict the location of the facial features as

close as possible to the ground truth locations. Fig. 6.1 presents typical images used to evaluate

facial feature localization models. Different sets of facial features are considered depending on

the end application. For example, accurately predicting the eye locations may be sufficient for

geometrically normalizing faces for recognition, but expression analysis applications may require a

larger set of facial features.

The performance of a facial feature localization model is measured using the average point-

to-point distance (Cristinacce and Cootes, 2003) between predictions and ground truth locations,

normalized to the distance between the eye centers. More precisely, let F be a set of facial features

having the Gi ground truth locations. Let Di be the model predictions for each point. The boosted

model has 2×F outputs, that concatenate the vertifical and the horizontal coordinates of each facial

feature. If the distance between the eye centers is ∆ = d(Gleye, Greye), then the localization error of

the model is:

E(D,G) =
1

F ∆

∑
1≤i≤F

d(Di, Gi), (6.1)

where d is the Euclidean distance between two-dimensional points. Clearly, the more accurate a

model is, the smaller the measure error E. We shall present results by restricting E to the interval

6.2. EXPERIMENTAL PROTOCOL 77

[0, 0.30]. Values higher than 0.30 usually correspond to random or unusable predictions.

6.2 Experimental protocol

This section describes the training and the testing protocols. We also detail the parameters used to

boost these localization models.

6.2.1 Training and validation protocol

The large publicly available CMU MultiPIE dataset (Gross et al., 2010) is used to train the local-

ization models. We annotated 1 the CMU MultiPIE dataset with 16 facial features (eye centers, eye

corners, nose tip, mouth corners, bottom and top lip, chin and eye brows corners) as illustrated in

Fig. 6.2 (f).

The CMU MultiPIE dataset consists of more than 750,000 images of 337 people recorded in office

environments, with close to uniform background. The recordings were performed in four sessions.

Multiple images for each subject (client) were collected using 19 illumination conditions, 15 view

points and various facial expressions. We use five frontal (and close to fontal) poses to train and

to evaluate frontal face models, illustrated in Fig. 6.2. We sample randomly five images for each

client, pose, session and facial expression. Next, we split the images into training, validation and

test datasets as specified in Table 6.1. The protocol is chosen as to have distinct clients in each

dataset, this is to ensure that the trained model generalizes well.

We boost high resolution models, of size 80 × 96, to predict the location of various sets of these

points. The training dataset for each set of facial features consists of sub-windows that overlap

at least 60% with the ground truth face location so that the localization model is robust to large

variations in location and scale of the face detections relative to the ground truth. The pool of

training samples is built using a fine discretization of location and scale, similar to the one used to

generate samples for the face detection case.

The model is trained using 1024 boosting rounds (R = 1024) and 3 bootstrapping steps (B = 3).

We sample 80,000 training samples and 80,000 validation samples (N t
0 = 20, 000, Nv

0 = 80, 000).

The multi-block features were projected twice using the proposed coarse-to-fine feature selection,

1The CMU MultiPIE annotations will be available shortly at http://www.idiap.ch/resource/biometric/

http://www.idiap.ch/resource/biometric/

78 CHAPTER 6. APPLICATION TO FACIAL FEATURE LOCALIZATION

Dataset Client IDs

Train 1, 7, 12, 13, 16, 21, 24, 25, 26, 30, 31, 32, 37, 39, 45, 51, 58, 59, 60, 61, 63, 65,
66, 72, 73, 75, 77, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99,
101, 109, 113, 114, 119, 120, 121, 130, 134, 135, 136, 140, 141, 142, 144, 146, 147,
148, 151, 152, 153, 154, 155, 158, 159, 160, 162, 163, 164, 165, 166, 171, 172, 173,
174, 176, 179, 180, 182, 183, 187, 189, 195, 197, 200, 201, 204, 206, 207, 210, 211,
212, 214, 215, 216, 217, 218, 219, 221, 222, 224, 226, 228, 229, 231, 232, 233, 234,
237, 238, 239, 242, 243, 244, 245, 247, 249, 251, 252, 253, 254, 255, 256, 257, 258,
259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 276, 277,
278, 279, 280, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297,
298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 311, 312, 313, 314, 315,
316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 332, 333,
334, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346

Validation 2, 4, 6, 8, 10, 15, 18, 20, 22, 27, 33, 35, 38, 40, 42, 46, 48, 50, 52, 54, 57, 64,
68, 69, 71, 78, 80, 85, 97, 102, 105, 107, 110, 111, 115, 118, 123, 125, 126, 128,
132, 137, 139, 143, 149, 157, 167, 169, 170, 177, 184, 186, 190, 191, 193, 198, 202,
205, 208, 220, 227, 235, 241, 248

Test 3, 5, 9, 11, 14, 17, 19, 23, 28, 29, 34, 36, 41, 43, 44, 47, 49, 53, 55, 56, 62, 67,
70, 74, 76, 79, 83, 100, 103, 104, 106, 108, 112, 116, 117, 122, 124, 127, 129, 131,
133, 138, 145, 150, 156, 161, 168, 175, 178, 181, 185, 188, 192, 194, 196, 199, 203,
209, 223, 225, 230, 236, 240, 246, 250

Table 6.1. The protocol to split the CMU MultiPIE dataset into training, validation and testing datasets.

(a) 04 1 (b) 05 0 (c) 05 1 (d) 14 0 (e) 13 0

(f) 05 1

Figure 6.2. (a-e) Illustration of the five frontal and quasi-frontal face poses from the CMU MultiPIE dataset used for
training the facial feature localization models. (f) Enlarged frontal pose to better illustrate the 16 annotated facial
features displayed with blue crosses.

6.2. EXPERIMENTAL PROTOCOL 79

starting at the 20× 24 resolution (P = 2).

Given that we want to predict the location of F facial features the model has O = 2F outputs,

two for each facial feature consisting of the horizontal and the vertical coordinates. We use the

notations {y2i,y2i+1} and {f2i, f2i+1} to denote the ground truth coordinates of the sample y and the

predicted coordinates using the multivariate model f respectively, for the facial feature i ∈ {1, ..., F}.

The ground truth distance between the eyes is denoted as ∆y. The base loss and the error functions

are both set to the normalized point-to-point localization error (see Table 6.2).

The error function is used to bootstrap the mis-predicted samples and to tune, on the validation

dataset, the number of rounds and the regularization factor λ of the variational loss formulation.

The samples were considered to have a single type (K = 1).

For these experiments we have trained several models to examine the impact on performance

of the proposed bootstrapping method (BOOT vs. SHOT), feature sharing (SHARED vs. INDEP)

and variational loss formulation (VAR vs. EPT). The parameters of all the evaluated models are

presented in Table 6.2.

6.2.2 Testing protocol

We present facial feature localization results on two test datasets widely used to evaluate facial

feature localization models. The first is XM2VTS (Messer et al., 1999) that contains 2360 indoor

images with a single large face annotated with 68 facial feature points 1. The second dataset is

BioID (Jesorsky et al., 2001) that contains 1520 images with a single face per image annotated with

20 facial feature points 2. We shall use only the 16 facial feature points that are consistent with the

CMU MultiPIE annotations.

The test images were pre-processed using the 20× 24 EPT-BOOT face detector and the settings

described in the previous chapter. These face detections were then scaled to the resolution required

by the localization model.

There are two localization settings that we consider. The first is LEyes which consists of pre-

dicting the eye centers (F = 2, O = 4). The second is LMulti which consists of predicting the 16

1The XM2VTS annotations are available at http://personalpages.manchester.ac.uk/staff/timothy.f.
cootes/data/xm2vts/xm2vts_markup.html

2The BioID annotations are available at http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/
data/bioid_points.html

http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/xm2vts/xm2vts_markup.html
http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/xm2vts/xm2vts_markup.html
http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/bioid_points.html
http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/bioid_points.html

80 CHAPTER 6. APPLICATION TO FACIAL FEATURE LOCALIZATION

Setup

Train + validation 80,000 + 80,000 samples

Resolution 20× 24→ 80× 96 (P = 2)

Outputs O = 2 F

Features EMB-LBP

Rounds R = 1024

Loss function l(y, f) =
∑

1≤i≤F
d({y2i,y2i+1}, {f2i, f2i+1})/(F ∆y)

Error function ε(z|f) = ε({x,y}|f) = l(y, f(x))

Model name Description

BOOT B = 3 bootstrapping steps

SHOT B = 0 bootstrapping steps

SHARED Shared feature selection for all outputs

INDEP Independent feature selection for each outputs

EPT Expectation loss formulation

VAR Variational loss formulation λ ∈ {0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}
Table 6.2. The upper half defines the common parameters for all models, while the lower half defines the parameters
used for training the facial feature localization models to evaluate.

6.3. RESULTS AND DISCUSSIONS 81

points annotated for CMU MultiPIE (F = 16, O = 32) and illustrated in Fig. 6.2 (f).

We have compared the proposed localization model with several baseline systems. The first is

the average predictions of the facial feature locations (AVG). This model outputs constant predic-

tions (relative to the detected face bounding box) computed as the average facial feature locations

on the same training dataset. The other baseline systems are HS-MLP (Jesorsky et al., 2001) -

a Hausdorff distance-based search method using a Multi-layer Perceptron (MLP) eye model, Con-

strained Local Model CLM (Cristinacce and Cootes, 2006) - an AAM-based model, and Boosted Re-

gression coupled with Markov Networks BoRMaN (Valstar and Binefa, 2010) - an iterative method

that uses local models refined using global geometric constraints modeled using a Markov Network.

The BoRMaN model produces to our knowledge the best reported results on the BioID test dataset.

It is important to state that the training protocol for the last three systems is not clearly spec-

ified or the training datasets are not publicly available. Also, different face detectors are used as

initialization. Another distinction is that we explicitly model a larger set of possible face detections,

that cover at least 60% of the ground truth location. Thus, our training dataset is significantly

more challenging and results in significantly less accurate average predictions produced using our

training dataset (AVG) and the training dataset used in CLM (Cristinacce and Cootes, 2006).

6.3 Results and discussions

In this section we discuss the proposed coarse-to-fine feature selection method to speed-up boosting

high resolution models. Next we present and discuss the experimental results obtained with models

trained with different bootstrapping, feature sharing and loss parametrizations. Finally, we analyze

the selected EMB-LBP feature encoding.

6.3.1 Coarse-to-fine feature selection

The first set of experiments consists of evaluating the proposed coarse-to-fine feature selection

(CTFFS). We compare boosting the exhaustive set of EMB-LBP features (EXH) and the coarse-

to-fine feature selection initialized with a 20× 24 model (CTF). For this we have trained models of

size 40× 48 using the LEyes setting. These models are of lower resolution than the setup discussed

above because it is not feasible to boost the exhaustive set of features for the 80× 96 models. How-

82 CHAPTER 6. APPLICATION TO FACIAL FEATURE LOCALIZATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

XM2VTS

40x48-EXH-SHARED-EPT-BOOT

40x48-CTF-SHARED-EPT-BOOT

40x48-AVG

(a) XM2VTS - SHARED

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

XM2VTS

40x48-EXH-INDEP-EPT-BOOT

40x48-CTF-INDEP-EPT-BOOT

40x48-AVG

(b) XM2VTS - INDEP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

BIOID

40x48-EXH-SHARED-EPT-BOOT

40x48-CTF-SHARED-EPT-BOOT

40x48-AVG

(c) BIOID - SHARED

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

BIOID

40x48-EXH-INDEP-EPT-BOOT

40x48-CTF-INDEP-EPT-BOOT

40x48-AVG

(d) BIOID - INDEP

Figure 6.3. The cumulated error distribution for the XM2VTS (a, b) and the BIOID (c, d) datasets using the LEyes setting.
The models were trained either using shared (a, c) or independent (b, d) features between outputs.

ever, we are confident that the conclusions drawn using the 40 × 48 models are also valid for the

80× 96 models.

The results are illustrated in Fig. 6.3. It can be noticed that CTFFS does not degrade the per-

formance, but it actually generalizes better while processing significantly fewer features (see Table

6.3). This is for both test datasets and independently of the feature sharing method. The significant

performance increase may be due to the high feature redundancy (as features per pixel), whose im-

pact is reduced with CTFFS. The high feature redundancy may lead to boosting features that are too

specific to the training dataset. In the light of these findings, we shall use implicitly coarse-to-fine

feature selection with higher resolution models (80× 96) for the next set of experiments.

6.3. RESULTS AND DISCUSSIONS 83

Model SHARED INDEP

EXH 355,600 355,600
CTF 19,100 + 2,000 19,100 + 9,400

CTFFS speed-up 16.8 12.5
Table 6.3. The number of features to boost for the exhaustive case (EXH) and the coarse-to-fine feature selection case
(CTF). The last row presents the training speed-up using CTF compared to EXH.

Model 0.05 (2px) 0.10 (4px) 0.15 (6px) 0.20 (8px)

AVG 6.1% 30.6% 61.6% 85.2%

SHARED-EPT-BOOT 39.6% 87.8% 97.1% 99.1%
SHARED-EPT-SHOT 38.3% 87.4% 96.6% 98.6%
SHARED-VAR-BOOT 38.9% 89.4% 97.6% 99.6%

INDEP-EPT-BOOT 42.9% 88.2% 97.8% 99.6%
INDEP-EPT-SHOT 47.1% 89.4% 97.5% 99.4%
INDEP-VAR-BOOT 38.3% 87.4% 97.1% 99.5%

HS-MLP (Jesorsky et al., 2001) 40% 80% 85% 87%

Table 6.4. The percentage of samples having the localization error smaller than the given threshold for various models
evaluated on the BIOID dataset and the LEyes setting.

6.3.2 Performance analysis

The next set of experiments evaluated the models trained to predict the eye center locations (LEyes)

and 16 facial features points (LMulti). The cumulative localization histograms are illustrated in

Fig. 6.4 and Fig. 6.5 respectively. The percentage of test samples having fixed localization precision

(0.05, 0.10, 0.15, 0.20) are presented in Table 6.4 and Table 6.5 respectively.

Below we highlight three important results and some example images are provided in Fig. 6.6.

Model 0.05 (2px) 0.10 (4px) 0.15 (6px) 0.20 (8px)

AVG 0.9% 13.7% 42.0% 69.3%

SHARED-EPT-SHOT 38.1% 85.5% 96.8% 98.6%
INDEP-EPT-SHOT 47.1% 88.6% 97.1% 99.3%

CLM (Cristinacce and Cootes, 2006) 45% 92% 97% -
BoRMaN (Valstar and Binefa, 2010) 77% 95% 97% -

Table 6.5. The percentage of samples having the localization error smaller than the given threshold for various models
evaluated on the BIOID dataset and the LMulti setting.

84 CHAPTER 6. APPLICATION TO FACIAL FEATURE LOCALIZATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

XM2VTS

SHARED-EPT-BOOT

SHARED-EPT-SHOT

SHARED-VAR-BOOT

AVG

(a) XM2VTS-SHARED

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

XM2VTS

INDEP-EPT-BOOT

INDEP-EPT-SHOT

INDEP-VAR-BOOT

AVG

(b) XM2VTS-INDEP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

BIOID

SHARED-EPT-BOOT

SHARED-EPT-SHOT

SHARED-VAR-BOOT

AVG

(c) BIOID-SHARED

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

BIOID

INDEP-EPT-BOOT

INDEP-EPT-SHOT

INDEP-VAR-BOOT

AVG

(d) BIOID-INDEP

Figure 6.4. The cumulated error distribution for the XM2VTS (a, b) and the BIOID (c, d) datasets using the LEyes setting.
The models were trained either using shared (a, c) or independent (b, d) features between outputs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

XM2VTS

SHARED-EPT-SHOT

INDEP-EPT-SHOT

AVG

(a) XM2VTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
te

d
E

rr
o

rD
is

tr
ib

u
ti
o

n

DistanceMetric

BIOID

SHARED-EPT-SHOT

INDEP-EPT-SHOT

AVG

(b) BIOID

Figure 6.5. The cumulated error distribution for the XM2VTS (a) and the BIOID (b) datasets using the LMulti setting. The
models were trained either using shared or independent features between outputs.

6.3. RESULTS AND DISCUSSIONS 85

First, the eye localization models (LEyes) are slightly more precise than the multiple feature lo-

calization models (LMulti). This is expected because the eyes are generally easier to locate and

also they vary less (between people) compared to the nose tip for example. We consider that the

small degradation in performance when predicting 16 points (LMulti) compared to predicting just

the eye locations (LEyes) is mainly due to the loss function that jointly models the predictions for

all outputs.

Second, sharing features between outputs decreases the accuracy of the model. The relative

performance of the model degrades by 9% at 0.05 localization precision and by 1% at approximately

0.10 precision for the LMulti setting. However, the SHARED model is significantly faster to evalu-

ate than the INDEP model, because it uses approximately 5 times (LEyes) and 41 times (LMulti)

fewer features respectively.

Third, bootstrapping (BOOT) and the variational loss formulation (VAR) do not improve the

performance of our models. This suggests that the training data is representative and clean. Ran-

domly sampling 80, 000 training samples is representative of the whole MultiPIE training pool and

bootstrapping can even degrade the performance in some cases. Also, the samples present small

noise and thus using a noise-robust loss (like the variational formulation) does not improve the

performance significantly.

The proposed boosted model is less accurate than state-of-the-art facial localization systems like

CLM and BoRMaN. These systems are more accurate in predicting 17 facial features than the

boosted model in predicting 16 facial features (LMulti setting), however, there are two key aspects

that differentiate the baselines from our model. The first is that the baselines use an iterative

procedure to improve the predictions at each step. The second is that the baselines use global

geometric constraints on the local appearance models. Thus, future work should investigate using

such geometric constraints within a boosted model. One possible way of doing this would be to add

a regularization term to the cumulative loss that penalizes predictions that are not geometrically

valid.

6.3.3 Feature selection analysis

We have analyzed the selected multi-block features for both localization settings to assert the type

of the most useful LBP encoding type (LBP, tLBP, dLBP, mLBP) and the number of features actually

86 CHAPTER 6. APPLICATION TO FACIAL FEATURE LOCALIZATION

used by the shared and the independent models.

The distribution of the selected LBP encodings is more skewed than the one found for face

detection or reported in literature for other tasks (Trefny and Matas, 2010). The LBP and the

dLBP encodings form less than 1% of the selected features, while the mLBP accounts for 5%. The

remaining tLBP encoding is used by approximately 95% of the LUTs and it is thus the most useful

encoding for facial feature localization. This result is consistent across all different models and all

localization settings (LEyes and LMulti) and it is also independent of the bootstrapping parameters,

the loss formulation and the feature sharing method.

It is expected that sharing features between outputs uses fewer features and so produces much

faster models. The speed-up is proportional to the number of outputs, but might vary because the

same feature might be selected multiple times during boosting. We found experimentally that the

SHARED models uses 5 times and 41 times fewer features than the INDEP models using the same

parameters. This is a significant result because the SHARED models do not significantly reduce

accuracy and at the same time are up to an order of magnitude faster.

6.4 Summary and concluding remarks

This chapter studied the proposed boosting framework on the task of facial feature localization.

We have examined the impact of several aspects of the proposed model including feature sharing,

bootstrapping and the variational loss formulation. Overall, we have obtained a fast facial feature

localization model with good precision for practical applications, even though it does not perform as

well as state-of-the-art.

The experimental findings can be summarized as:

1. Coarse-to-fine feature selection greatly speeds-up the training of high resolution models. Our

experiments have shown that a multivariate 40 × 48 model is up to 16 times faster to train

using coarse-to-fine feature selection than using the exhaustive set of features. Another em-

pirical advantage besides speed is that the boosted model generalizes better, because fewer

features are evaluated and thus the feature redundancy is lower.

2. Sharing features between outputs does not decrease the performance significantly compared

with models trained with independent feature. The SHARED models are 5 times (LEyes) and

6.4. SUMMARY AND CONCLUDING REMARKS 87

(a) (b)

(c) (d)

(e) (f)

Figure 6.6. Illustration of some facial feature localization results on the BioID dataset using the LMulti setting. The face
detections are represented with blue boxes and the predicted facial feature points with red crosses.

88 CHAPTER 6. APPLICATION TO FACIAL FEATURE LOCALIZATION

41 times (LMulti) faster to evaluate, which makes them more suitable for real-time systems.

Although in this thesis we have evaluated a simple feature sharing method, there may be

some better alternative which results in more accurate models.

3. Overall, bootstrapping and variational loss formulation were not found to improve perfor-

mance. The slight performance increase that these methods do provide is not justified by the

increasing training time. This is because the bootstrapping repeatedly evaluates the model

on all the samples in the training pool and the regularization factor λ is tuned in the case of

the variational formulation.

4. The transitional LBP (tLBP) encoding is selected in approximately 95% of look-up tables. This

result is consistent across all localization settings and boosting configurations. The reason for

this very skewed distribution of the selected LBP encoding remains unclear.

5. There are several advantages of the proposed facial feature localization model. First, the

model is trained with all possible face detections and it does not need an unknown good ini-

tialization. Second, the evaluation criteria (see Eq. 6.1) is used explicitly as the training loss.

However, the proposed model is very simple and it does not take into account the dependency

between the facial features of interest. The experiments have shown that our model is sig-

nificantly better than predicting the average location, but future work should concentrate on

outperforming state-of-the-art.

The next chapter describes the experimental results for the face pose classification task.

Chapter 7

Application to face pose

classification

In this chapter we apply our boosting framework to the task of pose classification. Pose classification

can be used to estimate the gaze direction and the visual focus of attention of the person of the

interest. This information is crucial for high-end applications for example like meeting analysis,

tracking and surveillance. In this thesis we propose to estimate the face pose by classifying it into

discretized out-of-plane rotations. The task is thus cast as a multi-class classification problem.

7.1 Background

The pose classification task consists of labelling the unknown pose (out of a fixed set of available la-

bels). This is a multivariate classification problem, that we address using a model that has as many

outputs as distinct poses to recognize. Ideally, the output associated with the correct label predicts

a positive value, while the other outputs are negative. This is a direct multivariate generalization

of the binary classification model used for face detection.

The model is evaluated using the average error rate and the confusion matrix. The average

error rate is defined as the number of pose mis-predictions normalized to the total number of tested

poses. More detailed information about the accuracy of the model is obtained using the confusion

matrix. This is widely used in multi-class classification problems, where it is important to know

89

90 CHAPTER 7. APPLICATION TO FACE POSE CLASSIFICATION

(a) 24 0 (−90◦) (b) 01 0 (−75◦) (c) 20 0 (−60◦) (d) 19 0 (−45◦) (e) 04 1 (−30◦)

(f) 05 0 (−15◦) (g) 05 1 (0◦) (h) 14 0 (+15◦) (i) 13 0 (+30◦) (j) 08 0 (+45◦)

(k) 09 0 (+60◦) (l) 12 0 (+75◦) (m) 11 0 (+90◦)

Figure 7.1. Illustration of the 13 face poses to classify: from right profile (a) to left profile (m). We include the pose
annotation from the CMU MultiPIE dataset and in brackets the degree of out-of-plane rotation.

which classes are harder to distinguish from one another. Each element in the matrix is the per-

centage of samples of a particular class (indexed by row) to be classified as another class (indexed by

column). The ideal confusion matrix is diagonal, thus no mis-predictions are recorded. High values

outside the diagonal indicates two classes that are often confused with one other, either because

they are too similar or the model is not strong enough.

7.2 Experimental protocol

The experimental protocol is the same introduced in the previous section for the CMU MultiPIE

dataset (see Table 6.1). We shall boost 20 × 24 models to classify the face pose out of 13 possible

labels (O = 13) as illustrated in Fig. 7.1.

The training and validation datasets consists of sub-windows that overlap at least 80% with

the ground truth face location. The pool of the training and validation samples is built using a fine

discretization of location and scale, similar to the one used to generate samples for the face detection

case. The model is trained using 1024 boosting rounds (R = 1024) and 7 bootstrapping steps (B = 7).

7.2. EXPERIMENTAL PROTOCOL 91

Setup

Train + validation 80,000 + 80,000 samples

Resolution 20× 24 (P = 0)

Outputs O = 13

Features EMB-LBP

Rounds R = 1024

Loss function l(y, f) =
∑

1≤o≤O
log(1 + exp(−yofo))

Error function ε(z|f) = ε({x,y}|f) =
∑

1≤o≤O
1(yofo(x) ≤ 0)

Model name Description

BOOT B = 7 bootstrapping steps

SHOT B = 0 bootstrapping steps

SHARED Shared feature selection for all outputs

INDEP Independent feature selection for each outputs

EPT Expectation loss formulation

VAR Variational loss formulation λ ∈ {0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}
Table 7.1. The upper half defines the common parameters for all models, while the lower half defines the parameters
used for training the facial feature localization models to evaluate.

We sample 80,000 training samples and 80,000 validation samples (N t
0 = 10, 000, Nv

0 = 80, 000). The

samples were considered to have 13 different types (K = 13).

We have trained several models to assert the performance impact of the proposed bootstrapping

method (BOOT vs. SHOT), feature sharing (SHARED vs. INDEP) and variational loss formula-

tion (VAR vs. EPT). The parameters of all the evaluated models are presented in Table 7.1.

92 CHAPTER 7. APPLICATION TO FACE POSE CLASSIFICATION

Model Average error rate

INDEP-EPT-BOOT 8.51%
INDEP-EPT-SHOT 8.61%
INDEP-VAR-BOOT 9.07%

SHARED-EPT-BOOT 12.18%
SHARED-EPT-SHOT 12.31%

Table 7.2. The pose classification average error rate for the boosted models on the CMU MultiPIE test dataset.

-90°-75°-60°-45°-30°-15° 0° 15° 30° 45° 60° 75° 90°

-90°

-75°

-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°

75°

90°

96 2 2

93 6

6 93

96 3

8 85 7

7 86 6

4 86 9

4 85 11

6 83 11

4 95

96 4

3 96

100
0

10

20

30

40

50

60

70

80

90

100

(a)

Figure 7.2. The confusion matrix for the INDEP-EPT-BOOT models on the CMU MultiPIE test dataset. The poses are
arranged from right to left profile, such that the frontal pose is in the middle.

7.3 Results and discussions

The CMU MultiPIE test dataset is used to evaluate the boosted models. No baseline is available

for this task and so we shall only compare variations of our proposed approach. The average error

rate is presented in Table 7.2 and a typical confusion matrix in Fig. 7.2.

7.3. RESULTS AND DISCUSSIONS 93

7.3.1 Performance analysis

The immediate conclusion is that sharing features produces models that are significantly worse

(up to 50% relative error increase) than boosting independent features, consistent for all loss for-

mulation and bootstrapping steps. This is in contrast to facial feature localization where sharing

features does not decrease performance significantly. This suggests that our current method of

performing feature sharing is task dependent.

It can also be noticed that bootstrapping slightly increases the performance (up to an 0.2% error

decrease) for both feature sharing methods. Bootstrapping increases the training time by no more

than 50% which is acceptable, however, the variational loss formulation actually decreases the per-

formance by 0.5%. Also, this formulation is very time consuming because the regularization term λ

needs to be tuned on the validation dataset. This suggests that the variational loss formulation is

not useful for this task.

The confusion matrix shows that errors are distributed close to the diagonal. This suggests that

the predictions are accurate, but also that vast majority of mis-predictions involve the adjacent

(out-of-plane) poses. Considering that there are 13 poses evenly distributed over 180 degrees of

in-plane rotation, then each pose covers 15 degrees. If we look only at adjacent poses we obtain 1%

error rate. This accuracy is clearly sufficient for real-world applications.

An interesting finding is that the accuracy decreases for near frontal poses. This is easily ob-

served by analyzing the diagonal results in Fig. 7.2. It can be seen that for the poses between -30

degrees and +30 degrees are much more easily confused with one another; this only occurs with

the adjacent class, for instance confusability between 0 degrees and -15/+15 degrees. This suggests

that it is much more difficult to predict near frontal (-30 to +30 degrees) than close to profile poses.

We believe that this is because of the larger inter-person variations that occur with poses beyond

-30/+30 degrees, some results are illustrated in Fig. 7.3 and Fig 7.4.

7.3.2 Feature selection analysis

The feature selection analysis shows the same pattern: the tLBP (transitional LBP) encoding is

selected significantly more frequent that the other LBP encoding (mLBP, dLBP, LBP). The INDEP-

EPT-BOOT model consists of look-up tables with 70.8% tLBP and 23.4% mLBP features respec-

94 CHAPTER 7. APPLICATION TO FACE POSE CLASSIFICATION

(a) 24 0 (−90◦) (b) 01 0 (−75◦) (c) 20 0 (−60◦)

(d) 19 0 (−45◦) (e) 04 1 (−30◦) (f) 05 0 (−15◦)

(g) 05 1 (0◦) (h) 14 0 (+15◦) (i) 13 0 (+30◦)

(j) 08 0 (+45◦) (k) 09 0 (+60◦) (l) 12 0 (+75◦)

(m) 11 0 (+90◦)

Figure 7.3. Illustration of some face pose classification results on the CMU MultiPIE test dataset: from right profile (a) to
left profile (m). The face bounding box is represented with the blue rectangle. The classified poses are displayed in
angles with green if correct and with red if incorect respectively.

7.3. RESULTS AND DISCUSSIONS 95

(a) 24 0 (−90◦) (b) 01 0 (−75◦) (c) 20 0 (−60◦)

(d) 19 0 (−45◦) (e) 04 1 (−30◦) (f) 05 0 (−15◦)

(g) 05 1 (0◦) (h) 14 0 (+15◦) (i) 13 0 (+30◦)

(j) 08 0 (+45◦) (k) 09 0 (+60◦) (l) 12 0 (+75◦)

(m) 11 0 (+90◦)

Figure 7.4. Illustration of some face pose classification results on the CMU MultiPIE test dataset: from right profile (a) to
left profile (m). The face bounding box is represented with the blue rectangle. The classified poses are displayed in
angles with green if correct and with red if incorect respectively.

96 CHAPTER 7. APPLICATION TO FACE POSE CLASSIFICATION

tively. The associated feature sharing model SHARED-EPT-BOOT presents an even more skewed

feature distribution: 94.3% tLBP and 4.6% mLBP. Once more, the tLBP feature is the most useful

encoding for pose classification too. This result is consistent across the bootstrapping parameters,

the loss formulation and the feature sharing method.

7.4 Summary and concluding remarks

This chapter presented the results obtained with the proposed boosting approach on the pose clas-

sification task. The goal was to predict the correct pose out of 13 available poses. We found experi-

mentally that the best boosted model produces predictions of around 8% and 1% average error rate

for 15 degrees and 30 degrees precision, respectively. This has shown that our boosting framework

can be effectively applied to a multivariate classification task such as pose classification.

Chapter 8

Conclusions and future work

The standard approach to face processing involves a mixture of machine learning models and fea-

tures. This is motivated by the diversity of the face processing tasks including: face detection, facial

feature localization, face recognition and pose classification. These tasks are often connected in a

processing chain: first detection, then alignment (or localization), then recognition or other high

level tasks. This may be inefficient because these models often require different pre-processing

steps and features that cannot be shared across the tasks.

In this thesis we propose a generic multivariate boosting framework to address several face

processing tasks. This is possible because model training is performed as optimizing a generic

loss. In particular, we propose to boost look-up tables with local binary features motivated by

their evaluation and computation speed, respectively, and their proven robustness on similar tasks.

These models can be connected into efficient and homogeneous face processing chains.

8.1 Experimental findings

The proposed multivariate boosting framework was applied to several face processing tasks: face

detection, facial feature localization and pose classification. Each task was discussed in detail using

appropriate experimental protocols and baselines (if available). The same boosting procedure and

the same features (EMB-LBP) were used for all tasks.

This approach presents several important advantages:

97

98 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

1. Modeling is easier and it reduces to formulating a task-appropriate loss along with some reg-

ularization terms.

2. Boosting look-up tables is shown to be fast and scalable with the available resources at train-

ing time. The combination of boosted LUTs and LBP features results in a fast and robust

system.

3. The approach is generic. It is suitable for a large variety of classification and regression

problems, with single or multiple outputs. In addition to this, given a base loss that associates

a value (error) to predictions, we formulate both the expectation and the variational losses.

The variational formulation has the advantage of being more robust to noise regardless of the

base loss or the task at hand.

The experiments were designed to assess the influence of various aspects of the boosting frame-

work including: bootstrapping the training samples, using loss formulations (expectation and vari-

ational), using feature sharing and using coarse-to-fine feature selection. Overall, the boosted mod-

els achieve state-of-the-art on face detection and perform reliably on facial feature localization and

pose classification.

We list the experimental findings below.

1. The proposed ad-hoc splitting of the boosted model into a cascade of levels (stages) produced

a face detector that achieves state-of-the-art performance with 7.12 weak learner evaluations

per sub-window on average. This is the fastest face detector reported in literature.

2. Sharing features between outputs produces much faster models, for example of about 5 to

41 times faster for the facial feature localization task. This comes with some performance

degradation, that is insignificant for facial feature localization but unacceptable for pose clas-

sification. We conclude that the trade-off between speed (how many outputs to share a feature)

and performance is task specific.

3. The variational loss formulation is usually more robust than the expectation formulation. Sig-

nificant performance improvements are found for face detection and pose classification, while

only minor improvements for facial feature localization. However, the variational models are

8.2. DIRECTIONS FOR FUTURE WORK 99

more expensive to train, because the regularization factor is task specific and it needs to be

tuned on the validation dataset.

4. The proposed coarse-to-fine feature selection is found to be an efficient method for boosting

any multi-block features for high resolution models. The resulting models are many times

faster to train (than considering the exhaustive set of features) and also more robust mostly

because the feature redundancy (number of features per pixel) is greatly reduced.

5. Bootstrapping improves the performance for face detection and pose classification tasks at a

moderate increase in the training time. However, the bootstrapped models are less accurate

for facial feature localization. Further improvements are suggested in the following section.

6. The transitional LBP (tLBP) encoding was found consistently to be the most frequently se-

lected out of the four LBP encoding schemes combined in the EMB-LBP feature. The selection

percentage reaches 95% for facial feature localization irrespective of the boosting settings. The

very skewed LBP encoding distribution contradicts the findings reported in the original paper

that introduced EMB-LBP (Trefny and Matas, 2010), albeit for different pattern recognition

problems.

8.2 Directions for future work

The following are some general work directions relevant to boosting and to face processing.

1. The proposed boosting formulation does not take into account the dependencies between out-

puts. For example, in the case of the facial feature localization task, the mouth corner location

is clearly dependent on the eye location. More generally, we consider that modeling geomet-

ric constraints between predictions (as a regularization term for example) may improve the

performance of the boosted model.

2. Optimal feature sharing is of great interest in pattern recognition. Though the feature sharing

methods discussed in this thesis are very simple, we consider that more sophisticated and

more reliable methods can be integrated within the proposed generic boosting framework.

100 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

3. Boosting multivariate models is expensive, although scalable with the available resources. It

is of interest to assess the trade-off between the number of bootstrapping steps and the num-

ber of training samples. We consider that it is possible to boost models of similar performance

with significantly fewer training samples (thus faster), by performing more bootstrapping

steps with slower increase in the number of rounds. The optimal bootstrapping procedure

remains an open problem.

4. The proposed approach is generic. Hence, it could be extended to other face processing tasks,

for example face recognition and face verification applications. It is of interest to also study

the selected LBP encodings (as part of the EMB-LBP feature) for these applications.

Appendices

101

Appendix A

Face detection using boosted

Jaccard distance-based regression

This appendix presents a new face detection method. We train a model that predicts the Jaccard

distance between a sample sub-window and the ground truth face location. This model produces

continuous outputs as opposed to the binary output produced by the widely used boosted cascade

classifiers. To train this model we introduce a generalization of the binary classification boosting

algorithms in which arbitrary smooth loss functions can be optimized. This way single output

regression and binary classification models can be trained with the same procedure.

Our method presents several significant advantages. First, it circumvents the need for a specific

discretization of the location and scale during testing. Second, it provides an approximation of

the search direction (in location and scale) towards the nearest ground truth location. And finally,

the training set consists of more diverse samples (e.g. samples covering portions of the faces) that

cannot be used to train a classifier. We provide experimental results on the BioID face dataset to

compare our method with the sliding-windows approach.

A.1 Objectives and motivations

Face detection consists of finding the position of all the faces, if any, in an image. Two components

are usually required: a classifier and a search algorithm. The search (or scanning) algorithm forms

103

104APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

sub-windows (or samples) at different locations and scales which are fed to the classifier. The

sub-windows labelled as positive samples are considered as final detections. Usually a clustering

algorithm (e.g. non-maxima suppression, averaging the overlapping regions, mean shift) is run on

these detections to reduce the number of multiple detections.

Recently there has been a great interest in real-time face detection systems. Their speed de-

pends mostly on the speed of the classifier to evaluate a sub-window. These systems are usually

built using boosted classifiers (Viola and Jones, 2004; Zhang et al., 2007), because of their potential

computational efficiency while providing state of the art performance. Another important factor is

the speed to compute the features. The fastest features are evaluated in constant complexity at any

location and scale, for example: Haar-like features (Viola and Jones, 2004) and MCT (Froba and

Ernst, 2004) or multi-block LBP codes (Zhang et al., 2007).

The most popular and simple search strategy for face detection is the sliding-windows approach

(we refer to this method as SScan). The location and scale space is usually discretized using a fixed

grid or a coarse-to-fine approach.

There are two problems with the SScan approach that we address in this appendix. First, the

discretization parameters are difficult to automatically adjust to the size of the image to scan and

it clearly depends on the (unknown) number, size and distance between adjacent faces. Second,

the classifiers cannot be trained with samples that cover just a part of the face. For example it is

impossible to decide if a sample containing just half of the face should be considered as a positive

or as a negative training sample. Therefore an uncertain region around the ground truth is formed

during training (Everingham and Zisserman, 2006; Cristinacce and Cootes, 2007). But these kind

of samples consistently appear at testing time and there is no guarantee on the classifier’s output

in this situation.

A possible solution is to use regression to learn a richer information than just a label of a sub-

window to test. There has been some previous work on this research direction. For example a

boosted model is trained in (Cristinacce and Cootes, 2007) to predict the displacement of a facial

feature patch from the ground truth. In (Everingham and Zisserman, 2006) a regression approach

is used to predict the eye positions. Our work follows this direction.

More specifically, we propose a new real-time face detection method that uses regression to guide

the search. We train a model that predicts the Jaccard distance between a sample sub-window and

A.2. RELATED WORK 105

the nearest ground truth face location. Then this model is used to search for faces in two steps.

First we initialize a set of potential detections with a coarse sampling and second we iteratively

refine the most promising detections. We refer to this method as JScan.

The main contributions of this work can be summarized as follows:

· We train a model to learn how accurate a sub-window is in both location and scale. This

allows for arbitrary displacements and scale variations of the ground truth face locations sub-

windows in the training samples. We then use this model for face detection without the need

for a specific discretization of the search space.

· We propose a general formulation of boosting algorithms that is independent of the loss func-

tion and the specific classification or regression task to solve. This formulation allows for

training binary classifiers and single output regressors with the same algorithm.

· An additional contribution is the proposed features that combine Multi-Block Local Binary

Patterns and Modified Census Transform features.

A.2 Related work

A.2.1 Boosting

Boosting (Schapire, 2002) is a greedy method for learning a strong classifier as a linear combination

of weak classifiers. This process is done iteratively in boosting rounds: a single new weak classifier

is chosen and added to the combination. Each new weak classifier is usually trained to correct the

mistakes made by the previous ones and to focus on the most challenging samples. Boosting can

also be interpreted as a gradient descent algorithm in the functional space of the weak classifiers

(Mason et al., 1999a).

In this section we focus on a more general formulation of boosting as a greedy optimization of the

Taylor expansion of the loss function to optimize (Mason et al., 1999a; Torralba et al., 2007). This

has the advantage of having the same formulation for both classification and regression, allowing

for an easy and fair comparison between classification and regression methods for face detection.

More formally let χ be the input signal space and {(xn, yn)n=1:N} ∈ (χ× R)
N a set of N training

samples. The targets {yn} to learn can be either binary labels {−1,+1} or any other scalar for

106APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

regression problems. The goal is to build a functional f : χ → R to map the samples xn to their

targets yn. At each boosting round t, t ≤ T , its approximation is a linear combination of gs weak

learners: ft =
∑
s≤t gs.

The criteria to choose f is to minimize a loss function of the form: L(ft) =
∑
n l(yn, ft(xn)). At

each step t+ 1 the weak learner gt+1 is chosen to minimize:

gt+1 = arg min
g

∑
n

l(yn, ft(xn) + g(xn)). (A.1)

Taking the Taylor expansion of the loss, in the current ft point, up to the second order, the

optimization problem becomes:

gt+1 = arg min
g

L(ft) +∑
n

(
∂l(yn,f)
∂f |f=ft(xn)

)
g(xn) +

1
2

∑
n

(
∂2l(yn,f)
∂f2 |f=ft(xn)

)
g2(xn). (A.2)

Most boosting algorithms can be derived from this formulation. We distinguish between second

order and first order boosting algorithms depending if they use or not the second order term in the

Taylor expansion in Eq. A.2.

The first order boosting algorithms perform a gradient descent in the functional space:

gt+1 = arg max
g
|
∑
n

(
∂l(yn, f)

∂f
|f=ft(xn)

)
g(xn)|. (A.3)

For example: AdaBoost (Schapire, 2002) minimizes the exponential loss l(y, f) = exp(−yf) and

restricts the weak classifiers to the form gs : χ → {−1,+1}, while “AnyBoost“ (Mason et al., 1999a)

is a generic formulation for any loss functions. It can be noticed that the optimal weak learner

gt+1 is known up to a scaling factor. This is the reason why gt+1 is typically scaled using the line-

search algorithm, fixed steps or decreasing steps. In particular cases the optimal scale can be found

analytically (e.g. AdaBoost).

The second order boosting algorithms use adaptive Newton steps to minimize the loss function.

A well known algorithm of this type is Gentle AdaBoost (Friedman et al., 2000; Torralba et al.,

A.2. RELATED WORK 107

Classification: l1(y, f) = exp(−yf)

l2(y, f) = log(1 + exp(−yf))

Regression: l3(y, f) =
1
2
(y − f)2

l4(y, f) = exp(y − f) + exp(f − y)− 2

Table A.1. Various loss functions for classification (l1, l2) and regression (l3, l4).

2007) which optimizes the exponential loss for the classification task.

Usually the normalized partial derivatives of the loss function are considered as weights asso-

ciated to each sample (e.g. AdaBoost, Gentle AdaBoost). This allows, in certain conditions for the

classification task, to interpret boosting as a greedy algorithm that concentrates the current weak

learner on the samples mis-classified by the previous weak learners.

The loss function depends on the specific problem to solve (see Table A.1). For example, the

classification task requires the two classes to be separated as far as possible: l(y, f) = l(−yf), while

the regression task needs a prediction as close as possible to the target: l(y, f) = l(y − f).

A.2.2 Face detection using sliding-windows (SScan)

The Algorithm 8 presents the sliding-windows approach to face detection. Given a face classifier

M that processes sub-windows of size Mw ×Mh, the algorithm searches for faces in the image I

of size Iw × Ih. The discretization of the location and scale space is governed by the dx, dy and ds

parameters. The dx and dy parameters are used to compute the displacement in location between

two sub-windows, relative to the model size, for the scaled image Is of size Iws × Ihs by the s factor.

If the classifier scores above a given threshold τ , then the detection det = {x, y, s} is accepted in the

final list D.

There are several problems with this method. First, the dx, dy and ds parameters are difficult to

set a priori. They dependent on the size of the image to search and the number of and the distance

between face locations. Second, the search algorithm uses a face classifier that is trained with

roughly normalized samples. For example it cannot be trained with samples that cover just a part

of the face. This is because it is impossible to decide if a sample containing just half of the face

should be considered as a positive or as a negative training sample. Therefore an uncertain region

around the ground truth is formed during training (Everingham and Zisserman, 2006; Cristinacce

108APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

Algorithm 8 Face detection using sliding-windows.
1: dx ∈ (0, 1) , dy ∈ (0, 1) , ds ∈ (0, 1) , τ,M, I,D = φ
2: for s = 1 to s > 0 do
3: scale the image: Is ← I ⊗ s
4: for x = 0 to x < Iws do
5: for y = 0 to y < Ihs do
6: det = {x, y, s}
7: if M(det) ≥ τ then
8: D ← D ∪ det
9: end if

10: y ← y + dy ∗Mh

11: end for
12: x← x+ dx ∗Mw

13: end for
14: s← s− ds
15: end for
16: return D

and Cootes, 2007). The problem is that there is no guarantee on the output of the classifier for these

kind of sub-windows that can appear during testing.

A.3 Proposed approach

In this section we introduce the features and the weak learner (A.3.1). Then we describe the train-

ing algorithm (A.3.2) using the framework presented in the previous section. Next we present the

Jaccard distance (A.3.3) and how to use it for face detection (A.3.4).

A.3.1 Features and weak learner

A real-time face detection system requires features that are fast to compute at any location and

scale. The first real-time system used Haar-like features (Viola and Jones, 2002), but LBP-based

features also became very popular because they are robust to illumination changes (Froba and

Ernst, 2004). Recently, the Multi-Block LBP features (Zhang et al., 2007) have been shown to

outperform both Haar-like features and LBP codes. Hence, in this work we use a new feature - the

Multi-Block Modified Census Transform (MB-MCT), that combines the multi-block idea proposed

in (Zhang et al., 2007) and the MCT features proposed in (Froba and Ernst, 2004).

The MB-MCT features are parametrized by the top-left coordinate (x, y) and the size w × h of

the rectangular cells in the 3 × 3 neighbourhood. This gives a region of 3w × 3h pixels to compute

A.3. PROPOSED APPROACH 109

(a) (b)

Figure A.1. (a) Multi-block MCT feature for image representation. (b) Examples of some patterns that can be obtained
by varying the parameters w and h.

the 9-bit MB-MCT:

MB −MCT (x, y, w, h) =
∑
i=0:8

δ(pi ≥ p̄) ∗ 2i, (A.4)

where δ is the Kronecker delta function, p̄ is the average pixel intensity in the 3× 3 region and pi is

the average pixel intensity in the cell i (see Fig. A.1 (a)). The feature is computed in constant time

for any parametrization using the integral image. Various patterns at multiple scales and aspect

ratios can be obtained by varying the parameters w and h (see Fig. A.1 (b)).

The MB-MCT feature values are non-metric codes and this restricts the type of weak learner to

boost. We use the multi-branch decision tree proposed in (Zhang et al., 2007) as weak learner. This

weak learner is parametrized by a feature index (e.g. dimension in the feature space) and a set of

fixed outputs, one for each distinct feature value. More formally, the weak learner g is computed for

a sample x and a feature d with:

g(x) = lut[xd], (A.5)

where lut is a look-up table with 512 entries au (because there are 512 distinct MCT codes) and

d indexes in the space of x, y, w, h possible MB-MCT parametrizations. The goal of the boosting

algorithm is then to compute the optimum feature d and au entries.

110APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

A.3.2 Training

In this section we derive the second order boosting algorithm to train the multi-branch decision

tree. We chose this formulation over the first order because generally the loss decreases faster

using Newton-Raphson steps than using gradient descent steps. The Eq. A.2 can be rewritten for a

fixed feature d as:

gt+1(d, au) = arg min
au

L(ft) +

∑
u

au

 ∑
n,xd

n=u

(
∂l(yn, f)

∂f
|f=ft(xn)

)+

∑
u

a2u

1

2

∑
n,xd

n=u

(
∂2l(yn, f)

∂f2
|f=ft(xn)

) (A.6)

or more compactly as:

gt+1 = arg min
d,au

L(ft) +
∑
u

auL
′
u +

∑
u

1

2
a2uL

′′
u, (A.7)

where L′u and L′′u are the cumulated first and second order derivatives of the loss for the samples

that have the feature d with the value u. It can be noticed that the quadratic optimization problem

can be solved separately for each look-up-table entry au. The exact solution and the potential loss

decrease ∆ are:

au = −L
′
u

L′′u
= −

∑
n,xd

n=u

(
∂l(yn,f)
∂f |f=ft(xn)

)
∑
n,xd

n=u

(
∂2l(yn,f)
∂f2 |f=ft(xn)

) (A.8)

∆ = −
∑
u

(L′u)
2

2L′′u
. (A.9)

The training algorithm is presented in Algorithm 9. At each boosting round t, the optimal weak

learner gt+1 is chosen by evaluating each feature d and selecting the optimal one with the highest

decrease ∆ in the loss. Then gt+1 is added to the strong model f . It can be noticed that the algorithm

A.3. PROPOSED APPROACH 111

is of linear complexity with the number of samples, features and boosting rounds. There are two

important benefits: it performs feature selection and it can be used for any smooth loss function.

In this appendix we use this algorithm for both face classification and Jaccard distance-based face

regression.

Algorithm 9 Second order boosting multi-branch MB-MCT decision trees.
1: for t = 0, f = 0 to t ≤ T do
2: d∗ = 0,∆∗ =∞, a∗u = 0
3: for feature d do
4: for feature value u ∈ 0...511 do
5: compute L′u and L′′u
6: end for
7: ∆ = −

∑
u

(L′u)
2

2L′′u
8: if ∆ < ∆∗ then
9: d∗ ← d,∆∗ ← ∆, a∗u ← −

L′u
L′′u

10: end if
11: end for
12: f ← f + gt+1(d∗, a∗u), t← t+ 1
13: end for
14: return f

A.3.3 Jaccard distance

The Jaccard distance (Jaccard, 1901) is a statistical method to measure the similarity between two

sets A and B (see Eq. A.10).

J(A,B) = 1− |A ∩B|
|A ∪B|

. (A.10)

This can be extended to measure the overlap between two rectangular regions. Then, |A ∩ B|

and |A ∪ B| stand for the area of their intersection and union, respectively. We decided to use an

approximation to the Jaccard distance that it is easier to compute in the case of face detection:

Jm(A,B) = 1− |A ∩B|
max(|A|, |B|)

(A.11)

Let A be the ground truth face location and B a sub-window to evaluate. Then, the perfect detection

corresponds to the distance Jm(A,B) = 0, while the background sub-windows corresponds to the

distance Jm(A,B) = 1. The target y to learn for the particular sub-window B is Jm(A,B).

112APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

A.3.4 Face detection using Jaccard distance-based regression (JScan)

We propose a regression-driven search algorithm for face detection. Instead of using a classifier, we

train a model to learn a richer information: the Jaccard distance between a sub-window and the

closest ground truth face location. An immediate benefit of using regression is that the model can

be trained with sub-windows at any location and scale, which implies that no uncertain region is

formed any more.

Assuming that such a model M is provided, the search algorithm becomes as presented in Algo-

rithm 10. There are several significant differences compared to Algorithm 8. First, no dx, dy, ds dis-

cretization is needed any more. This is because the model predicts how far the current sub-window

is from the true face location, which can be used to guide the search instead of some a priori fixed

discretization parameters. Second, the proposed method is split in two stages: the initialization of

potential locations (steps 8, 10 and 12) and the refinement (steps 14, 15) of these locations to min-

imize the Jaccard distance. It can be noticed that we refine only the sub-windows that are close to

the ground truth. This has the benefit of concentrating the effort (evaluating sub-windows) in the

most promising regions of the search space. Finally, we ignore the detections that are farther away

than τ from the true location (step 16). This corresponds to eliminating false alarms (see Algorithm

8, step 7).

Initialization stage (steps 1-12)

The search for the optimal face locations is initialized using an uniform grid. The idea is to sample

such that half of a face is ensured to be included in some sub-window, such that Jm ≤ 0.5. This

implies that we need to sample every Mw

2 and Mh

2 on the horizontal and vertical axis, respectively.

The scale sampling factor is slightly more difficult to set. Let s be the current scale. Then a sub-

window at this scale has the size of 1
sM

w× 1
sM

h relative to the original image. The difference in size

between two sub-windows at consecutive scales s and s′ < s is: (1
s′ −

1
s)Mw × (1

s′ −
1
s)Mh. To make

sure that half of a face is contained in some sub-window we set the conditions: (1
s′ −

1
s)Mw ≤ Mw

2

and (1
s′ −

1
s)Mh ≤ Mh

2 . This implies 1
s′ −

1
s ≤

1
2 . At the limit, it can be shown that we obtain the

following relation for the scale variation: sn = 2
n+1 , n ≥ 1.

A.3. PROPOSED APPROACH 113

Refinement stage (steps 14 and 15)

Next the detections close enough to the ground truth locations are refined in two steps. Given that

the Jaccard distance is isotropic, the optimal direction where the face location resides cannot be

deduced from this information. Instead we sample independently each axis (horizontal, vertical

and scale) with two values (left - right, down - up, bigger - smaller). In the first step we sample with

the half, while in the second step with the quarter of the displacement used in the initialization.

The sampling spacing is decreased because smaller steps are required as the detection gets closer

to the ground truth locations. Only the detections that are within 0.50 and 0.40 of the modified

Jaccard distance (Equation A.11) from the ground truth are refined at the first and the second

step respectively. It can be noticed that it is pointless to have more than two refinement steps

because the spacing resolution (divided by two at each step) reaches the limit. For example, for

the sub-window (x, y, 1s) we generate at the first refinement step the six sub-windows to refine:

(x ± Mw

4 , y ± Mh

4 , 1s ±
1
4). Considering a model of the size 24 × 24, the initialization part process

locations at every 12 pixels, while the refinement steps at every 6 and 3 pixels respectively.

Algorithm 10 Face detection using Jaccard distance-based regression.
1: τ ∈ (0, 1) ,M, I,D = φ

2: for s = 1 to s ≥ max(M
w

Iw , M
h

Ih
) do

3: Is ← I ⊗ s
4: for x = 0 to x < Iws do
5: for y = 0 to y < Ihs do
6: det = {x, y, s}
7: D ← D ∪ det
8: y ← y + Mh

2
9: end for

10: x← x+ Mw

2
11: end for
12: 1

s ←
1
s + 1

2
13: end for
14: refine(D, 0.50, x± Mw

4 , y ± Mh

4 , 1s ±
1
4)

15: refine(D, 0.40, x± Mw

8 , y ± Mh

8 , 1s ±
1
8)

16: threshold(D, τ)
17: return D

114APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

A.4 Experiments and results

As a proof of concept, we have performed experiments to investigate the feasibility of the proposed

idea. For this we have compared our proposed face detection method with the sliding-windows

approach using an equivalent complex boosted classifier.

A.4.1 Experimental setup

The training samples were generated using the BANCA (Bailly-Bailliére et al., 2003) English face

dataset (6240 images) and the CALTECH-101 (Fergus and Perona, 2007) background dataset (451

images). The BANCA dataset contains images taken in controlled and uncontrolled conditions of a

single person in an office environment. We normalized these images to have the eyes horizontally

aligned and with 32 pixels distance between them. Then we collected roughly 6 billion sub-windows

of size 24× 24 using a very fine discretization of location and scale.

Each model was trained using 500,000 randomly selected samples. The training samples were

generated to be evenly distributed over the output values: the class labels {−1,+1} for classification

and the Jaccard distance values [0, 1] for regression. The classifier required one more restriction to

overcome the uncertain area problem: the positive samples had to overlap at least 90%, while the

negative samples had to overlap at most 10% respectively with the ground truth face location.

The same feature parametrization (see Section A.3.1) was used for both models. The MB-MCT

features were generated with the cell size varying in the range {1 . . . 8} × {1 . . . 8}. This generates

roughly 7,000 features per sample. We used the second-order boosting procedure with 200 rounds

to train both models (see Section A.3.2). The only difference is in the choice of appropriate loss

functions: the exponential l1(y, f) = exp(−yf) and the sum of exponentials l4(y, f) = exp(y − f) +

exp(f − y)− 2 losses (see Table A.1) were used for the classifier and the regressor respectively.

We have chosen the BioID dataset (Jesorsky et al., 2001) as the test dataset because it contains

face images captured with a setup close to the one used as the training dataset (BANCA), although

significantly more challenging to detect. This dataset contains 1521 images containing only one

face in the image taken in different office environments.

The ROC curves are built by varying the threshold τ (see Algorithms 8 and 10) and measuring

the detection rate (DR) and the number of false alarms (FA). Multiple detections are integrated

A.4. EXPERIMENTS AND RESULTS 115

using non-maxima suppression. This is performed iteratively: first we chose the detection with the

highest classification score or lowest Jaccard distance and second, we remove the other detections

that overlap more than 60% with it.

A.4.2 Results

There are several aspects we investigate: the evolution of the training loss, the face detection

performance and the speed of the proposed JScan method. Finally we provide some examples of

the proposed detection process produced on the BioID dataset. We would like to point out that the

aim of this appendix is to assess the proposed method and not to produce the best possible results.

Our goal is to compare a boosted classifier and a boosted regressor on the same datasets. It is clear

that improved results can be obtained with more datasets, but it is out of the scope of this study.

Training loss

The training loss evolution provides an insight into how difficult a task is to solve for a particu-

lar model. We have plotted in Fig. A.2 the logarithmic evolution of the training loss for the face

classifier and the Jaccard distance-based regressor. It can be noticed that the loss decreases expo-

nentially in the case of classification, but only linearly in the case of regression. This suggests that

it is significantly harder to learn how far a sub-window is from the ground truth than classifying

it as face or background. Still, a slowly increasing accurate regression output is produced as the

number of boosting rounds increases.

Face detection performance

We have evaluated the face detection performance of our method JScan and the baseline SScan

on the BioID dataset. The sliding-windows approach depends on the search space parameters for

location and scale. Hence, we have used two scenarios: the coarse search (dx = 0.25, dy = 0.25,

ds = 0.20) and the fine search (dx = 0.20, dy = 0.20, ds = 0.10), which we denote as SScan (coarse)

and SScan (fine) respectively.

The logarithmic ROC curves are plotted in Fig. A.3. It can be noticed that the performance

of the SScan method clearly depends on the search parametrization: the fine search significantly

116APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

-12

-10

-8

-6

-4

-2

0

2

4

6

0 50 100 150 200

lo
g
1
0
(l
o
s
s
)

rounds

TrainLoss

Regressor
Classifier

Figure A.2. The logarithmic evolution of the training loss for the face classifier (red) and the Jaccard distance-based
regressor (blue).

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds200-overlap0.50

JScan
SScan(fine)

SScan(coarse)

Figure A.3. The logarithmic ROC curves for the BioID dataset using JScan (blue) and SScan with coarse (magenta) and
fine (red) search parametrization. All models were trained using 200 boosting rounds.

outperforms the coarse search. This is at the cost of a slower face detector, because the number of

sub-windows increases rapidly with the search parameters.

The proposed JScan method performs significantly better than the baseline with a DR which is

5% higher for the same number of false alarms. This performance is maintained for various number

of boosting rounds (see Fig. A.4) with a noticeable larger improvement for small number of boosting

rounds. This correlates with the evolution of the training loss (see Fig. A.2) when the regressor

learns faster for the first rounds, but significantly slower for large number of boosting rounds. This

allows the classifier to close the gap in terms of performance.

A.4. EXPERIMENTS AND RESULTS 117

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds10-overlap0.50

JScan
SScan(fine)

SScan(coarse)

(a) 10 rounds

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds20-overlap0.50

JScan
SScan(fine)

SScan(coarse)

(b) 20 rounds

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds50-overlap0.50

JScan
SScan(fine)

SScan(coarse)

(c) 50 rounds

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds100-overlap0.50

JScan
SScan(fine)

SScan(coarse)

(d) 100 rounds

Figure A.4. The logarithmic ROC curves for the BioID dataset using various number of boosting rounds. The results
for JScan are plotted with blue, while for SScan with coarse and fine search parametrization with magenta and red,
respectively.

118APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

Boosting rounds 10 20 50 100 200
BioID

JScan 2,941 2,668 2,462 2,388 2,347
SScan (coarse) 8,485 8,485 8,485 8,485 8,485
SScan (fine) 21,055 21,055 21,055 21,055 21,055
Speed-up factor 2.88 3.18 3.44 3.55 3.61

Table A.2. The number of processed sub-windows (in thousands) for the BioID dataset using various number of boosting
rounds. The JScan speed-up factor is computed relative to SScan (coarse).

Detection speed

We have also studied the number of processed sub-windows for each method (see Table A.2) with

a varying number of boosting rounds. It can be noticed that as the number of boosting rounds

increases, the JScan method processes fewer sub-windows for both test datasets. This is because the

Jaccard distance-based regressor becomes more reliable and fewer sub-windows need to be refined

(see Algorithm 10). This contrasts with both SScan instances that process the same number of

sub-windows. Hence, it is possible to achieve an even higher speed with a more accurate regressor.

We conclude that our proposed method JScan is significantly faster than the baseline methods for a

similar complexity of the model. Indeed, the classifier and the regressor contain the same number

of parameters.

Examples

Figure A.5 presents some sub-windows processed by our proposed method on the BioID dataset.

The number on the left of the caption (y) is the Jaccard distance and the number on the right f(x)

is the estimated one. These samples contain faces at different location displacements and scale

variations. This makes the Jaccard distance modelling a more difficult task than face classification.

For example the samples b, c, d and e (see Fig. A.5) are excluded when training the face classifier

because they are ambiguous. But the Jaccard distance model must cope with these difficult sam-

ples. This results in significant errors at testing, but still the predictions are accurate enough for

successfully guiding the refinement of potential face detections (see Fig. A.6).

As shown in Fig. A.6, the proposed detection refinement stage concentrates the effort on the

most promising locations (hopefully around the ground truth face locations). This is because the

number of detections to refine decreases at each step: the ones with a score smaller than 0.50 and

A.5. CONCLUSIONS 119

(a) y=0.15, f(x)=0.10 (b) y=0.35, f(x)=0.39 (c) y=0.35, f(x)=0.33

(d) y=0.62, f(x)=0.63 (e) y=0.64, f(x)=0.59 (f) y=0.98, f(x)=0.93

Figure A.5. Examples of sub-windows (x) processed by the JScan method on the BioID dataset. The number on the left
of the caption (y) is the Jaccard distance and the number on the right f(x) is the estimated one.

0.40 for the first and second step respectively. This corresponds to detections that are closer, in

terms of the Jaccard distance, than 0.50 and 0.40 respectively from the ground truth.

A.5 Conclusions

In this appendix we presented a new face detection method. We trained a model to learn the Jaccard

distance between a sub-window and the ground truth location. For this we generalized the boosting

algorithm for binary classification to optimize any smooth loss function. Then the binary classifiers

and single output regressors were trained with the same algorithm, the only difference being the

choice of appropriate loss function.

The experimental results have shown that our face detector processes significantly fewer sub-

windows than the baseline sliding-windows approach using an equivalently complex classifier. The

face detection performance is improved over the baseline on the BioID dataset with a DR which is

5% higher for the same number of false alarms. These encouraging results show that the idea is

feasible. We plan to perform experiments on other more challenging datasets to further assess its

performance.

120APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

(a) Initialization stage (b) Initialization stage

(c) Refinement stage (step 1) (d) Refinement stage (step 1)

(e) Refinement stage (step 2) (f) Refinement stage (step 2)

Figure A.6. Illustration of the detection process with the JScan method for two images (left and right column respec-
tively). On the first row we display the centres of the initialized detections, while on the second and third rows the
refined detections in the first and the second step respectively.

A.5. CONCLUSIONS 121

Another interesting finding is that the number of sub-windows to process decreases with the

number of boosting rounds. This suggests that a more accurate Jaccard distance regressor would

improve the proposed detection method and consequently process fewer sub-windows which would

result in a faster face detector. To achieve this we envisage several directions for future work

including: boosting more powerful weak learners, faster optimization with respect to the number of

boosting rounds and adapting bootstrapping from classification to regression.

122APPENDIX A. FACE DETECTION USING BOOSTED JACCARD DISTANCE-BASED REGRESSION

Appendix B

A principled approach to remove

false alarms by modelling the

context of a face detector

In this appendix we present a new method to enhance object detection by removing false alarms in

a principled way with few parameters. The method models the output of an object classifier which

we consider as the context. A hierarchical model is built using the detection distribution around a

target sub-window to discriminate between false alarms and true detections. The specific case of

face detection is chosen for this work as it is a mature field of research. We report results that are

better than baseline methods on XM2VTS and MIT+CMU face databases and significantly reduce

the number of false acceptances while keeping the detection rate at approximately the same level.

B.1 Objectives and motivations

A variety of applications like video surveillance, biometric recognition and human-machine inter-

face systems depend on robust face detection algorithms. In the last decade there has been an

increasing interest in real-time systems with high accuracy and many successful methods have

been proposed (Zhao et al., 2003). Still face detection remains a challenging problem and there are

123

124 APPENDIX B. CONTEXT-BASED MODELLING

Figure B.1. Typical face detections using the multiscale approach and the boosted cascade classifier described in
(Froba and Ernst, 2004) (without clustering multiple detections nor removing false alarms).

improvements to be made.

Face detection is often posed as the task of classifying a sub-window as being a particular object

or not. As such it requires a method to sample an image for sub-windows and a classifier to classify

the sub-window. Research to date has mainly dealt with the issue of building a robust and accurate

object classifier. An object classifier tells if an object is found at a specific position and scale (referred

as sub-window) in an image. For instance work by Froba et al. (Froba and Ernst, 2004) and Viola

and Jones (Viola and Jones, 2001) has provided significantly improved face classifiers. Different

approaches have been proposed such as the pioneering work from Rowley et al. (Rowley et al.,

1998) or (Garcia, 2004) based on Neural Networks. But the most successful face detection methods

are based on a cascade of boosted classifiers that provide real-time performance with high accuracy

(Lienhart and Kuranov, 2003).

There are many ways to obtain sub-windows from an image, with the sliding window approach

(Rowley et al., 1998) being the most well known. The sliding window approach finds all the object

instances by scanning the image at different positions and scales. This can result in multiple

detections and false alarms as shown in Fig. B.1. A merging and pruning heuristic algorithm

is then typically used to output the final detections (Rowley et al., 1998; Viola and Jones, 2001;

Rodriguez, 2006).

Recent work has been done to overcome the limitations of the sliding window approach by using

a branch-and-bound technique to evaluate all possible sub-windows in an efficient way (Lampert

et al., 2008). The authors build a model that also predicts the location of the object (Blaschko and

Lampert, 2008). However, it is not clear how to use this method for different classifier types (for

B.2. CONTEXT-BASED MODELLING FOR FACE DETECTION 125

instance boosted cascades) or to detect multiple objects.

A different approach was recently proposed in (Takatsuka et al., 2006) and (Takatsuka et al.,

2007) where the authors study the score distribution in both location and scale space. Their ex-

perimental results have shown that the score distribution is significantly different around a true

object location than around a false alarm location, thus making possible to build a model to better

distinguish the false alarms and enhance detection. This approach is motivated by the fact that the

object classifier is usually trained with geometrically normalized positive samples and it does not

process the context (area around given samples). Also, some false alarm sub-windows may have a

higher score than a true detection nearby and may be selected erroneously as being final detections

when using a simple heuristic merging technique.

We propose a model to enhance a given face classifier by discriminating false detections (sub-

windows) from true detections using the contextual information. Our approach was inspired from

the work of (Takatsuka et al., 2006, 2007). Similarly we investigate the detection distribution

around some sub-window (which we call the context) in order to evaluate if it corresponds to a true

detection or not.

There are significant differences between this work and that presented in (Takatsuka et al.,

2006, 2007). The first is that we extract more information from the detection distribution than

just the score of the face classifier. For example we count detections within the context and we use

features that describe the geometry of the detections around a sub-window. The second significant

difference is that we extract features from every possible axis combination (locations x, y and scale

s) and we train a classifier to automatically choose the most discriminant features.

B.2 Context-based modelling for face detection

In this section we present a model to discriminate false detections from true detections. First we

describe how we sample around a target sub-window to build its context. Then we present the fea-

tures we extract from the context and finally the classifier that uses these features to discriminate

false alarms from true detections.

126 APPENDIX B. CONTEXT-BASED MODELLING

B.2.1 Sampling

We sample in the 3D space of location (x, y) and scale (s) to collect detections around a target

sub-window Tsw = (x, y, s). For this we vary its position and scale in all directions (left, right, up,

down, smaller and bigger) and we form new sub-windows. Those sub-windows that pass the object

classifier are gathered with the associated classifier outputms, referred to as the model score in this

appendix. We obtain a collection of 4D points C(Tsw) = {(xi, yi, si,msi)i=1,..} that we call the context

of the target sub-window Tsw. Its parameters are the number of points to be considered on each axis

(location and scale) along the positive direction, which we define as Nx, Ny and Ns respectively.

We have used two strategies for context sampling: full and axis. The full strategy consists of

sampling by varying the location and scale at the same time. In this case the context can have

at most Nfull = (2Nx + 1) × (2Ny + 1) × (2Ns + 1) points. In the axis strategy the sampling is

done just along one axis at a time. This reduces the maximum size of the context to Naxis =

(2Nx + 1) + (2Ny + 1) + (2Ns + 1) points.

In our experiments we have used Nx = Ny = 6 and Ns = 7 with 5% increments both in scale and

position 1. This makes Naxis (at most 41 points) approximately 60 times smaller than Nfull (at most

2535 points). The axis sampling approach is better suited for real time applications where building

the full context may be too expensive. In our experiments this method has a small performance

degradation compared to the full sampling method, but it can be many times faster.

B.2.2 Feature vectors

In the next step we extract a fixed number of low dimensional feature vectors from C(Tsw). The fea-

ture vectors are defined by their attribute(s) and the axis (and axes) used to obtain the attribute(s).

We use 5 attributes that capture the global information (counts), the geometry of the detection

distribution (hits) and the detection confidence (score) obtained from the face classifier. The counts

provide a global description of C(Tsw) by counting detections on some axis combination. The score

(standard deviation and amplitude) describes the classifier confidence variation across position

and scale changes. The hits (standard deviation and amplitude) capture the spread of detections

on some axis. The last attribute addresses the intuition that detections can be obtained by varying

1The context for a detection of size 100x100 pixels is obtained by sampling sub-windows from approximately 70x70 to
140x140 pixels and translated by at most 34 pixels.

B.2. CONTEXT-BASED MODELLING FOR FACE DETECTION 127

more the scale or the position around a true detection than on the false alarms.

Each feature vector is computed on some axis combination (x, y and s) which gives 7 possible

combinations. For example we can build sub-windows by varying all axes, just two of them (like

keeping the scale constant and varying only the sub-window’s x and y coordinates) or just one of

them (like keeping the x and scale fixed and moving the sub-window up and down). More details can

be found in Section B.3.2, where we have visualized and investigated the discriminative properties

of these features.

B.2.3 Classifier

The context features from the previous section are used to train a classifier to distinguish between

false alarms and true detections based on their context. We build a linear classifier for each context

feature (described in Section B.2.3) and then we combine them to produce the final result (described

in Section B.2.3).

Our aim is to automatically select the best attributes and axes that are more discriminant. This

makes the context-based model independent of the specific geometric properties of the object to

detect, the type of the object classifier or the scanning procedure.

Context classifiers

The contextual information is used to form 35 different context features: there are n = 5 types

(as discussed in Section B.2.2) computed for each of the m = 7 axis combinations. For each feature

vector we build a logistic linear model which we denote asM(x,w), where the x is the d-dimensional

sample feature vector and w is the d+ 1-dimensional parameter value. The model output is:

M (x,w) =
1

1 + exp
(
−w0 +

∑d
i=1 xiwi

) , (B.1)

where w0 is sometimes called the bias term and the wi terms are the weights of the inputs.

Training the model is done by minimizing the negative of the likelihood of the model output

being generated from the input data. Additional L1 and L2 norm regularization terms are added as

128 APPENDIX B. CONTEXT-BASED MODELLING

described in (Lee et al., 2006). Following (Perkins et al., 2003), our function to optimize is:

E (w, λ1, λ2) =

∑
l (w, x+)

N+
+ β

∑
l (w, x−)

N−
+ λ1

n∑
i=1

|wi|︸ ︷︷ ︸
L1

+λ2

n∑
i=1

|wi|2︸ ︷︷ ︸
L2

, (B.2)

where l (w, x) = −y log(M(x,w))−(1−y) log(1−M(x,w)) is the negative log likelihood of the sample

x using the model weights w; obviously y relates to the label of interest so it represents the positive

class for the case of l (w, x+) and the negative class for l (w, x−). The log likelihoods are averaged

separately over the N+ positive samples and the N− negative samples respectively because of the

unbalanced nature of the training samples, λ1 and λ2 are priors for the L1 and L2 norms. The

purpose of the L2 norm regularization term is to avoid over fitting, while the L1 one is to keep the

model sparse hopefully by automatically selecting the most informative features.

The weight β represents the relative importance attributed to the error caused by the negative

samples relative to the one caused by the positive samples. In the case of object detection (in

particular face detection) it is preferred to have higher false alarms than to miss objects. This

implies that β needs to penalize false rejections more than false acceptances which corresponds to

β < 1. Several preliminary experiments were performed on a small sub-set of the training data and

β = 0.3 was chosen as the optimal value.

There are some robust methods to optimize the non-continuously differentiable function

E (w, λ1, λ2) (for a review see (Lee et al., 2006)). We have used a simple method called grafting

described in (Perkins et al., 2003). This method integrates well with standard convex optimization

algorithms and it uses an incremental approach to feature selection that suits our needs. Jorge

Nocedal’s libLBFGS library (Nocedal and Jorge, 1989) was used for the optimization of the error

function at each step of the grafting algorithm.

Another related problem we need to solve is the choice of the λ1 and λ2 prior terms. For this we

use a cross-validation technique on two datasets, one for training and one for tuning, as specified

by each database’s protocol. We first optimize the λ1 prior term using a logarithmic scale keeping

λ2 = 0 and second we optimize the λ2 prior term using the same logarithmic scale and keeping the

already estimated λ1 value. The criterion to choose the best (λ1, λ2) configuration is the Weighted

B.3. EXPERIMENTS 129

Error Rate (WER) defined as:

WER (β, τ) =
β × FAR+ FRR

β + 1
, (B.3)

where FAR is the False Acceptance Rate and FRR is the False Rejection Rate computed as FRR =

1−TAR; TAR is the True Acceptance Rate also referred to as Detection Rate (DR). The same weight

β was used as in Equation B.2.

Combined classifier

Each feature classifier can be considered as an expert. By combining them two benefits can be

obtained: first the combined classifier should perform better and second only some (the best) experts

are combined which implies that some irrelevant features can be (automatically) discarded. The

combined model uses the same logistic linear model as for the context classifiers. This makes the

proposed hierarchical model a non-linear mapping of the inputs, while each context classifier is

kept very simple and linear.

The inputs to the combined classifier are the normalized outputs of the context classifiers. Let

us define the context classifiers as Mk,l(x,w), where k indicates the attribute type (k = 1..n, n = 5)

and l corresponds to the axis combination (l = 1..m,m = 7). Let τk,l be the optimum threshold value

of the Mk,l model. Then the value forwarded to the combined classifier is xk,l = Mk,l(x,w)− τk,l.

This normalization has two benefits. First, the sign indicates the decision of the Mk,l model:

positive for true detections and negative for false alarms. Second, the absolute value is (empirically)

proportional to the confidence of the Mk,l model in its decision.

B.3 Experiments

The experimental procedure used in this appendix is defined by these aspects: the databases used,

the protocol for these databases, the face classifier and the methods for evaluating performance.

130 APPENDIX B. CONTEXT-BASED MODELLING

B.3.1 Experimental protocol

We have evaluated our method on two scenarios: XM2VTS (Messer et al., 1999) and MIT+CMU

(Rowley et al., 1998). For each scenario a distinct training, tuning and testing image collection was

provided to train, optimize parameters and evaluate the context-based model.

The XM2VTS database, split using the Lausanne protocol, contains one large centred face in

each image taken in a controlled environment. There is an overlap with the identities used for the

training, tuning and testing datasets, but different captures were considered.

The second scenario uses the WEB (Garcia, 2004) database for training, the CINEMA (Garcia,

2004) database for tuning and the MIT+CMU database for testing. This scenario is considered as

the most difficult because it consists of images with multiple, sometimes very small, degraded faces

or without any face, taken in different environments (indoor and outdoor).

B.3.2 Results and discussions

Face classifier

Our method was tested using the MCT-based face classifier (Froba and Ernst, 2004) implemented

with the Torch3vision open-source library 1. We alter the performance of this face classifier by

varying the threshold (θ) of the last stage. This allows us to understand if the performance of the

classifier affects the performance of the context models. For each θ four context-based models have

been trained: using both full and axis context sampling methods for each of the two scenarios.

The detections (and contexts) are obtained using a standard sliding-window approach. The

context-based model checks each detection and the false alarms are removed. The final detections

are obtained by averaging the remaining detections that overlap, which removes most of multiple

detections around the same face. It should be noted that no sub-window heuristic pruning was used

during scanning.

We have compared our method with the merging method implemented by Torch3vision and

referred to as HMergeT. More details can be found in (Rodriguez, 2006). To label a detection as

positive we used the Jesorsky measure with the threshold εJ = 0.25 (Jesorsky et al., 2001).

1The Torch3vision library is freely available at http://torch3vision.idiap.ch/

http://torch3vision.idiap.ch/

B.3. EXPERIMENTS 131

Analysis of context features

Preliminary experiments have been carried out to analyse if the proposed features provide enough

information to discriminate between the two cases of contexts. We have plotted some of these

context features in Fig. B.2 on the XM2VTS training dataset. To assign a detection (and its context)

to the positive or negative class we have used the Jesorsky measure with a relaxed threshold εJ =

0.5. This is because a valid detection should be kept even if it does not match well the true position,

but its context captures a significant part of the ground truth. Still, for face detection performance

evaluation a more precise εJ = 0.25 has to be used as specified in the previous section.

We found that there is a significant difference between the negative and the positive contexts.

This supports our intuition that around a true detection many more detections are generated than

around a false alarm. This implies that just by counting detections good discriminative information

is obtained. For example in Fig. B.2 (a, b) more than 95% of the negative contexts have their

count attribute less than 95% of the positive ones. Also, fewer detections implies much less score

variation for negative samples. It can be noticed that negative contexts are more compact around

the center, while the positive are much more spread having the standard deviation much higher for

the combination of two axes (see Fig. B.2 (c, d)).

We have found experimentally that it is easier to visually separate the two context classes using

the full sampling, for example see Fig. B.2 - (a) versus (b), (c) versus d. This is expected because the

full sampling gathers many more detections and it is also verified by the next set of experiments

where it outperforms with a small margin the axis sampling variant.

Context-based model evaluation

In this set of the experiments we have evaluated how well the context-based model distinguishes

between false alarms and true detections. For this we have computed and plotted the WER as

shown in Fig. B.3 for the two scenarios. The full (blue) and axis (green) sampling situations are

plotted on the same graphic to easily compare them.

The full sampling context-based model performs better than the axis sampling one for the ma-

jority of different threshold values. Still this rather small increase in performance requires much

larger contexts (2535 versus 41 samples, see Section B.2.1) which impacts on the speed of the overall

132 APPENDIX B. CONTEXT-BASED MODELLING

0 5 10 15 20
0

20

40

60

80

100
Counts

counts

c
u

m
%

neg
pos
gt

(a)

0 10 20 30 40
0

20

40

60

80

100
Counts

counts

c
u

m
%

neg
pos
gt

(b)

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

3000
Scores stdev

scoreStdev

n
o

S
W

s

neg

pos

gt

(c)

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

3000
Scores stdev

scoreStdev

n
o

S
W

s

neg

pos

gt

(d)

Figure B.2. Distributions of various features using the full (right column) versus axis (left column) sampling on XM2VTS
training dataset. Cumulative histogram of counts for two axes (y, scale) using axis sampling (a) and full sampling (b).
Cloud of points of score standard deviation for 3 axes (x, y, scale) using axis sampling (c) and full sampling (d). The
ground truth is represented with green, the positive class with blue and the negative with red.

B.3. EXPERIMENTS 133

−0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.05

0.1

0.15

0.2

0.25

θ

W
E

R

Context(Full)

Context(Axis)

(a) XM2VTS-WER

−0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.05

0.1

0.15

0.2

0.25

θ

W
E

R

Context(Full)

Context(Axis)

(b) MIT+CMU-WER

Figure B.3. Context-based model’s weighted error rate (WER) for the test sets of XM2VTS (a) and MIT+CMU (b). The
default threshold point of the face classifier is represented with dashed red vertical line.

face detection process. Even with the axis context sampling (41 samples) our context-based model

manages to distinguish the false alarms from true detections.

On average both sampling models have an WER lower than 5% for the XM2VTS (Fig. B.3 a)

scenario. The same performance is obtained for the MIT+CMU scenario (Fig. B.3 b), even though

the training data is scarce (5 and 30 times less training images than for the XM2VTS scenario) and

the database is much more challenging.

These results are stable across multiple threshold values of the face classifier. It is important

to note that using simple logistic regressions as proposed is enough to obtain an accurate context-

based model. This indicates that the features extracted from the contexts (see Section B.2.2), al-

though very simple and low dimensional, are discriminative enough.

Face detection evaluation

Next we have performed experiments to assess the impact our model has on the face detection

results. We studied the effect of: i) using the heuristic method HMergeT and ii) using the context-

based model with either full or axis sampling, for face detection.

For this we analysed the TAR and the number of false alarms (FA) both parametrized by the

threshold of the face classifier: TAR = TAR (θ) and FA = FA (θ) respectively. We omit the thresh-

old of the context-based classifier in this parametrization because it is automatically optimized on

the tuning dataset (see Section B.2.3) and it is not varied during experiments. In our case the

134 APPENDIX B. CONTEXT-BASED MODELLING

−0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.5

1

1.5

2
x 10

4

θ

F
A

 NoMerge

HMergeT

Context(Full)

Context(Axis)

(a) XM2VTS-FA

−0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.2

0.4

0.6

0.8

1

θ

F
A

n
o

rm

HMergeT

Context(Full)

Context(Axis)

(b) XM2VTS-FAnorm

Figure B.4. The normalized FA (b) on the XM2VTS scenario. The default threshold point is represented with dashed red
vertical line.

threshold to vary is θ, which is not the discriminative threshold. Indeed it just provides different

context distributions to train our context-based model. We have chosen these two criteria (TAR and

FA) instead of ROC curves, because the significant decrease in FA (see Fig. B.4) makes the ROC

curve very skewed to the left.

The aim of any multiple detection clustering algorithm is to remove as few as possible true

detections and remove as many as possible false alarms. This motivates the comparison of our

approach and the baseline with the face classifier without any merging. Let use define the TAR

and the FA of the face classifier without any merging (NoMerge as in Fig. B.4) as TARn and FAn

respectively. Then we report the normalized TAR and FA as:

FAnorm (θ) = log

(
1 +

FA (θ)

FAn (θ)

)
, (B.4)

TARnorm (θ) =
TAR (θ)

TARn (θ)
. (B.5)

First we analysed the logarithmically normalized FA plots presented in Fig. B.5 (a & b) for the

two scenarios. As expected the number of FAs is greatly reduced, with at least an order of mag-

nitude compared to the baseline HMergeT. The significant decrease in the number of FAs demon-

strates that our proposed method successfully discriminates false alarms from true detections. An-

B.3. EXPERIMENTS 135

−0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.2

0.4

0.6

0.8

1

θ

F
A

n
o

rm

HMergeT

Context(Full)

Context(Axis)

(a) XM2VTS-FAnorm

−0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.2

0.4

0.6

0.8

1

θ

F
A

n
o

rm

HMergeT

Context(Full)

Context(Axis)

(b) MIT+CMU-FAnorm

−0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.2

0.4

0.6

0.8

1

θ

T
A

R
n

o
rm

HMergeT

Context(Full)

Context(Axis)

(c) XM2VTS-TARnorm

−0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.2

0.4

0.6

0.8

1

θ

T
A

R
n

o
rm

 HMergeT

Context(Full)

Context(Axis)

(d) MIT+CMU-TARnorm

Figure B.5. Normalized FA (top row) and normalized TAR (bottom row) plots on XM2VTS (a, c) and MIT+CMU (b, d)
scenarios.

other important observation is that there is no significant difference between the full sampling and

the axis sampling methods in the number of FAs. This indicates that a context with fewer samples

(thus faster to evaluate) can be designed to have similar results.

Second we evaluated the impact on the normalized TAR as presented in Fig. B.5 (c & d).

The TAR decreases slightly for the XM2VTS scenario (up to 5%) and is more accentuated for the

MIT+CMU scenario (up to 10%).

We conclude that overall our system performs well compared to the baseline, the drop in TAR

being justified by the exponential decrease in the FAs. Overall we found no significant performance

difference between the full and the axis sampling methods.

136 APPENDIX B. CONTEXT-BASED MODELLING

B.4 Conclusions

This work has presented a new method to enhance object detection by removing false alarms in a

principled way with few parameters. We have evaluated the performance of our method on several

popular face databases using a well known face detector to study the effect of two sampling methods

- full and axis. It was found that our system reduces the FA exponentially while keeping the TAR at

similar level as the baseline approach. The full sampling method has a slightly better performance

but it needs many more samples, while the axis sampling version is a trade-off between performance

and speed.

There are several advantages to using our method. First our algorithm can be initialized with

any sub-window collection, which can be obtained using some sliding window approach or a totally

different approach. Second it can work on top of any object classifier - there are no restrictions

regarding its score values, its type or the features used. Further improvements can be envisaged

including the use of higher dimensional context-based features, different feature classifiers (such

as SVM and AdaBoost) or more efficient sampling methods. Other work could also examine the

use of contextual information to improve the accuracy of detections and even to recover mis-aligned

detections.

Bibliography

E. Bailly-Bailliére, Samy Bengio, F. Bimbot, M. Hamouz, Josef Kittler, J. Mariéthoz, Jiri Matas,

Kieron Messer, V. Popovici, F. Porée, and Others. The BANCA database and evaluation protocol.

In Audio-and Video-Based Biometric Person Authentication, pages 1057–1057. Springer, 2003.

Matthew Blaschko and Christoph Lampert. Learning to Localize Objects with Structured Output

Regression. Learning, 5302:2–15, 2008.

D Cristinacce and T Cootes. Boosted regression active shape models. Proceedings of the British

Machine Vision Conference, 2:880–889, 2007.

D Cristinacce and T F Cootes. Facial Feature Detection and Tracking with Automatic Template

Selection. 7th International Conference on Automatic Face and Gesture Recognition FGR06, pages

429–434, 2006.

David Cristinacce and Tim Cootes. Facial feature detection using AdaBoost with shape constraints.

Biomedical Engineering, 1:231–240, 2003.

David Cristinacce and Tim Cootes. Automatic feature localisation with constrained local models.

Pattern Recognition, 41(10):3054–3067, 2008. ISSN 00313203.

Mark Culp, George Michailidis, and Kjell Johnson. On Adaptive Regularization Methods in Boost-

ing. Journal of Computational and Graphical Statistics, pages 1–22, 2010.

Piotr Doll and Welinder Pietro. Cascaded Pose Regression. Evaluation, pages 1078–1085, 2010.

N. Duffy and D. Helmbold. Boosting methods for regression. Machine Learning, 47(2):153–200,

2002.

137

138 BIBLIOGRAPHY

Mark Everingham and Andrew Zisserman. Regression and classification approaches to eye local-

ization in face images. 7th International Conference on Automatic Face and Gesture Recognition

FGR06, pages:441–448, 2006.

Hongliang Fei and Jun Huan. Boosting with Structure Information in the Functional Space : an

Application to Graph Classification. In Optimization, pages 643–651, 2010.

R. Fergus and P. Perona. Learning Generative Visual Models from Few Training Examples: An

Incremental Bayesian Approach Tested on 101 Object Categories. 2004 Conference on Computer

Vision and Pattern Recognition Workshop, 106(1):178–178, 2007.

Y Freund. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.

In Journal of Computer and System Sciences, volume 55, pages 23–37. Springer, August 1995.

J H Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics,

29(5):1189–1232, 2001. ISSN 00905364.

Jerome Friedman, Robert Tibshirani, and Trevor Hastie. Additive logistic regression: a statistical

view of boosting (With discussion and a rejoinder by the authors). The Annals of Statistics, 28(2):

337–407, April 2000. ISSN 0090-5364.

B Froba and Andreas Ernst. Face detection with the modified census transform. Sixth IEEE

International Conference on Automatic Face and Gesture Recognition 2004 Proceedings, pages

91–96, 2004.

Christophe Garcia. Convolutional face finder: A neural architecture for fast and robust face detec-

tion. Pattern Analysis and Machine, 26(11):1408–23, November 2004. ISSN 0162-8828.

Ralph Gross, Iain Matthews, Jeff Cohn, Takeo Kanade, and Simon Baker. Multi-PIE. Proceedings

of the International Conference on Automatic Face and Gesture Recognition, 28(5):807–813, May

2010. ISSN 1541-5058.

Di Huang, Caifeng Shan, Mohsen Ardabilian, Yunhong Wang, and Liming Chen. Local binary

patterns and its application to facial image analysis: A survey. IEEE Transactions on Systems,

Man, and Cybernetics, Part C, 41(6):765–781, 2011.

BIBLIOGRAPHY 139

Paul Jaccard. Étude comparative de la distribution florale dans une portion des Alpes et des Jura.

Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.

Oliver Jesorsky, Klaus J Kirchberg, and Robert W Frischholz. Robust Face Detection Using the

Hausdorff Distance. Computer, 2091(June):90–95, 2001.

Jean Keomany. Active Shape Models Using Local Binary Patterns. 2006. URL http://

publications.idiap.ch/index.php/publications/show/246.

Christoph Lampert, Matthew Blaschko, and Thomas Hofmann. Beyond Sliding Windows: Object

Localization by Efficient Subwindow Search. IEEE Conference on Computer Vision and Pattern

Recognition (2008), 12346(2):1–8, 2008.

S.I. Lee, Honglak Lee, Pieter Abbeel, and A.Y. Ng. Efficient L1 Regularized Logistic Regression.

In Proceedings of the National Conference on Artificial Intelligence, volume 21, page 401. Menlo

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

Stan Z. Li, ZhenQiu Zhang, Heung-Yeung Shum, and HongJiang Zhang. Floatboost learning for

classification. In Advances in Neural Information Processing Systems, pages 993–1000, 2002.

Shengcai Liao, Xiangxin Zhu, Zhen Lei, Lun Zhang, and Stan Z Li. Learning Multi-scale Block

Local Binary Patterns for Face Recognition. Learning, 4642:828–837, 2007.

Rainer Lienhart and Alexander Kuranov. Empirical analysis of detection cascades of boosted clas-

sifiers for rapid object detection. Pattern Recognition, 2003.

Hamed Masnadi-Shirazi. On the design of robust classifiers for computer vision. IEEE Conference

on Computer Vision and Pattern Recognition (2008), pages 779–786, 2010. ISSN 10636919.

L Mason, J Baxter, PL Bartlett, and M. Frean. Functional gradient techniques for combining

hypotheses. Advances in Neural Information Processing Systems, pages 221–246, 1999a.

L Mason, J Baxter, P Bartlett, and M Frean. Boosting Algorithms as Gradient Descent. In Conver-

gence, volume 12, pages 512–518. MIT Press, 2000.

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms as gradient

descent in function space. In Neural information processing systems, volume 12, pages 512–518.

Research School of Information, ANU Canberra, Citeseer, 1999b.

http://publications.idiap.ch/index.php/publications/show/246
http://publications.idiap.ch/index.php/publications/show/246

140 BIBLIOGRAPHY

K Messer, J Matas, J Kittler, J Luettin, and G Maitre. XM2VTSDB: The extended M2VTS database.

In Second International Conference on Audio and Videobased Biometric Person Authentication,

volume 964, pages 72–77. Citeseer, 1999.

Dong C. Liu Nocedal and Jorge. On the limited memory BFGS method for large scale optimization.

Mathematical Programming, 1989.

T Ojala and M Pietikainen. Multiresolution gray-scale and rotation invariant texture classification

with local binary patterns. Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002.

Simon Perkins, Kevin Lacker, and James Theiler. Grafting: Fast, Incremental Feature Selection by

Gradient Descent in Function Space. Journal of Machine Learning Research, 3(7-8):1333–1356,

2003. ISSN 15324435.

Yann Rodriguez. Face detection and verification using local binary patterns. Ecole Polytechnique

Federale de Lausanne, PhD, 3681, 2006.

H A Rowley, S Baluja, and T Kanade. Neural network-based face detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(1):23–38, 1998. ISSN 01628828.

Mohammad J Saberian. Boosting Classifier Cascades. Advances in Neural Information Processing

Systems 23, pages 1–9, 2010.

Robert E Schapire. The Boosting Approach to Machine Learning An Overview. MSRI Workshop on

Nonlinear Estimation and Classification, 7(4):149–172, 2002. ISSN 09300325.

Shai Shalev-Shwartz, Yonatan Wexler, and Amnon Shashua. ShareBoost: Efficient Multiclass

Learning with Feature Sharing. Neural Information Processing Systems, 2011.

Pannagadatta K Shivaswamy and Tony Jebara. Empirical Bernstein Boosting. Proocedings of the

13th International Conference on Artificial Intelligence and Statistics AISTATS, 9:733–740, 2010.

PK Shivaswamy and T. Jebara. Variance Penalizing AdaBoost. cs.cornell.edu, pages 1–9, 2011.

Terence Sim and Simon Baker. The CMU Pose, Illumination, and Expression (PIE) Database. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 25:1615–1618, 2003.

BIBLIOGRAPHY 141

Jan Sochman and Jiri Matas. Waldboost ” learning for time constrained sequential detection. In

Computer Vision and Pattern Recognition, pages 150–156, 2005.

Hiromasa Takatsuka, Masayuki Tanaka, and Masatoshi Okutomi. Spatial merging for face detec-

tion. In SICE-ICASE, 2006. International Joint Conference, pages 5587–5592. IEEE, 2006. ISBN

8995003855.

Hiromasa Takatsuka, Masayuki Tanaka, and Masatoshi Okutomi. Distribution-based face detec-

tion using calibrated boosted cascade classifier. In 14th International Conference on Image Anal-

ysis and Processing (ICIAP), pages 351–356. IEEE, 2007. ISBN 0769528775.

Xiaoyang Tan and Bill Triggs. Enhanced local texture feature sets for face recognition under diffi-

cult lighting conditions. IEEE transactions on image processing, 19(6):1635–50, June 2010. ISSN

1941-0042.

A Torralba, K P Murphy, and W T Freeman. Sharing visual features for multiclass and multiview

object detection. The IEEE Conf on Computer Vision and Pattern Recognition CVPR, 29(5):854–

869, 2007. ISSN 01628828.

Jiri Trefny and Jiri Matas. Extended Set of Local Binary Patterns for Rapid Object Detection.

Computer Vision Winter Workshop, 1:1–7, 2010.

Michel Valstar and Xavier Binefa. Facial Point Detection using Boosted Regression and Graph

Models. Computing, pages 2729–2736, 2010. ISSN 10636919.

P Viola and M Jones. Rapid object detection using a boosted cascade of simple features. Proceedings

of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR

2001, 1(C):I–511–I–518, 2001. ISSN 10636919.

P Viola and M Jones. Fast and Robust Classification using Asymmetric AdaBoost and a Detec-

tor Cascade. Advances in Neural Information Processing Systems, 2:1311–1318, 2002. ISSN

10495258.

Paul Viola and M.J. Jones. Robust real-time face detection. International journal of computer vision,

57(2):137–154, 2004.

142 BIBLIOGRAPHY

Markus Weber. Assorted scenes around the Caltech campus and in the Vision lab. URL http:

//www.vision.caltech.edu/html-files/archive.html.

Z J Xiang, Y T Xi, U Hasson, and P J Ramadge. Boosting with Spatial Regularization. Advances in

Neural Information Processing Systems, pages 1–9, 2009.

Lun Zhang, Rufeng Chu, Shiming Xiang, Shengcai Liao, and S Li. Face Detection Based on Multi-

Block LBP Representation. Advances in Biometrics, 4642:11–18, 2007.

W Zhao, R Chellappa, and PJ Phillips. Face recognition: A literature survey. ACM Computing

Surveys, 35(4):399–458, 2003.

http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html

Curriculum Vitae

Name: Cosmin Atanasoaei

Age: 29

Nationality: Romanian

Permanent Address: Rue de la Paix, 6, Yverdon-les-Bains 1400, Switzerland.

Email: accosmin@gmail.com

General area of interest and expertise:

Machine learning, boosting, object detection, image processing

C++ software design, implementation efficiency

Education:

1. May 2008 - April 2012

PhD in Electrical Engineering at the Ecole Polytechnique Fédérale de Lausanne, Switzerland

and the Idiap Research Institute, Martigny under the supervision of Prof. Hervé Bourlard,

Dr. Sébastien Marcel and Dr. Christopher McCool (defense scheduled: 27th April 2012).

2. October 2006 - February 2008

Master of Computer Science at the Politechnica University, Bucharest, Romania.

3. October 2001 - July 2006

Bachelor of Computer Science at the Politechnica University, Bucharest, Romania.

Professional Experience:

143

144 CURRICULUM VITAE

1. May 2008 - April 2012

Research Assistant at the Idiap Research Institute, Martigny, Switzerland.

2. May 2007 - May 2008

C++ Software Developer at AVIRA Soft SRL, Bucharest, Romania.

3. October 2006 - May 2007

C++ Software Developer at ORSYP Software, Bucharest, Romania.

4. July 2003 - October 2006

C++ Software Developer at DIGITAIR SRL, Bucharest, Romania.

Research Projects directly involved in:

1. MOBIO MObile BIOmetry (European FP7 project), www.mobioproject.org

2. Context Modelling for Object Detection(CONTEXT), funded by the Hasler Foundation

3. Interactive Multimodal Information Management (IM2), http://www.im2.ch/

Additional expertise:

1. Programming languages: C++, bash, SQL, Java.

2. Technologies: Qt, STL, Boost, MFC.

3. Applications: QtCreator, Code::Blocks, Visual Studio.

4. Operating Systems: UNIX/Linux, Windows.

References:

1. Prof. Hervé Bourlard, Idiap Research Institute, bourlard@idiap.ch

2. Dr. Sebastien Marcel, Idiap Research Institute, Sebastien.Marcel@idiap.ch

3. Dr. Christopher McCool, Idiap Research Institute, christopher.mccool@idiap.ch@idiap.ch

145

List of Publications:

Theses:

1. “Multivariate Boosting with Look-up Tables for Face Processing”, PhD Thesis, Ecole Polytech-

nique Fédérale de Lausanne, Lausanne, Switzerland, 2012.

Conference papers (peer-reviewed):

1. Cosmin Atanasoaei, Christopher McCool and Sébastien Marcel, “A principled approach to

remove false alarms by modelling the context of a face detector”, in proceedings of the British

Machine Vision Conference (BMVC), 2010

2. Sébastien Marcel, Christopher McCool, Cosmin Atanasoaei, Flavio Tarsetti, J. Pesán, P. Mate-

jka, J. Cernocky, M. Helistekangas, and M. Turtinen, “MOBIO: Mobile biometric face and

speaker authentication”, in proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2010

3. J. Parris, M. Wilber, B. Helfin, H. Rara, A. El-barkouky, A. Farag, J. Movellan, M. Santana,

J. Lorenzo, M.N. Teli, S. Marcel, C. Atanasoaei, and T. Boult, “Face and eye detection on hard

datasets”, in the IEEE IAPR International Joint Conference on Biometrics (IJCB), 2011

Technical Reports different from the above:

1. Cosmin Atanasoaei, Christopher McCool and Sébastien Marcel, “On Improving Face Detection

Performance by Modelling Contextual Information”, Idiap Research Report Idiap-RR-43-2010,

Idiap Research Institute, December 2010

2. Cosmin Atanasoaei, Christopher McCool and Sébastien Marcel, “Face detection using boosted

Jaccard distance-based regression”, Idiap Research Report Idiap-RR-02-2012, Idiap Research

Institute, January 2012

	Title
	Abstract
	Résumé
	Contents
	Introduction
	Objective of the thesis
	Motivations
	Contributions
	Organization

	Related work
	Boosting
	Introduction
	AdaBoost
	Boosting as functional gradient descent

	Local Binary Patterns
	Summary

	A unified framework for boosting look-up tables
	Unified multivariate boosting framework
	Motivation
	TaylorBoost revised
	Multivariate TaylorBoost
	Overall loss functions

	Boosting look-up-tables
	Weak learner selection step
	Line-search step
	MGradBoost for boosting look-up-tables

	Summary

	Efficient boosting
	Coarse-to-fine multi-block feature selection
	Sampling and bootstrapping training data
	Summary

	Application to face detection
	Background
	Experimental protocol
	Training and validation protocol
	Testing protocol

	Results and discussions
	Performance analysis
	Feature selection analysis

	Summary and concluding remarks

	Application to facial feature localization
	Background
	Experimental protocol
	Training and validation protocol
	Testing protocol

	Results and discussions
	Coarse-to-fine feature selection
	Performance analysis
	Feature selection analysis

	Summary and concluding remarks

	Application to face pose classification
	Background
	Experimental protocol
	Results and discussions
	Performance analysis
	Feature selection analysis

	Summary and concluding remarks

	Conclusions and future work
	Experimental findings
	Directions for future work

	Appendices
	Face detection using boosted Jaccard distance-based regression
	Objectives and motivations
	Related work
	Boosting
	Face detection using sliding-windows (SScan)

	Proposed approach
	Features and weak learner
	Training
	Jaccard distance
	Face detection using Jaccard distance-based regression (JScan)

	Experiments and results
	Experimental setup
	Results

	Conclusions

	Context-based modelling
	Objectives and motivations
	Context-based modelling for face detection
	Sampling
	Feature vectors
	Classifier

	Experiments
	Experimental protocol
	Results and discussions

	Conclusions

	Curriculum Vitae

