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ABSTRACT 

Artificial muscles based on dielectric elastomers show enormous promise for a wide range of applications and are slowly 
moving from the lab to industry. One problem for industrial uptake is the expensive, rigid, heavy and bulky high voltage 
driver, sensor and control circuitry that artificial muscle devices currently require. 

One recent development, the Dielectric Elastomer Switch(es) (DES), shows promise for substantially reducing auxiliary 
circuitry and helping to mature the technology. DES are piezoresistive elements that can be used to form logic, driver, 
and sensor circuitry. One particularly useful feature of DES is their ability to embed oscillatory behaviour directly into 
an artificial muscle device.  

In this paper we will focus on how DES oscillators can break down the barriers to industrial adoption for artificial 
muscle devices. We have developed an improved artificial muscle ring oscillator and applied it to form a 
mechanosensitive conveyor. The free running oscillator ran at 4.4 Hz for 1056 cycles before failing due to electrode 
degradation. With better materials artificial muscle oscillators could open the door to robots with increased power to 
weight ratios, simple-to-control peristaltic pumps, and commercially viable artificial muscle motors.  
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1. INTRODUCTION 

Mechatronic devices are traditionally made of hard, discrete components. For example, "smart" actuators are defined as 
actuators coupled to their drive electronics, sensors, control circuits, and gearboxes. However there is a paradigm shift 
underway towards a new kind of "smart" actuator, one that is characterised by softness and flexibility, distributed 
intelligence and sensitivity, and multifunctional operation.   

Dielectric elastomer artificial muscles are one example of this1; they can be distributed into complex networks2, 3, can 
self-sense4-7, and are multifunctional8, 9 with actuator10, 11, damper12, 13 and generator modes14-17. Because of these 
advantages they are slowly making the transition from the lab into reality: for example Bayer Artificial Muscle 
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Incorporated is selling artificial muscles for haptics18, Danfoss PolyPower is mass producing artificial muscle material19, 
and Optotune AG is selling artificial muscle laser speckle reducers20. 

Commercial realities dictate strong focus on narrow niches in the first instance, before easing to allow growth in side 
markets. It is our view that artificial muscles are being held back from these side markets by the need for discrete and 
centralized sensor, driver and control circuitry that firstly adds significant expense and secondly goes against the soft 
smart paradigm shift mentioned earlier.  

One way to address this limitation is with Dielectric Elastomer Switch(es) (DES)21-24. DES are piezoresistive elements - 
electrodes that change resistance when stretched. As shown in Figure 1 DES can be used to directly charge DEA, and as 
DEA can deform DES, the two technologies can be used to form arbitrary circuits. DES show promise for alleviating the 
commercial bottleneck because firstly they can be made out of cheap materials (the same materials used to make DEA 
electrodes), and secondly they are a form of circuitry that is soft, lightweight, and can be distributed throughout an 
artificial muscle device.  

 

Figure 1: Dielectric elastomer switches and actuators can be combined to form complex circuits. 

Many DEA applications only require simple oscillation to work such as rotary motors25, 26, pumps27, and robot 
locomotion2, 28. A variety of DES oscillators have been published;  we have used a DES oscillator to roll a ball around 
some rails21, developed an artificial muscle ring oscillator23, and presented a self-commutating artificial muscle rotary 
motor24. In this paper we show how an artificial muscle ring oscillator can be applied to a mechanosensitive conveyor 
application. To do this we refine the oscillator design, apply it to the conveyor, characterize it, and discuss its application 
to industry.  

2. MATERIALS AND METHODS 

As shown in Figure 2 ring oscillators are formed by connecting an odd number of inverters into a ring (see McNeil and 
Ricketts for a good introduction29). Ring oscillators have the advantages that they self-start, do not require a mass-spring 
system or mechanical instability to operate, and when made of artificial muscles they can be directly coupled to 
applications to confer mechanosensitivity.  

 

Figure 2: Three stage ring oscillator. Three inverters connected into a ring are unstable and will oscillate as fast as they can.   

The oscillator in this paper was formed on a single membrane of 3.5 times equibiaxially pre-stretched VHB 4905 
adhered to a 170 x 170 mm Perspex frame with three windows cut into it as shown in Figure 3. Within each window sat 
an artificial muscle inverter (Figure 4) with an actuator and switch on either side of a long and narrow coupling point. 
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Figure 7: A mechanosensitvie conveyor was made by connecting paper fingers to the inverter coupling points. 

 

Figure 8: Photo of the conveyor supporting the emery board 

3. RESULTS: 

Figure 9 shows the conveyor carrying the emery board a short distance. To get benchmarking information the emery 
board was removed and the oscillator was run to failure with its output connected to a high input impedance probe. Start 
up, stable operation, failure, and period per cycle are shown in Figure 10 to Figure 13. Table 1 shows the consolidated 
performance data of the oscillator which can be compared to the same performance data for our first ring oscillator23. 
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4. DISCUSSION 

The conveyor conveyed the emery board a short distance before it stuck with the load simply oscillating back and forth. 
The reason for this is that the center of gravity of the board moved away from the conveyor causing the board to tip and 
one finger to stick too well and the other side to not touch at all. Future work includes increasing the number of fingers 
so that the conveyor can carry things for a longer distance. A mix of smart (actuators coupled to switches) and dumb (no 
switches) actuator units could also be used to make a longer conveyor, with a few oscillator units acting as pacemakers 
for the rest. The pacemakers could be clumped together or distributed throughout the array. 

During benchmarking the ring oscillator started very quickly and settling into a stable oscillation of 4.4 Hz within a few 
cycles. The waveform was a RC sawtooth with the rising side limited by the 33 MΩ charge resistance, and the falling 
side running a bit faster due to the on-state resistance of the DES switches. The data presented here was gathered after 
the ring oscillator had been run for many cycles during the conveyor experiments, thus the lifetime estimate is 
conservative and the true value may be as much as double the 1056 cycles reported in Table 1. The oscillator failed due 
to spark erosion in the switching material, but interestingly there was spark erosion in the interconnects first, which then 
migrated to the switch. The effects of degradation can been seen clearly in Figure 13 where the oscillator period settles 
quickly into a stable range which lasts until material ablation becomes too pronounced and the oscillator becomes erratic 
at the end of its life.  

The ring oscillator design presented here is an improvement over our previous design23 as it lasted for many more cycles, 
likely due to the switch strain amplification which allowed the switches to keep working in the presence of greater 
degradation. It is interesting to note that large improvements in performance can be achieved by simple geometric 
changes without needing to develop better materials and fabrication processes, although better materials and fabrication 
processes such as gold ion implantation30-32 or other compliant electrodes33, 34  are essential for the future of the 
technology.  

Ring oscillators can accelerate the industrial uptake of artificial muscles however they need better materials and 
fabrication processes to do so. Reliability is especially important, but also sensitivity as commercially available actuator 
materials can achieve only about 10% strain. We would like to make a call to the materials science and development 
community to help us develop better switching materials. As until this happens, dielectric elastomer switches will also 
remain stuck in the lab. But once it does, artificial muscle oscillators will begin to permeate every aspect of our lives as 
they eliminate heavy, bulky, and expensive external circuitry, or in other words; as they cut the fat. 
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